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Abstract

The Belle II experiment aims to study the standard model (SM) of particle physics
and to search for new physics (NP) beyond the standard model with unprecedented
precision. This requires to accurately identify particles produced in these decays,
necessitating the development of robust methods for particle identification (PID).

This thesis presents a novel approach to charged particle identification using a
neural network aiming to separate hadrons and leptons. We achieved a significant
improvement in K/π separation performance. Subsequently, we developed an ex-
tended neural network for the simultaneous separation of electrons (e), muons (µ),
pions (π), kaons (K), protons (p), and deuterons (d). With this extended neural
network, we achieved the same performance for K/π separation as with the special-
ized neural network.

Furthermore, our approach outperforms the standard method for PID employed
at Belle II, as well as another machine-learning based method developed to perform
only lepton identification called lepton BDT. This is shown for binary classifica-
tion, i.e separation of a pair of species. Furthermore, we show that multi-class
classification, i.e. the separation of one species from a set of other species, comes
with additional challenges. Also, for multi-class classification our neural network
approach outperforms the other PID methods used at Belle II.

In summary, in this work we have developed a universal neural network. This
means that it is able to perform hadron and lepton identification with a better
performance than all existing methods for particle identification at Belle II.
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Chapter 1

Introduction

The Standard Model (SM) [1] of particle physics stands as one of the most success-
ful theoretical frameworks in modern physics. It elegantly describes the fundamen-
tal particles and their interactions through the electromagnetic, weak and strong
forces. However, despite it is remarkably accurate in predicting and explaining a
wide range of experimental observations over six decades of experiments in High
Energy Physics, it provides an incomplete understanding of physics picture. There
remain unexplained phenomena, such as dark matter, neutrino masses, or the asym-
metric dominance of matter over antimatter. New theories have been developed to
explain this discrepancies. It is crucial to also experimentally explain New Physics
(NP) beyond the SM.

Experiments like the Belle II experiment are carried out to search for deviations
that might hint to new physics. However, the approach employed by Belle II differs
from other experiments which usually rely on high energy collisions to discover new
particles, e.g LHCb. These are experiments in the high energy frontier. They use a
direct method, since they are trying to directly observe the "new" particle. Instead
of focusing in increasing the energy, the primary goal of the Belle II experiment is to
drastically increase the luminosity (high precision frontier). They use a so-called in-
direct method, i.e the particles are reconstructed and we look at missing information.

Therefore, the primary mission of the Belle II experiment is to address some of
these outstanding questions by studying the properties of particles and their de-
cays, with a particular focus on phenomena such as CP violation [2]. CP violation
holds crucial insights into the early universe’s evolution and the matter-antimatter
asymmetry that we observe today. CP violation is an small effect allowed by the
SM. However, the CP violation predicted by the SM is an insufficient source, as
experiments have found more CP violation that predicted.

To achieve this, Belle II uses electron-positron collisions, which produce various
particle products at the Υ (4S) resonance [3]. The products that we want to study
are: B-meson [4], D-meson and τ -lepton [5]. They serve as a laboratory to search
NP beyond the SM. Ultimately, they decay mainly into 6 charged particle species:
electrons (e), muons (µ), pions (π), kaons (K), protons (p), and deuterons (d), which
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8 CHAPTER 1. INTRODUCTION

are the quasi-stable final-states particles produced at Belle II.

Our objective is to differentiate between these six charged particle species hy-
potheses. For example, this task is challenging in the case of τ decays, particularly
those involving τ → K π π or τ → π π π. due to the τ → π π π decay has 20
times larger rate than the τ → K π π decay. Only particle identification (PID) can
separate these processes. Furthermore, PID is also important for other reactions
studied at Belle II, e.g. B decays. In summary, to distinguish the six charged par-
ticle species, we need to define robust methods to do particle identification in order
to ascertain the nature of the detected particles.

Belle II consists of various detectors, which produce an immense amount of data.
There are six detectors that measure particle properties that are used for PID. The
information of the detectors is expressed in terms of likelihood values LD(h) for each
detector D and each particle species h. The standard approach at Belle II, called
Pure Likelihood approach, combines directly this information. Additionally, there is
another specialised tool only for lepton identification, called Boosted Decision Tree
(BDT) [6, 7].

Machine Learning (ML) has proven to be an ideal approach for identifying pat-
terns and relationships in extensive data sets. To this end, using neural network for
particle identification might be an interesting approach. A first attempt was devel-
oped by Tsaklidis et al. [8], who proposed an initial method to enhance exclusively
the performance of kaon-pion separation. In this work, only likelihoods from kaons
and pions for the six detectors, i.e LD(K) and LD(π), were used. Later, Wallner ex-
tended this kaon-pion separation research by using the likelihood of the six particle
species.

The aim of this thesis is to develop a novel method capable of performing charged
particle identification simultaneously for hadrons and leptons, separating the six
charged species. Starting with the neural network proposed by Wallner for K/π
separation, the first step is to fine-tuned it and study it. Then, we extend the neu-
ral network for all the species.

This work persecutes two main goals. First, we want to develop a method that
gives the best performance over all the current methods used at Belle II, i.e Pure
Likelihood and BDT. Second, we want to have a universal method, i.e that can be
used for all samples and can separate all particle species simultaneously.

This work is divided into eight chapters, with the introduction having already
been outlined. Here’s a brief overview of the subsequent chapters. Chapter 2 pro-
vides an brief introduction to the SuperKEKB accelerator and the Belle II exper-
iment. In Chapter 3 the physics principles for particle identification, along with a
description of the PID detectors are explained. Moreover, it describes the standard
Belle II PID methods. At the end, the method used to evaluate the performance of
the different methods is presented. Chapter 4 describes the neural networks devel-
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oped for this work and introduces the neural network PID. Chapter 5 evaluates the
performance of the neural network developed for K/π separation. It includes studies
of the network architecture. Furthermore, it reaches a conclusion on which training
data sample we should use. Chapter 6 studies the performance of the extended neu-
ral network for binary classification. It is tested in different samples against other
dedicated methods. Chapter 7 evaluates the extended neural network for multi-class
classification. Chapter 8 gives the conclusions and outlook of this work.
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Chapter 2

Belle II at SuperKEKB

In this chapter, an introduction of the SuperKEKB facility is given in section 2.1.
Next, in section 2.2, the Belle experiment is introduced, describing the main goals
and challenges, providing a concise overview of its detectors, and descriving the co-
ordinate system of the Belle II experiment.

2.1 The SuperKEKB Accelerator

The Belle II experiment is located at SuperKEKB e+e− collider in Tsukuba, Japan.
It accelerates and collides electrons and positrons with asymmetric energies of 7 GeV
and 4 GeV, respectively, resulting in a centre-of-mass energy of

√
s = 10.58 GeV [3]

at the Υ (4S) resonance. Since the Υ (4S) predominantly decays into B-meson pairs
(B- and B̄-), with a branching fraction of above 96% [9], SuperKEKB is ideal for
the studies of B-Physics. Hence, SuperKEKB aim to improve our knowledge of the
flavour physics, estimate with more precision the parameters of the Standard Model
and search for physics beyond the Standard Model. The design luminosity of Su-
perKEKB is 8 × 1035 cm−2s−1, which is an increase by a factor of 40 with respect to
its predecessor, the KEKB. In its first data taking period [10] from 2018 to 2022 Su-
perKEKB reached the world highest instantaneous luminosity of 4.7 × 1034 cm−2s−1

and collected an integrated luminosity of 424 fb−1 [11].

Figure 2.1 gives an overview over the SuperKEKB facility. The electrons, intro-
duced with an electron injection gun, are accelerated using a LINAC. Part of the
electrons are separated from the rest and, once they hit a thick tungsten target,
a shower of particles is produced including positrons, which are separated using a
magnetic field. The electron beam will be stored in the 3 km long high-energy ring
(HER) and accelerated to 7 GeV. Analogously, the positron beam is stored in the
low-energy ring (LER) and accelerated to 4 GeV. The collision point of the electron
and the positron beam is located in the Tsukuba section, where the Belle II detector
is located. Further information can be found in [3].
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12 CHAPTER 2. BELLE II AT SUPERKEKB

Figure 2.1: Schematic view of the SuperKEKB facility from ref. [12].

2.2 The Belle II Experiment
One of the primary objectives of the Belle II experiment is to identify particles
resulting from decays. To achieve this, we have outlined four key tasks: parti-
cle identification, tracking, calorimetry, and neutral measurements. We face the
intricate challenge of having a high background rate [11], leading to an increased
occurrence of fake hits and radiation damage. However, the performance of the
Belle II is expected to be equivalent to or better than Belle even under the higher
background. To achieve this, the Belle II detector is designed as an exceedingly
precise measurement system.

The detector is centred around the interaction point (IP), where electrons and
positrons collide, with the aim of detecting and measuring all particles produced in
the e+e− collisions. Due to the asymmetry of the SuperKEKB collisions, the de-
tector is asymmetric along the beam axis. In the context of Belle II, the “forward”
direction is the direction in which 7 GeV electron beam points, while “backward” is
the direction in which the 4 GeV positron beam points.

Figure 2.2 shows a visual representation and schematic of the coordinate system.
It is composed of three distinct components: the barrel, the forward endcap, and
the backward endcap. The barrel is located at the central region of the detector,
surrounding the interaction point. The forward endcap is positioned in the forward
direction relative to the interaction point, whereas the backward endcap is located
in the opposite direction from the interaction point.

The Belle II detection system is formed by seven individual detectors, each one
dedicated to a specific task. This section provides a brief overview. Detectors for
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Figure 2.2: Belle II Coordinate system.

PID are described in more detail in chapter chapter 3.

The innermost detector from the IP is the Pixel Detector (PXD). Together with
the Silicon Vertex Detector (SVD), they allow for the precise measurement of each
particle’s tracks as it passes through these detectors. This information is crucial to
reconstruct the point where the particle was created (vertex) with high resolution
(∼ 50 µm).

After passing through the SVD, the particle enters the Central Drift Chamber
(CDC). The CDC consists of layers of gas-filled cells, where charged particles ion-
ize the gas. The ionitzation is measured, resulting in a sequence of hits that trace
the particle’s path. Furthermore, the magnetic field is mainly homogeneous in the
CDC. Therefore, by measuring the curvature of a particle inside the magnetic field,
resulting from the Lorentz force experienced by particles within it, the momentum
of charged particles can be also determined.

Outside of the CDC, there are the Time-of-Propagation Counter (TOP) and
the Aerogel Ring Imaging Cherenkov Detector (ARICH), covering the barrel and
forward endcap regions respectively. Both use Cherenkov radiation to identify the
species of charged particles, as discussed in section 3.1.1.
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Photons and electrons are detected by the Electromagnetic Calorimeter (ECL).
They deposit nearly all their energy in the ECL by producing electromagnetic show-
ers. The energy deposition is used to determine the energy of the particle.

The outermost detector of Belle II is the K-Long and muon (KLM) detector.
The KLM measures the energy deposited in its scintillators, allowing for the identi-
fication of muons. Additionally, it provides K-Long identification information.

Belle II uses a right-handed Cartesian coordinate system. The z-axis points
along the beam-line, in the direction of the electrons. The x-axis points towards the
centre of the Belle II detector,and the y-axis points vertically upwards. The origin
of the coordinate system is located at the interaction point where the electrons and
positrons collide.

The direction of a track is often expressed in spherical coordinates (θ, ϕ). The
polar angle θ is the angle between the z-axis and the direction of the track. The
azimuthal angle ϕ is the angle between the x-axis and the direction of the track.
The polar angles is in the range of [0, π] radians and azimuthal angle is in the range
[0, 2π] radians.

The detectors cover almost the full solid angle and provide excellent momentum
resolution across the entire kinematic range. In summary, the Belle II experiment,
with its detectors, exhibits a highly efficient particle identification system capable
of distinguishing photons and charged particles i.e pions, kaons, protons, electrons,
and muons, over the full kinematic range of the experiment. Furthermore, the Belle
II spectrometer is equipped with a fast and efficient trigger system [13], as well as
a data acquisition system [14]. The Belle II trigger system efficiently selects and
records collision events. The data acquisition system manages the flow of informa-
tion from the detector components and transfers the raw data to the offline storage.
Then, it is converted into physical variables.



Chapter 3

PID at Belle II

This chapter starts with a description of main physical principles used for particle
identification: Cherenkov radiation and energy loss (see section 3.1). In section 3.2
the different PID detectors are explained in detail. It includes a brief description of
their main parts, physical functioning, operating principles, and detector likelihood
definition LD(h).

In section 3.3 we explain how to combine the likelihoods obtained from the de-
tectors to define the likelihoods for each specie L(h), the so-called Pure Likelihood
approach. In section 3.4 we explain how combine these variables, using a normali-
sation process, to define the classification variables for various PID tasks. Further-
more, the lepton BDT, an existent method focused on lepton PID is explained in
section 3.5. Finally, in section 3.6, the performance measures for PID are defined to
assess the performance of the different methods.

3.1 Physics Principles for PID

3.1.1 Cherenkov Radiation

In order to perform particle identification, and specially for K/π separation, the
Belle II experiment uses Cherenkov radiation. In principle, a massive particle can’t
exceed the speed of light in the vacuum. However, this does not hold when travelling
through a refractive medium with n > 1, where n is the refractive index. This is
due to the fact that velocity of the light drops to c0/n, where c0 is the velocity
of the light in the vacuum. When a charged particle passes through a dielectric
material (meaning that it can be polarised), it induces the local electromagnetic field,
polarising the near molecules. Next, the molecules return to a state of equilibrium,
releasing a coherent and the electromagnetic field. If the charged particle exceeds
the speed light, Cherenkov photons are emitted, creating a cone due to wavefronts
of electromagnetic radiation trail behind the particle. Figure 3.1 shows the release
of a Cherenkov photon. As discussed in [15], one can define the emission angle of a
Cherenkov photon θc as:

15



16 CHAPTER 3. PID AT BELLE II

Figure 3.1: The schematic view of the Cherenkov photon. Retrieved from [12].

cos θc =
c0

n
∆t

v∆t
= 1

nβ
(3.1)

where β is the ratio of velocity of the particle and c0. Using:

β = |p⃗|
E

= |p⃗|√
m2 + |p⃗|2

(3.2)

where |p⃗| is the magnitude of the momentum, E is the energy and m is the mass of
the particle, one can write:

cos θc =

√√√√(m

|p⃗|

)2

+ 1

n
(3.3)

At end, one can define
pth = m√

n2 − 1
(3.4)

where pth is the momentum threshold of the particle. Below this threshold, Cherenkov
photons are not produced.

The Time Of Propagation counter (TOP) and Aerogel Ring Imaging Cherenkov
detector (ARICH) use the Cherenkov effect to identify particles. As explained in
section 2.2, we know the momentum of the particles through their curvature in
the magnetic field. By measuring the emitted Cherenkov photons, we can apply
Eq. (3.3) to determine the particle’s mass. Figure 3.2 shows the relation between
the Cherenkov angle and the momentum. This relation is specific for a given particle
species, resulting in the differently colored curves

Despite using the same physics principle, the TOP and the ARICH vary in their
operating principles. In addition, their cover different θ regimes. ARICH is located
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Figure 3.2: Cherenkov angle as a function of momentum for various particle species
for refractive index of n = 1.5.

at the forward endcap; whereas the TOP detector is situated in the barrel region
(see Fig. 3.4). This is indeed useful because the combination cover a wider range
of θ. More details about the Cherenkov radiation and its applications can be found
in [16].

3.1.2 Energy loss

In addition to the characteristic emission of Cherenkov light, the energy loss through
matter dE/dx can be used to perform particle identification. This process describes
how charged particles lose energy as they traverse a medium, primarily due to in-
teractions with the electrons within the material. The energy loss, among others
factors, depends on the charge and velocity of the particle and the density of the
medium. It follows the Bethe Block formula.

To perform particle identification, we use as additional input the momentum
of the charged particle, obtained previously. Figure 3.3 illustrates the energy loss
for different charged particle species as a function of the momentum. For a given
momentum, the energy loss is specific for a particle species. Therefore, by combin-
ing the momentum measurement with the measured energy loss (dE/dx), we can
distinguish between different particle species.
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Figure 3.3: dE
dx

with respect to the momentum of various charged particle species.
The points belong to experimental values. The curve are the theoretical values for
the different particles. Retrieved from [17].

3.2 The Belle II Detectors for PID

As explained in the previous chapter, the Belle II detection system consists on seven
individual detectors. They are build to work in different θ regions as shown in
Fig. 3.4. Additionally, table 3.1 provides a summary of their components, spatial
locations, and their corresponding θ coverage.

Further, some of the detectors are partly specialized to identify certain particle.
For example, the KLM detector is designed to identify muons, while the ECL de-
tector is optimized for detecting photons or electrons.

Finally, they work in different momentum regions. For example, as illustrated
in Fig. 3.3, in the region |p⃗| > 1.5 GeV/c information derived from energy loss
measurements in the CDC and SVD is insufficient for PID, as all species yield to a
similar energy loss. On the othr hand, the TOP detector proves to be a important
tool in this region, offering supplementary information.

We need to combine the information from the six PID detectors in an optimal
way to effectively identify particles produced. For that purpose, different groups of
detector experts propose models to integrate these measurements, simplifying the
complexity and deriving more user-friendly variables. They are called PID likeli-
hoods LD(h), where D stands for the 6 detectors (SVD, CDC, TOP, ARICH, ECL
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Table 3.1: Summary of the detector components. Retrieved from [3].
Purpose Name Component Configuration θ coverage
Beam pipe Beryllium Cylindrical, inner radius 10 mm, 10 µm Au, 0.6 mm Be,

1 mm paraffin, 0.4 mm Be
Tracking + SVD Silicon Strip Rectangular and trapezoidal, strip pitch: 50(p)/160(n)-75(p)/240(n) µm, [17◦; 150◦]
Particle ID (double sided) with one floating intermediate strip; four layers at radii: 39, 80, 104, 140 mm

small cell, large cell, 56 layers
Tracking + CDC CDC Drift Chamber 14336 wires in 56 layers, inner [17◦; 150◦]
Particle ID with He − C2H6 gas radius of 160 mm outer radius of 1130 mm
Particle ID TOP RICH with quartz Barrel: 16 segments in ϕ at ∼ 120 cm, 275 cm long, [31◦; 128◦]

radiator (DIRC) 2 cm thick quartz bars with 4 × 4 channel MCP PMTs
ARICH RICH with aerogel FWD end-cap: 2 × 2 cm thick focusing radiators with [15◦; 34◦]

radiator different n, HAPD photodetectors
Calorimetry ECL CsI(Tl) Barrel: r = 125 − 162 cm, [12.4◦; 31.4◦],

end-caps: at z = −102 and z = +196 cm, [32.2◦; 128.7◦], [130.7◦; 155.1◦]
Muon ID KLM barrel: RPCs and 2 layers with scintillator strips [40◦; 129◦]

scintillator strips and 13 layers with 2 RPCs
KLM end-caps: scintillator 14 (12) layers of [7–10] × 40 mm2 strips

strips in forward (backward) region [25◦; 40◦], [129◦; 155◦]

Figure 3.4: Schematic view of Belle II detectors. Retrieved from [3].
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Figure 3.5: Schematic view of the Belle II vertex detector with a Be beam pipe, two
pixelated layers and four layers of silicon strip sensors. Retrieved from ref [3].

and KLM)1 and h for the possible species. The generation of these likelihoods in-
volves employing distinct complex models, different for each detector. As a result,
36 PID likelihoods are obtained since we have 6 species as hypotheses and 6 detec-
tors. The brief explanation of how the likelihoods of each detector are computed
can be found below. Further information on how the likelihoods are formed can be
found in [3].

3.2.1 Vertex Detector (VXD)
The Vertex Detector (VXD) [3] is formed by two semiconductor detectors, the Pixel
Detector (PXD) and Silicon Vertex Detector (SVD). It is located in the innermost
part of the Belle II experiment, around the beam pipe, and is comprised in total
of six layers. The PXD, which builds the first two layers, is made of silicon pixel
sensors due to high background expected close to the interaction point. The outer
four layers are the SVD, which is made of silicon strips. The VXD layers distri-
bution is shown in Fig. 3.5. Both detectors share the same polar angle coverage
(θ ∈ [17◦; 150◦]) and have full coverage of the azymuthal angle.

Both, have the same physics working principle. When charged particles pass
through the silicon, they ionize the material, generating electron-hole pairs, which
will move towards the electrodes. They will be measured as electrical signals. The
position and timing of these signals are used to reconstruct the trajectory and in-
teraction points of the particles (tracking and vertexing).

3.2.1.1 Silicon Vertex Detector (SVD)

The SVD [18,19] layers are situated at the following radii: r=39mm, 80mm, 104mm,
and 135mm. SVD sensor are constructed with Double-Sided Silicon micro-strip De-
tectors (DSSDs), the size and shape of which depend on the layer. In total, there

1PXD is not used for PID in this work, only for tracking.
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are 72 SVD sensors and around 220 thousand strips. The sensor are distributed per-
pendicular (n-strips) and parallel (p-strip) to the beam direction , providing (x,y)
coordinates of the hit location. The high granularity of the SVD allows for precise
tracking and vertexing, helping identify primary and secondary interaction points.

Additionally, the energy loss in the SVD is measured by measuring the deposited
charge. This information is used to perform particle identification in the low mo-
mentum region that can not reach the CDC.

The likelihood of the SVD LSVD(h) is computed using information from the hits
and deposited charge in the detector, and comparing it with the expected distribu-
tion based on the assumed specie hypothesis.

3.2.2 Central Drift Chamber (CDC)
One of the the main tracking detectors of the Belle II is the CDC [20]. It is made
of a large volume drift chamber with small drift cells, between two semiconductor
tracking detectors, with a inner radius of 160 mm and an outer radius of 1130 mm.
Its main purpose is to to reconstruct the trajectory of charged particles. It is filled
with He − C2H6 50:50 gas mixture, to suppress multiple scattering with an average
drift velocity of 3.3 cm/µs. Charged particles traversing the chamber ionize the gas.
The produced charged is detected by wires.

The number of ionized electrons is roughly proportional to the particle’s energy
loss, allowing the determination of energy loss (dE/dx) by the CDC. As explained
in section 3.1.2, this allows to perform particle identification. The CDC covers a
polar angle interval of 17◦ < θ < 150◦ and a full azimuthal angle.

The likelihood of the CDC LCDC(h) is computed using its momentum and energy
loss to relate it with the expected particle, as shown in Fig. 3.3.

3.2.3 Time of Propagation counter (TOP)
Figure 3.6 shows a schematic of the TOP detector. The Time of Propagation detec-
tor [21,22] is located in the barrel region of the Belle II detector in between the CDC
and ECL, with θ coverage of ∈ [31◦, 128◦]. The TOP detector comprises 16 radiator
modules positioned around the CDC. Each detector module consists of a 45 cm wide
and 2 cm thick quartz bar with a small expansion volume (about 10 cm long). These
radiators are read out micro-channel plate photo-multipliers (MCP-PMT), located
at one end of the bars, and a spherical focusing mirror, attached to the other end,
to focus and direct the Cherenkov photons towards the PMTs.

In the TOP detector, the quartz radiator serves as the refractive medium, with
its refractive index varying between 1.43 and 1.58 depending on the wavelength of
the light. Cherenkov photons generated within the TOP undergo internal reflection
as they traverse the quartz radiator until they eventually interact with a photon
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Figure 3.6: Schematic view of TOP working principle and side view with the internal
reflection of the Cherenkov photons visualised. Retrieved from [24].

detector located at one end. The trajectory of the photon depends on the angle
under which the photons is emitted with respect to the quartz bar. This angle is
given the the inclination of the particle track with respect to the quartz bar and the
Cherenkov angle under which the photon is emitted, i.e. the angle with respect to
the direction of the track. The detector measures both the impact location and the
time of propagation of these Cherenkov photons by the MCP-PMTs.

The impact position and the time of propagation are characteristic for the
Cherenkov angle (illustrated in Fig. 3.6) and therefore for the particle species for
a given track momentum and inclination. This characteristic pattern of impact lo-
cation and time of propagation is used to formulate a likelihood LTOP(h) for each
species hypothesis h for a given track. Additional information on how to compute
the TOP likelihood is given in [23].

3.2.4 Aerogel Ring-Imaging Cherenkov detector (ARICH)
The ARICH also uses Cherenkov radiation as its operating principle. It is located
only in the forward endcap 2 region, covering θ ∈ [14◦; 34◦]. The working principle
of the ARICH is based on production of the Cherenkov photons once a charged par-
ticle enters a aerogel radiator. The θc of the Cherenkov light-cone is measured by a

2Due to the boosted centre of mass energy, particles predominantly travel towards the for-
ward endcap rather than the backward endcap. Additionally, those particles directed towards the
backward endcap typically exhibit low momenta, a range already effectively covered by the CDC.
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(a) (b)

Figure 3.7: ARICH, the proximity focusing RICH with a non-homogeneous aerogel
radiator in the focusing configuration, principle of operation. Retrieved from

a) [12] and b) [28].

photon detector situated behind the aerogel radiator. This configuration is shown
in Fig. 3.7a. One can observe that different particles, K and π in this example,
produce different rings as θc depends on the mass through Eq. (3.3). To ensure
effective detection, 20cm thick expansion volume is installed between the aerogel
radiator and photon detectors, in order to adequately sized Cherenkov rings for ef-
fective detection. The detectors are based on Hybrid Avalanche Photo-Detectors
(HAPD) technology, which are arranged in 9 concentric rings for a total of 540
sensors. They are composed of a vacuum tube with solid state senor of avalanche
diode type photo-detector (APD). Further details of Belle II HAPD distribution and
optimisation can be found in [25].

ARICH uses two different aerogel radiators, placed one after the other one. They
have the same thickness but different refractive index (n = 1.046 and n = 1.056) to
produce Cherenkov rings that are focused at the same point at the photon detector.
With this setup (shown in Fig. 3.7b), a better resolution is obtained [26], when
compared to using only one medium.

The likelihood of the ARICH LARICH(h) is computed by evaluating the observed
hits from the Cherenkov photons on each pixel in the photon detector, given the
expected number of hits for a specific charged track hypothesis. Additional infor-
mation on how to compute the ARICH likelihood is given in [27].

3.2.5 Electromagnetic Calorimeter (ECL)
A high resolution Electromagnetic Calorimeter (ECL) [28, 29] plays an important
role in the Belle II experiment, to effectively measure neutral final state particles.
The main aim of the ECL is measure photons. However, it also offers a way to effi-
ciently identify electrons, i.e. separate electrons from muons and charged hadrons.
In addition, they help the KLM in K0

L identification and triggering. It is composed
by a highly segmented array of thallium doped caesium iodide CsI(Tl) crystals,
pointing towards the interaction region of the beams (as shown in Fig. 3.8). In
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Figure 3.8: Schematic view of ECL detector. Retrieved from [28].

total, there are 8736 crystals, covering about 90% of the solid angle in the centre-
of-mass system. The ECL is placed in all three detector regions: the barrel, the
forward endcap and in the backward endcaps. It covers almost the full polar angle
3.

The working principle of the ECL is based on the production of electromagnetic
showers by charged particles and photons entering the calorimeter and interacting
with the lead tungsten crystals, depositing energy. The shower products generate
scintillation light, which is subsequently detected at the end of each crystal. The
detection is carried out with two sets of photodiodes, that are glued to the crystal,
with a sensitive area of 10 mm2, connected to sensitive preamplifiers.

The intensity of this scintillation light is proportional to the energy of the inci-
dent particle, allowing for precise determination of the deposited energy. Specifically,
electrons and photons deposit all of their initial energy. Therefore, the deposited
energy is equal to the total energy. As e is quasi massless, the electron and photon
momentum equals its energy. Hence, the ratio of measured energy over measured
momentum E/p, peaks at 1. Photon and an electron are separated by finding a cor-
responding charged track in the Central Drift Chamber (CDC) or not. The photon,
being uncharged, does not leave a track, whereas the electron does, allowing us to
differentiate them. Particles of other species with larger mass do not lose all of their
energy in the ECL. Therefore, the ratio of E/p does not reach its peak at 1.

312.4◦ < θ < 155.1◦ , except for two about ∼ 1◦ wide gaps between the barrel and endcaps,
where table 3.1 shows the exact θ range for all three regions.
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To compute the likelihood LECL(h), the ECL only uses the ratio between the
energy deposited and the momentum, E/p.

3.2.6 K-long muon detector (KLM)
The K0

L and muon detector, know as KLM [3], is the outermost detector of the Belle
II experiment. The aim of this detector is to detect long-lived particles, which are
not absorbed in the ECL, that traverse a significant distance through the detector
volume before ultimately reaching the outermost region. It consists of an alternat-
ing sandwich of 4.7 cm thick iron plates and active detectors. These iron plates act
as the magnetic flux return for the solenoid, situated between the ECL and KLM.
Additionally, they yield an extra 3.9 interaction lengths of material, surpassing the
0.8 interaction lengths of the calorimeter, in which K0

L mesons shower hadronically.
In contrast, muons do not produce any showers, but are visible as curved tracks in
the active part of KLM. The detection is done using layers of scintillator strips that
produce scintillation light, captured by silicon photomultipliers (SiPMs). It has an
angular acceptance of 20◦ < θ < 155◦including both end caps and the barrel region.
4.

Muons are identified by matching the extrapolations of charged tracks from the
CDC to the KLM with signals in the active part of the KLM. If a KLM cluster lacks
a corresponding track, this indicates a K0

L particle. Extended information on muon
and KL identification is provided in [30].

The likelihood of the KLM LKLM(h) is determined based on the presence or ab-
sence of a cluster, along the extrapolation of charged tracks through the KLM.

3.3 Pure Likelihood Approach
The starting point is to combine the likelihoods from the six PID detectors in an
optimal way to effectively identify particles produced. The standard approach for
PID at Belle II [3, 31] uses the likelihoods from each of the six detectors for the
six hypotheses: e, µ, π, K, p, and d. To define a combined PID likelihood L(h)
for hypotheses h, the likelihoods from the subdetectors are multiplied as they are
assumed to be independent:

L(h) =
∏
D

LD(h) = LSVD(h) LCDC(h) LTOP(h) LARICH(h) LECL(h) LKLM(h) (3.5)

This method is called Pure Likelihood approach.

It presents two major drawbacks, both of which are overcame with the use of
the neural networks proposed in chapter 4. The computation of likelihoods requires
modelling, which require approximations. Therefore, the likelihoods might not be

4Table 3.1 shows the exact θ range divided in all three regions.
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perfect. On the other hand, the Pure Likelihood approach uses the direct mul-
tiplication of individual likelihoods (Eq. (3.5)) and does not account for possible
correlations, leaving room for improvement.

3.4 Binary Normalitzation
Each physics analysis has its specific requirements on PID. They can be grouped into
two tasks: binary classification and multi-class classification. The choice between
both depends on the specific characteristics of the physics process that is studied by
the analyst. Binary classification is used if only two possible species are considered.
Multi-class classification involves the separation of more than two species simulta-
neously, i.e to separate one particle from the rest.

For multi-class classification, i.e considering all six species, the likelihood defined
in Eq. (3.5) can directly be used as classification variable. This concept is elaborated
upon in chapter 7.

For binary classification, an essential intermediate step has to be applied to the
L(h) to formulate classification variables from them. It is called binary normalitza-
tion. To perform binary classification on two species of interest labelled α and β,
the binary classification variables C(α : β) are defined as:

C(α : β) = L(α)
L(α) + L(β) = 1 − C(β : α) (3.6)

The classification variables can be interpreted as the "probability" to have a α par-
ticle. C(α : β) is in the range of 0 to 1 and C(α : β) + C(β : α) = 1.

In order to identify a track as being of species α, C(α : β) is required to be
above a certain threshold r. A higher threshold means greater confidence, while
a lower threshold allows predictions even with less confidence. Depending on the
specific objective, e.g aiming for high efficiency or low misidentification rate, one
has the freedom to select the threshold, which determines how confident you want a
prediction. For example, if one is interested in performing K/π separation, a track
is identified as a kaon if C(K : π) is above a chosen threshold.

3.5 Introduction of the Boosted Decision Tree
To improve lepton PID, an IA based method was previously developed [6,7]. It uses
a boosted decision tree (BDT) classifier, which combines likelihood information of
PID detectors with an additional so-called ECL cluster-shape variables available, in
order to enhance the discrimination power.
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Table 3.2: Description of the input variables for the BDT [32]. The "Range" column
indicates whether a variable is defined only in a particular region of the phase space.
Note that the KLM info is used only for the muon classifiers. [6]

Variable Range Description
E/p[c] - Ratio of cluster energy over track momentum.
E1/E9 - Ratio of the energy of the seed crystal

over the energy sum of the 9 surrounding crystals.
E9/E21 - Ratio of the energy sum of 9 crystals surrounding

the seed over the energy sum of the 25
surrounding crystals (minus 4 corners).

Cluster LAT - Cluster lateral moment
|Z40| - Zernike moment n = 4, m = 0, calculated in a plane

orthogonal to the EM shower direction.
|Z51| - Zernike moment n = 5, m = 1, calculated in a plane

orthogonal to the EM shower direction.
ZMV A - Score of BDT trained on 11 Zernike moments.
∆L[ cm] - Projection on the extrapolated track direction

of the distance between the track entry point
in the ECL and the cluster centroid.

PSDMV A - Score of a BDT trained to classify clusters
as originated by an EM or hadronic shower,
using crystal-level info including waveform pulse shape.

∆ log L(ℓ/π)CDC (binary) - Log-likelihood difference between ℓ − π hypothesis
is in the CDC (binary)

LCDC
ℓ /

∑
i LCDC

i (multi-class) - Global lepton likelihood ratio in the CDC (multi-class).
∆ log L(ℓ/π)T OP (binary) ECL Barrel† Log-likelihood difference between ℓ − π

hypothesis in the TOP (binary)
LT OP

ℓ /
∑

i LT OP
i (multi-class) ECL Barrel† Global lepton likelihood ratio in the TOP (multi-class).

∆ log L(ℓ/π)ARICH (binary) ECL FWD endcap† Log-likelihood difference between ℓ − π
hypothesis in the ARICH (binary)

LARICH
ℓ /

∑
i LARICH

i (multi-class) ECL FWD endcap† Global lepton likelihood ratio in the ARICH (multi-class).
∆ log L(µ/π)KLM (binary) plab > 0.6GeV/c Log-likelihood difference

between ℓ − π hypothesis is in the KLM (binary)
LKLM

ℓ /
∑

i LKLM
i (multi-class) plab > 0.6GeV/c Global lepton likelihood ratio in the KLM (multi-class).

† The ECL polar angle coverage per region is the following: ECL Forward end-cap ∈ [12.4◦; 31.4◦],
ECL Barrel ∈ [32.2◦; 128.7◦] and ECL Backward end-cap ∈ [130.7◦; 155.1◦].

A particle hitting the ECL creates a signal not only in a single cell in a cluster
of cells. Hence, we can measure not only the deposited energy, but also the shape.
This shape is also different for different particle species. The LECL(h) is computed
only using the energy and momentum rate, while the ECL cluster-shape variables
encode the cluster shape, offering additional information for PID.

The full list of input variables is outlined in table 3.2. This BDT is trained on a
simulated sample (refer to section 4.1).

3.6 Performance Evaluation
To test the performance of a neural network, a confusion matrix is usually de-
fined [33]. The matrix contains the counts of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). For example for K/π separa-
tion, K is the positive category and π is the negative category. True means that the
prediction is correct, while false means it is incorrect. A "true positive" means that
the model accurately predicts the positive category, while a "true negative" means
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Figure 3.9: Confusion matrix. Retrieved from ref. [34]

an accurate prediction of the negative category. A "false positive" means that the
model incorrectly predicts the positive category, and a "false negative" means that
the model inaccurately predicts the negative category. Figure 3.9 illustrates a con-
fusion matrix.

A ROC curve, which stands for Receiver Operating Characteristic curve, is a
graphical representation that illustrates the performance of a classification method
independently of the chosen threshold, by scanning across various classification
thresholds. It displays two essential parameters against each other:

True Positive Rate (TPR) = TP

TP + FN
(3.7)

False Positive Rate (FPR) = FP

FP + TN
(3.8)

In the ROC curve, the horizontal-axis represents the FPR, while the vertical-axis
represents the TPR. In the following work, TPR is referred to as efficiency, and
False Positive Rate is referred to as misidentification rate.

For example if we are performing K/π separation: TP are the kaons correctly
identified as kaons, FN are the kaons incorrectly classified as pions, FP are the
pions incorrectly classified as kaons and TN are the pions correctly classified as
pions. Therefore, we can define:

TPR =K efficiency = Number of kaon tracks identified as a kaon
Total number of kaon tracks (3.9)

FPR =π misID-rate = Number of pion tracks identified as a kaon
Total number of pion tracks (3.10)
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Analogously, the π efficiency and the K misidentification rate are defined as as:

π efficiency =Number of pion tracks identified as a pion
Total number of pion tracks (3.11)

K misID-rate =Number of kaon tracks identified as a pion
Total number of kaon tracks (3.12)
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Chapter 4

Definition of the Neural Networks

The aim of this project is to propose an alternative method for particle identification
in order to improve current performance. This is achieved through the development
of a neural network, whose outputs ONN(α) replace L(h) in Eq. (3.6) to define clas-
sification variables for neural network PID. This is explained in detail in section 4.4.

In section 4.1, the different data sets utilized in this study are described with
their main properties. Additionally, a balancing process to refine training sample
is described. In section 4.2, a brief introduction to neural networks is presented,
elucidating the functions and main components, needed for the PID using a neural
network. In section 4.3 we describe the neural networks that are developed for PID
at Belle II.

4.1 Data Sets
The data sets serve two main purposes: training and testing the neural network’s
performance. Depending on their purpose, they must have different properties and
regimes.

For training, we require data sets which are large and cover the full kinematic
range. Furthermore, they should be clean (have no background) on an event-by-
event basis, i.e the target specie is well know. Simulated samples, generated via
Monte-Carlo simulations, are the perfect sample for training, as they posses all the
properties mentioned. However, as detector’s simulation might not be perfect, we
also require real-data samples.

Real-data samples are mainly used for testing, since training in real data can
present numerous challenges. Additionally, it is difficult to obtain real-data samples
for all particles without momentum or angular range limitations. For testing, we
require large data sets, with no limitation in the kinematic range. Furthermore,the
testing samples must be statistically clean, but are not required to be clean on an
event-by-event basis. Initially, data and background are not separable but we have
some variables which have different distribution for data and background. By mod-

31
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elling and fitting we can assign weights for each event. Finally we can reduce the
background using a statistical variable, called sweights, to obtain statistically clean
samples.

Section 4.1.4 describes a process necessary to minimize bias from the intrinsic
distribution of the training sample, referred to as the "balancing process."

4.1.1 Particle-Gun Monte Carlo Simulation Sample (pgMC)
In order to train the neural network that can separate all six particle species, we need
a sample containing all six particle species that we want to be able to predict from:
namely electrons (e), muons (µ), pions (π), kaons (K), protons (p), and deuterons
(d). To address this, we use a so-called particle-gun Monte Carlo (pgMC) simula-
tion sample for each one of these species. In the pgMC sample, the momentum of
each specie was isotropically generated. The magnitude of the momentum was ran-
domly drawn from a uniform distribution within the range of 0.001 < |p⃗| < 7 GeV/c.

For each event, a certain number of charged particles is generated, referred to
as multiplicity. The multiplicity influences the PID performance of the TOP de-
tector as more tracks per event result in a high precision of the event time, needed
as input for the TOP PID [35]. However, for multiplicities < 4, this effect is not
well reproduced in the simulation. Therefore, we use subsamples with the following
multiplicities: 4, 6, 8, 10, and 16. This helps in minimizing bias from this effect.
For each subsample, the same number of tracks is generated.

Once the track is created, we need to simulate the detector response i.e we repli-
cate how detectors interacts with particles. This process involves modelling the
behaviour of each detector component. With that, we can generate simulated data
that closely resembles what would be observed in a real experiment. The simulation
is done using the basf2 [36] Belle II simulation framework5.

Besides training, we use this sample for testing purposes, as it allows to the test
the performance in any desired combination of particles. The sample is split into
80 % used for training the neural network and 20 % used for testing. Approximately
650,000 tracks are available for each particle for testing.

Figure 4.1 displays the kinematic distribution of reconstructed kaon tracks. It
shows that the entire kinematic range is covered. The distribution observed is very
similar for the other particle species. In total, the sample contains 4 557 037 kaons,
4 555 367 pions, 4 556 069 protons, 4 555 254 electrons, 4 552 777 muons and 4 555 055
deuterons for training, after the balancing process is applied (refer to section 4.1.4).
Therefore it is a large sample (large number of tracks). It is clean on an event-by-
event basis, as we know the true specie with no background. Thus, it possesses all

5For the simulation, release-06-00-08 was used.
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Figure 4.1: Distribution of K tracks in cos θ and |p⃗| from the particle-gun sample.

the features we desire in a training sample.

4.1.2 Real-Data Samples (Proc13+b)
In addition to the the simulated sample of pgMC sample, it is also necessary to have
real-data samples. Three distinct types of data samples for different species are uti-
lized, each stemming from a different decay process. To use a real-data sample, we
must know the true species without using PID. For that, we use specific physics
processes that produces only certain particle species as decays, so we are sure about
which particles do we have. In the following sections, "Proc13+b" indicates a real-
data sample.

4.1.2.1 Real-Data Sample of D∗ Decays (Proc13+b D∗)

The obtain a real-data sample of pions and koans we use the D∗ decay. These par-
ticles commonly decay into the following products [37]: D∗,+ → D0[→ K−π+] π+

and D∗,− → D̄0[→ K+π−] π−. The π± tags the decay, i.e defines the charge of the
D∗. Then, for the two other tracks, their charge define their species. This allows to
identify them without PID.

Again, we split into 80 % for training and 20 % for testing. This sample will be
employed later for testing the PID performance for hadron, kaon and pion tracks.
It contains 523 899 tracks for both kaons and pions corresponding to an integrated



34 CHAPTER 4. DEFINITION OF THE NEURAL NETWORKS

0 2 4 6

|~pK | [GeV/c]

−1.0

−0.5

0.0

0.5

1.0

co
sθ

MC15rd D*

0 2 4 6

|~pK | [GeV/c]

proc13+b D*

100

200

300

400

E
ve

nt
s

100

200

300

400

500

600

700

800

E
ve

nt
s

∫ L dt = 404 f b−1

Figure 4.2: Distribution of K tracks in cos θ and |p⃗| from D∗ decays from real data.

luminosity of
∫

Ldt = 404 fb−1. Figure 4.2 shows an example of kaon track distri-
bution for real-data D∗ sample. It highlights the main properties of the sample.
It is a large sample (large number of tracks), covering a large phase-space but not
the entire range. Furthermore, after we statistically remove the background using
sweights variable, it is a almost background free sample.

In chapter 5, this sample is also used for training a neural network on real data.
After balancing, there are approximately 1 900 000 kaon and pion tracks available
for training.

4.1.2.2 Real-Data Sample of Λ0 Decays (Proc13+b Λ0)

To obtain a real sample of protons and pions, we use the decays of Λ0 and Λ̄0 to
Λ0 → pπ− and Λ̄0 → p̄π+ [37]. The species of the final-state particles is known from
their charge and their characteristic kinematics.

Figure 4.3 (left) shows, for the Λ0 decay, the distribution of pion tracks, which
predominantly occupy the low momentum region (0 < |p⃗| ≲ 2.7). Figure 4.3 (right)
shows the distribution of protons, which covers almost the entire momentum range.
The sample consists of 7 569 099 tracks which are used in the following only for test-
ing. As explained for the D∗ sample, we can use it for testing as it is a large sample,
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Figure 4.3: Distribution of π (left) and p (right) tracks in cos θ and |p⃗| of the Λ0
decay sample.

that does not cover the full momentum range, with the background statistically
removed.

4.1.2.3 Real-Data Sample of J/Ψ Decays (Proc13+b J/Ψ)

Finally, J/Ψ decays serve as a source of real-data samples for leptons, both electrons
and muons. J/Ψ can decay into various final states [37, 38]. We employ the follow-
ing decays: J/Ψ → e+e− and J/Ψ → µ+µ−, which provide a real-data sample of
electrons and muons. They are separated using the tag-probe approach. Figure 4.4
shows the kinematic distribution of the decay into muons and electrons. They cover
a large phase-space but not the entire range. These samples consist of 1 282 804
electron tracks and 1 861 268 muon tracks, which are exclusively used for testing.

There is a substantial background in these samples. Furthermore, there exists
a correlation between the J/Ψ candidate invariant mass, which is used to calculate
the sweights, and the lepton momentum. This prohibits the usual background sup-
pression method using sweights. Therefore, this sample cannot be used for momenta
below 1.5 GeV/c.

4.1.3 Simulated Sample of D∗ Decays (MC15rd D∗)
Comparing the performance on real data with the performance on simulated data
requires a simulated sample that closely resembles the real-data sample. We use a
sample which models the real-data D∗ decay process, generating a simulated sample
of D∗ referred as MC15rd D∗.

The kinematic distribution of the simulated D∗ sample is depicted in Fig. 4.5
(left). One can see that it is almost equal to the real-data D∗ sample, as displayed
in Fig. 4.2 (right).
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Figure 4.4: Distribution of µ (left) and e (right) tracks in cos θ and |p⃗| from the J/Ψ
decay sample.
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Figure 4.5: Distribution of K tracks in cos θ and |p⃗| from D∗ decays from simulation.
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Figure 4.6: Difference between the number of K and π tracks as a function of cos θ
and |p⃗| for the real-data D∗ sample before performing the balancing process.

4.1.4 Balancing of Training Samples
The primary objective of the neural network is to capture the detector responses
for a specific particle species. At the same time, it is essential to prevent the neural
network from learning specific characteristics of the training data set. The major
characteristic for the D∗ sample is that, there are more kaons in the high-momentum
region and more pions in the low momentum region (see Fig. 4.6). If the neural net-
work were to learn this particular feature, it might exhibit a bias towards the kaon
hypotheses in the high-momentum region. This potential bias could adversely affect
the network’s performance on data sets with another kinematic distributions.

To address this, a balancing process is implemented for each training sample.
To this end, the K and π subsamples are divided into (cos θ, |p⃗|) cells 6. Within
each cell, K tracks are randomly excluded, if there are more K tracks than π tracks
according to the ratio of the number of K and π tracks. If there are more π tracks,
π tracks, are randomly excluded. This procedure ensures that the distribution of
K and π tracks in the balanced sample is is the same in each cell, as shown in Fig. 4.7.

The particle-gun sample is balanced by construction. However, due to the
momentum-dependent reconstruction efficiency, which depends on the particle specie,
a slight imbalance arises in the particle-gun sample after reconstruction, as illus-

6The range 0 < |p⃗| < 7 GeV/c in momentum and the range −1 < cos θ < 1 in cos θ are divided
into 100 equally spaced bins, which yields in total 10000 cells.
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Figure 4.7: Same as Fig. 4.6, but after the balancing process. The artefact that
appears close to 0 GeV/c is due to the binning chosen and does not affect the
analysis.

trated in Fig. 4.8 for kaons and pions. To mitigate potential bias resulting from this
effect, we applied the balancing procedure also to the particle-gun sample before
utilizing it for training. For particle-gun sample we balance the six species simulta-
neously. The distribution of the resulting balanced sample is shown in Fig. 4.9 for
kaons and pions. For the other species, the same plot is obtained.

One should note that the balancing procedure was exclusively applied to the
training samples and not to the testing samples.

4.2 General Neural Network Theory
Neural networks [39,40] are a powerful paradigm in machine learning and data anal-
ysis. Their ability to learn from data and make predictions makes them invaluable
tools across a wide range of applications. They are inspired by the intricate biolog-
ical neural networks found in the human brain, which by adhering to simple rules,
enables them to learn highly intricate relations and find complex patterns.

The simplest neural network are called multi layer perceptron (MLP). They are a
feedforward artificial neural network with fully connected neurons, divided in differ-
ent layers. A basic depiction of a fully connected network is provided in Fig. 4.10a.
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Figure 4.8: Difference between the number of K and π tracks as a function of cosθ
and |p⃗| for the particle-gun sample before performing the balancing process.
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Figure 4.9: Same as Fig. 4.8, but after the balancing process.
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(a) (b)

Figure 4.10: (a) Schematic drawing of a fully-connected neural network. (b)
Schematic drawing of a neuron.

The neural network initiates with the first layer, called the input layer, where data
that enters the network is commonly know as inputs. It is followed by a series of
layers which are called hidden layers. Here, one can select the number of hidden
layers according to the problem one want to solve. The neurons of one layer receive
inputs originating from the previous layer. The hidden layer transform the inputs
using the weights in each of their nodes. Finally, they use an activation function,
which can introduce non-linearity into the network. Therefore, the outputs of a layer
are the inputs to its following layer. In this manner, the information is transported
from the input layer to the last layer, know as the output layer. The output layer
processes the outputs of the last hidden layer of the network and its neurons gives
the network’s response, allowing it to learn and approximate complex relationships
in the data. The choice of activation function should align with the desired task,
specially for the activation function in the output layer.

Each neuron nodes works in a similar way, illustrated in Fig. 4.10b. The inputs,
which are numbers, are multiplied by a weight wi and a bias is added to the weighted
inputs. Finally, the resulting value z is passed through an activation function σ. The
output from one hidden layer serves as the input for the subsequent hidden layer.
Mathematically, this process f({xi}) can be expressed as:

f({xi}) = σ(z) = σ(b +
∑

i

xiwi) (4.1)

The neural network must be trained to make accurate predictions. This means
that the weights and biases have to be tuned to have an optimal performance of
the neural network. In our case, we are working with supervised learning. This
requires a so-called labeled data set for training, which not only includes the input
variables, but also have its target values. During the training the neural network is
evaluated on the training samples and its predictions (using Eq. (4.1)) are compared
with the target values. To quantify the difference between the prediction and the
true target, a loss function is used. There are several possibilities, which depend on
the problem. Using a method known as back-propagation [40] the loss function is
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minimised by changing the weights and biases in an iterative procedure. By doing
so, the neural network learns from the provided training data and becomes able to
make predictions on unseen data.

The architecture of a neural network plays a crucial role in its effectiveness and
it clearly depends on the performed task. We are using a fully connected neural
network. Its most important hyperparameters are the number of hidden layers, the
number of nodes per layer and the activation function. The specific value of these
hyperparameters for our neural network are described in section 4.3. Additional
hyperparameters of training process, such as the learning rate, loss function, batch
size, epochs, and optimization algorithm, will be also detailed.

4.3 The Ingredients of Our Neural Networks

4.3.1 Definition of Inputs
We first define the inputs of the neural networks. Our goal is to have all the neces-
sary inputs that contain valuable information for PID. We use the LD(h) for each
specie h and each detector D (see section 3.3), as they encode the measured detector
high level information. However, the log-likelihoods are used instead for numerical
stability. In total, 36 log-likelihoods are used.

Additionally, we include kinematic information of the measured particle track.
These are the angles in the spherical coordinate system (see section 2.2), the magni-
tude of the momentum |p⃗|, and the charge. Kinematic variables might give valuable
information for PID as the modelling of LD(h) is imperfect.

Furthermore, we aim for lepton PID. As explained before, the likelihood of the
ECL only uses E/p information. To improve it we consider other variables, called
ECL cluster-shape variables, which offer more information for lepton PID. They
have already proven to give valuable information for PID in BDT method, as ex-
plained in section 3.5.

The entire list of input variables is shown in table 4.1.

4.3.2 Architecture
Throughout this work, three different neural networks will be compared. The first
one aims for K/π separation. The second one aims for six species separation, focus-
ing on hadron PID. The third aims for six species separation, focusing on hadron
PID and lepton PID. For all the networks, we use a fully connected layer architec-
ture. Nevertheless, they present some minor difference in structure. The networks
and their are summarised in table 4.2. The neural network are the following:

1. Neural network for 2 species: The architecture of this neural network
is illustrated in Fig. 4.11. In total, it has 40 input variables (red nodes in
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Table 4.1: List of input variables of the neural network. A detail description of the
ECL cluster-shape variables for the BDT is given in ref. [32]

Inputs
Set 1



Variable Description
log LARICH(µ) PID log-likelihood value for µ from ARICH
log LCDC(µ) PID log-likelihood value for µ from CDC
log LECL(µ) PID log-likelihood value for µ from ECL
log LKLM(µ) PID log-likelihood value for µ from KLM
log LSVD(µ) PID log-likelihood value for µ from SVD
log LTOP(µ) PID log-likelihood value for µ from TOP
log LARICH(p) PID log-likelihood value for p from ARICH
log LCDC(p) PID log-likelihood value for p from CDC
log LECL(p) PID log-likelihood value for p from ECL
log LKLM(p) PID log-likelihood value for p from KLM
log LSVD(p) PID log-likelihood value for p from SVD
log LTOP(p) PID log-likelihood value for p from TOP
log LARICH(π) PID log-likelihood value for π from ARICH
log LCDC(π) PID log-likelihood value for π from CDC
log LECL(π) PID log-likelihood value for π from ECL
log LKLM(π) PID log-likelihood value for π from KLM
log LSVD(π) PID log-likelihood value for π from SVD
log LTOP(π) PID log-likelihood value for π from TOP
log LARICH(K) PID log-likelihood value for K from ARICH
log LCDC(K) PID log-likelihood value for K from CDC
log LECL(K) PID log-likelihood value for K from ECL
log LKLM(K) PID log-likelihood value for K from KLM
log LSVD(K) PID log-likelihood value for K from SVD
log LTOP(K) PID log-likelihood value for K from TOP
log LARICH(d) PID log-likelihood value for d from ARICH
log LCDC(d) PID log-likelihood value for d from CDC
log LECL(d) PID log-likelihood value for d from ECL
log LKLM(d) PID log-likelihood value for d from KLM
log LSVD(d) PID log-likelihood value for d from SVD
log LTOP(d) PID log-likelihood value for d from TOP
log LARICH(e) PID log-likelihood value for e from ARICH
log LCDC(e) PID log-likelihood value for e from CDC
log LECL(e) PID log-likelihood value for e from ECL
log LKLM(e) PID log-likelihood value for e from KLM
log LSVD(e) PID log-likelihood value for e from SVD
log LTOP(e) PID log-likelihood value for e from TOP
cos θ Cosine of polar angle of momentum (in lab frame)
ϕ Azimuthal angle of momentum (in lab frame)
p Magnitude of momentum (in lab frame)
charge Electric charge of particle in units of e0

Inputs
Set 2



Variable Description
E/p[c] Ratio of cluster energy over track momentum.
E1/E9 Ratio of the energy of the seed crystal

over the energy sum of the 9 surrounding crystals.
E9/E21 Ratio of the energy sum of 9 crystals surrounding

the seed over the energy sum of the 25
surrounding crystals (minus 4 corners).

Cluster LAT Cluster lateral moment
|Z40| Zernike moment n = 4, m = 0, calculated in a plane

orthogonal to the EM shower direction.
|Z51| Zernike moment n = 5, m = 1, calculated in a plane

orthogonal to the EM shower direction.
ZMV A Score of BDT trained on 11 Zernike moments.
∆L[ cm] Projection on the extrapolated track direction

of the distance between the track entry point
in the ECL and the cluster centroid.

PSDMV A Score of a BDT trained to classify clusters
as originated by an EM or hadronic shower,
using crystal-level info including waveform pulse shape.
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Table 4.2: Comparison of the neural networks used including its code, name, inputs
(see table 4.1), and outputs.

Code Neural Network Inputs Direct Outputs
001 Neural network for 2 species Inputs Set 1 ONN(K), ONN(π)

002 Neural network for 6 species Inputs Set 1 ONN(K), ONN(π), ONN(p)
without cluster-shape ONN(µ), ONN(e), ONN(d)

003 Neural network for 6 species Inputs Set 1 ONN(K), ONN(π), ONN(p)
with cluster-shape + ONN(µ), ONN(e), ONN(d)

Inputs Set 2

Fig. 4.11). The complete list of these 40 input variables is summarised in
table 4.1 under the name of Inputs Set 1. The determination of network’s
hyperparameters is discussed in section 5.1. Finally, the selected set of hyper-
parameters consists of 512 nodes per layer and 2 hidden layers represented by
the blue nodes in Fig. 4.11.

This neural network aims to only distinguish between kaons and pions. For
this purpose, this neural network has two outputs, denoted as ONN(K) and
ONN(π), which are indicated by the green nodes in Fig. 4.11. It is identified
as neural network 001 in table 4.2.

2. Neural network for 6 species without cluster-shape: The second neural
network has the same 40 inputs (Inputs Set 1) as the previous neural network.
Furthermore, it has the same hidden layer structure.

However, this neural network aims to simultaneously predict for all six species.
For that, the number of outputs is different. This neural network has six
outputs which are ONN(K), ONN(π), ONN(p), ONN(µ), ONN(e) and ONN(d).
The architecture is illustrated in Fig. 4.12. This neural network is labeled as
002 in table 4.2.

3. Neural network for 6 species with cluster-shape: This neural networks
aims to simultaneously predict for all six species. Hence, this neural network
has the same structure and outputs as the previous one. The only difference
is that 9 extra inputs are added (Inputs Set 2), to extend the network for
lepton PID. The reason of adding this extra inputs is discussed in detail in
section 6.2. Thus, in total the input of this network are: Inputs Set 1 + Inputs
Set 2, giving a total of 49 inputs. It is illustrated with Fig. 4.12. It is coded
as 003 in table 4.2.
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Figure 4.11: Schematic representation of the neural network for 2 species. The red
nodes represent the input variables. The blue nodes represent the nodes of the two
hidden layers. The green nodes represent the output variables.
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Figure 4.12: Show the same as Fig. 4.11 network for 6 species without cluster-shape
(n = 40) and with cluster-shape (n = 49).
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Figure 4.13: Example of a Softmax activation function.

All three neural networks share the following properties. Each of the hidden
layers consists of a linear layer, with a PReLU activation function :

PReLU(x) = max(0, x) + a × min(0, x), (4.2)

with a single free parameter a. Furthermore, the PReLU is followed by a dropout
layer with a dropout rate of 0.4. This means setting randomly neurons to zero dur-
ing training, which helps to prevent overfitting.

The activation function of the output layer is different from the one at hidden
layers. The choice of activation function in the output layer depends on the problem
to solve. For multi-class classification tasks, the Softmax function is widely used for
the output layer, as it ensures normalitzation. With this activation function, each
output of the neural network is in the range (0, 1) and all the outputs sum up to 1,
as shown in Fig. 4.13 with a random example.

Despite all neural networks will be used and compared, the neural network for
6 species with cluster-shape represents the final result of this work. Its architec-
ture is summarized in table 4.3, detailing its layers. In total, the neural network
consists of 291336 free parameters, which are determined during the training process.

4.3.3 Input Normalization
To improve the neural network learning process it is a common procedure to normal-
ize the input variables such that are centered around zero with a standard deviation
of one [41].To this end, the input variables xi: cos θ, ϕ, p, and charge; are normalized
according to:

x′
i = xi − mean(xi)

std(xi)
. (4.3)



46 CHAPTER 4. DEFINITION OF THE NEURAL NETWORKS

Table 4.3: TOP: Neural network architecture from input layer (top) to output layer
(bottom). The first column gives the layer type, the second and third columns the
input and output shapes, respectively. The last column gives the number of free
parameters of each layer. BOTTOM: Number of total, trainable and non-trainable
parameters of the neural network.

Layer Input Shape Output Shape Parameters #
Neural Network [1, 49] [1, 6] –

Linear [1, 49] [1, 512] 25,600
PReLU [1, 512] [1, 512] 1
Dropout [1, 512] [1, 512] –
Linear [1, 512] [1, 512] 262,656
PReLU [1, 512] [1, 512] 1
Dropout [1, 512] [1, 512] –
Linear [1, 512] [1, 6] 3,078
Dropout [1, 6] [1, 6] –

LogSoftmax [1, 6] [1, 6] –
Type of Parameters Parameters #
Total parameters 291,336
Trainable parameters 291,336
Non-trainable parameters 0

Here, mean(xi) is the mean value of the input variable xi, and std(xi) its standard
deviation.

Not all six PID detectors contribute information for a given track, due to the
fact that detectors cover disjoint cos θ ranges (see table 3.1). Handling cases where
no PID information is available in the neural network is done by assigning them a
specific value to differentiate them from events with information. In our case, we
set them to 1, which is the value chosen to encode missing information. The mean
value is not subtracted for the other non-missing log-likelihood values. Hence, they
primarily remain below 1. Consequently, the value 1 is reserved for missing infor-
mation. This same treatment is applied for any variable in Inputs Set 2 exhibiting
a missing value. Overall, we implement the following normalization procedure for
the log-likelihood input variables and Inputs Set 2:

x′
i =

{
1 if xi is missing

xi

std(xi) else (4.4)

Furthermore, there are some log-likelihood input variables which require a special
treatment. We found out that the log-likelihood value for the electron hypothesis
from the SVD, log LSVD(e), is not correctly implemented for simulated data. As
shown in Fig. 4.14, a discrepancy is evident between simulated and real data, where
for momenta above 2 GeV/c, the log LSVD(e) for simulated data is set at a fixed
value of −6.907755374908447. This discrepancy can be treated in the neural net-
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Figure 4.14: SVD log-likelihood for electron hypothesis for K tracks from (left) the
particle-gun simulation and from (right) real-data D∗ decays. The z-axis shows the
density of events.

work by fixing the value of log LSVD(e) to −6.907755374908447 for |p⃗| > 2 GeV/c.
As the SVD does not give valuable PID information in this momentum region, no
information is lost by this approach.

Second, we observe real-data simulation discrepancies for the TOP detector log-
likelihood values in the region −0.55 < cos θ < −0.50, as discussed in section 6.4.2.
This problem is resolved by not using the TOP information according to Eq. (4.4)
in the range −0.55 < cos θ < −0.50.

4.3.4 Training of the Neural Network
The neural networks were trained on the particle-gun sample (see section 4.1.1). The
training sample is split into a subsample used for training (90 %) and a subsample
used for validation (10 %).

The PyTorch library [42] served as the framework for building and training the
neural network. The selected loss function is the the negative log-likelihood loss
function (NLLLoss in PyTorch) which is recommended for classification problems
with multiple classes.

The optimization algorithm determines how the weights and biases are updated
during training. Thus, the optimizer’s goal is to minimize the loss function and
thereby optimize the network’s performance at each epoch. The Adam optimiser
was chosen for this project. It is an extended version of stochastic gradient descent.
ADAM considers both first and second moments of the gradient, leading to faster
convergence compared to alternative strategies. That is to say, it combines the
advantages of the Gradient Descent with Momentum and the Root Mean Square
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Figure 4.15: Learning rate as a function of the epoch according to the employed
exponential learning-rate scheduler in (top) log scale and (bottom) linear scale.

Propagation (RMSP) [40,43].

The learning rate is a hyperparameter that controls how quickly the network
parameters values are adjusted in each training step. An ideal learning rate is
balanced between being low enough for the network to converge on a good solution
but should be high enough to complete training in a reasonable time. In our case,
the initial learning is 1.5 × 10−4, obtained by trial and error. Then, we use an
exponential learning-rate scheduler which reduces the learning rate by a factor of
0.99626 at each epoch

Learning Rate (epoch) = Learning rate (0) γepoch (4.5)

In this way, when we are closer to the solution we have more precision. This process
is shown in Fig. 4.15.

Finally, we have to select the better epoch among all the ones used for train-
ing. As an example, we show how it is done for the neural network for 6 species
with cluster-shape. We train the neural network until we observe convergence in
the loss function. The neural network was trained with a batch size of 128, and
after 1075 epochs convergence was observed. Figure 4.16 illustrates the loss values
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Figure 4.16: Loss function for the training (purple) and the validation (red) sample.
The dip of the arrow indicates the loss value. (a) shows the full loss range. (b)
shows a zoom in the region of the loss function of the validation sample.

obtained during training for both the training sample (purple) and the validation
sample (red). The training loss function is noisy due to the high dropout rate in
the layers. The noisiness introduced by dropout is outweighed by the benefits of
avoiding overfitting. Furthermore, the validation loss function converges to a stable
value, without showing signs of overfitting. Further, Fig. 4.17 shows the area under
the ROC curve (AUROC) for the validation sample per epoch, which also illustrates
good convergence. Finally, we select the epoch, in this case 1073, which gives the
largest AUROC for the validation sample, among the 1075 epochs.

4.4 Binary Classification Variables of the Neural
Network

The neural network for six species, both with and without cluster-shape, can pre-
dict among six different species simultaneously. They have six outputs denoted as
ONN(h); h representing six possible species. To perform binary classification, we
have to apply the same normalization procedure as described in section 3.4 for the
Pure Likelihood. We replace L(h) in Eq. (3.6) by the outputs ONN(h):

C(α : β) = ONN(α)
ONN(α) + ONN(β) (4.6)

It’s worth noting that binary normalization is not necessary for the neural net-
work work for 2 species, as it exclusively predicts only K and π species, and it is
already normalized.
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sample with the training. The dip of the arrow indicates the AUROC value.



Chapter 5

Neural Network for K/π
Separation

Although the ultimate objective of this work is to develop a novel method capable
of simultaneously separating multiple particles species, our basis is the neural net-
work for K/π proposed by Wallner. Therefore, the first step is to implement some
improvements for the neural network for K/π separation, before extending it to six
species.

In this work, we studied the network architecture and its impact on performance
is presented in section 5.1. Also, we did the final performance evaluation on real
and simulated data, as discussed in section 5.2. In section 5.3 we compare a neu-
ral network trained on simulated data with a neural network trained on real data.
Finally, in section 5.4, we conduct an analysis of the neural network’s input effects,
commonly referred to as ’feature importance’.

5.1 Neural Network Hyperparameters Optimiza-
tion

The first step is to find the optimal architecture of the neural network, since the
architecture affects its performance. We designed the hidden layers of network with
a diamond shape, using the formula Ni = N0/αi. The architecture is characterized
by three key hyperparameters: the number of hidden layers, the number of nodes
in each of the two central hidden layers N0, and the exponential function slope α.
The simplest neural network has an input layer and the output layer; where the
number of nodes are the number of inputs and outputs respectively. Further, it has
two central layers of N0 nodes. Furthermore, we can add more layers in each side of
the two central layers. The number of nodes of each extra layer depends on the α
parameter and the distance to the center i. The hidden layers of the neural network
are symmetrical with respect to the center.

To identify the optimal combination of these hyperparameters, we employed the

51
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Optuna library [44] for hyperparameter exploration. As an initial analysis, the num-
ber of hidden layers is chosen from the set (2, 4, 6, 8), N0 ∈ (16, 1008), and α, from
the set (1, 2, 3, and 4). Optuna scans the hyperparameter space, by creating and
evaluating models with different parameters sets. Optuna does not try all parameter
combinations but chooses the next set of parameters to try according to the perfor-
mance of the previous models. Models with different parameter sets were tested by
training a neural network for 600 epochs. The validation performance was assessed
using the AUROC for the validation sample.

The results of this hyperparameter optimization process are shown in table 5.1.
The first conclusion is that more parameters do not necessarily mean better perfor-
mance, but there is a tendency that large models perform better. However, there
are models with fewer parameters (intermediate models), which have similar perfor-
mance; for example the one with 2 hidden layers of 80 nodes. Finally, very small
models, e.g 2 hidden layers of 80 nodes, exhibit a clear decrease in performance.

Overall, the performance of the network, as indicated by the AUROC score, did
not exhibit a strong sensitivity to the choice of hyperparameters in the tested range.
In addition to the PID performance, other factors such as computational time and
network size have to be considered. This is crucial to ensure that the neural network
remains practical for implementation. Due to the similar performance observed in
the tests, and considering the computational time, we can define three different neu-
ral networks with their hyperparameters described in table 5.2. The large network
is chosen among the largest models with best performance. It has 2 hidden layers
of 640 nodes. The medium network, with a moderate number of parameters, has 2
hidden layers of 128 nodes, but still with a similar AUROC as the large network.
The small network has 2 hidden layers of 80 nodes, at the expense of a significant
drop in AUROC.

For each of these selected network hyperparameter sets, we conducted a full
training over 4000 epochs. The resulting ROC curve outcomes, tested on the real-
data D∗ sample, are illustrated in Fig. 5.1. The observed results can be summarized
as follows: (i) the large network exhibits the highest performance; (ii) the medium
network exhibits performance comparable to the large networks; and (iii) the small
network exhibits a notable drop in performance compared to the others.

As shown, the medium network exhibits performance similar to the large net-
work, despite having significantly fewer nodes, which translates into fast compu-
tation7. Therefore, with computational efficiency in mind, we chose the medium
network architecture, with 2 layers of 128 nodes, for the neural network for K/π
separation. This neural network is implemented into the Belle II software. Detailed
studies with this neural network can be found in Wallner et al. [45].

7In basf2, the Belle II software, the difference is 0.07 ms/call vs. 0.20 ms/call, between the
medium and large neural network. Furthermore, the computational costs of the small network are
about the same as those of the medium network.
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Figure 5.1: Particle-identification performance for K identification evaluated on the
real-data sample from D∗ decays (see section 4.1.2.1) for the three neural networks
listed in table 5.2 trained on the particle-gun sample. The receiver operating char-
acteristic (ROC) curve for kaon identification is shown, i.e. the efficiency to identify
a kaon versus the rate with which pions are misidentified as kaons. Higher kaon
efficiencies for the same pion misidentification rate mean better performance.
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Table 5.1: Results of the hyperparameter optimization using Optuna ordered from
highest to lowest AUROC validation.

AUROC validation Number of layers Nodes per layer Slope α
0.962542 8 784 1
0.962419 6 944 1
0.962293 6 752 1
0.962268 2 624 1
0.962254 2 1008 1
0.962229 6 816 2
0.962203 4 560 3
0.962200 6 912 2
0.962197 6 848 2
0.962191 2 752 1
0.962171 4 464 3
0.962147 2 512 1
0.962135 2 624 1
0.962079 6 688 2
0.962069 2 464 1
0.962060 4 560 1
0.962050 6 816 1
0.961980 4 496 4
0.961952 6 816 1
0.961865 6 624 1
0.961815 4 208 1
0.961793 2 272 1
0.961647 4 272 1
0.961567 8 848 2
0.961558 8 848 2
0.961492 4 688 3
0.961380 2 176 1
0.960704 6 464 3
0.960371 2 80 1
0.959406 6 528 4
0.958971 8 784 3
0.954637 8 944 4
0.953955 6 176 4
0.952424 8 688 4
0.952421 8 80 2
0.951568 8 272 3
0.951318 8 528 4
0.940321 8 16 2
0.935178 8 16 2
0.500000 8 16 3
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Table 5.2: Selected models from the hyperparameter optimization with Optuna.

Model Number of layers Nodes per layer Slope α Performance
Large Network 2 640 1 best
Medium Network 2 128 1 similar to best
Small Network 2 64 1 worst

Nevertheless, in following chapter, we are expanding the neural network for 2
species to identify all 6 species. Section 6.5 justifies the need to increase the com-
plexity of the neural network to perform the new task. Since we will compare the
performance of both networks, we want them to have the same architecture to have
a fair comparison. To this end, instead of the mentioned network of 2 hidden layers
of 128 nodes; we trained another neural network with 2 hidden layers of 512.

This network with 2 hidden layers of 512 will be used in the following and is
called neural network for 2 species (coded as 001 in table 4.2).

5.2 Neural Networks 2 Species: Performance Eval-
uation

In this section, we analyze performance in K/π separation of the neural network
for 2 species. As explained before, it is trained on simulated data. Figure 5.3b
shows the performance on a real-data D∗ sample. The neural network for 2 species
performs better than the Pure Likelihood approach, up to 21.77 %.

Similarly, Fig. 5.3a illustrates the performance on pgMC, yielding identical re-
sults. Furthermore, the difference in performance of the neural network and Pure
Likelihood approach is larger.

In summary, the neural network for 2 species outperforms the Pure Likelihood
method, i.e standard method in the Belle II experiment, when applied to both sim-
ulated and real data; which was one of the main goals of this work. Detailed studies
can be found in Wallner et al. [45], where for example, the real-data and simulated
data agreement is shown.

5.3 Training on Real vs Simulation Data
So far, the neural network for 2 species was trained on simulated data (pgMC).
Nevertheless, one should evaluate models trained with real data to compare the per-
formance, as we can not take for granted than training on simulated data is better.
To address this, we have at our disposal two identical neural networks: one trained
on simulated data (depicted in blue) and the other on real data (depicted in black),
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Figure 5.2: Particle-identification performance for K identification for the neural
network for 2 species (in blue) and the Pure likelihood approach (in red). (a) The
performance is evaluated on the real-data sample of D∗ decays (see section 4.1.2.1).
(b) The performance is evaluated on a pgMC simulated sample (see section 4.1.1).

as illustrated in Fig. 5.3.

Figure 5.3a shows the performance tested on simulated data. Both neural net-
works exhibit similar levels of performance. Figure 5.3b shows the performance
tested on real data. The neural network trained on real data shows better perfor-
mance than the neural network trained in simulated data.

The clear observation is that neural networks performs equal or better when
trained on real data than with simulated data. This may be attributed to the fact
that training on real data overcomes imperfections in simulation, due to the fact
that there are details in real data that are not reproduced simulation.

However, training on real D∗ data has some significant drawbacks: it does not
cover the full kinematic range, and may introduce potential biases due to the train-
ing sample. This problems are described and illustrated in detail in section 4.1.2.1.
Similar challenges are encountered with other real samples. For example, if we want
to reproduce everything for leptons, we have to use J/Ψ sample, which has the same
problems, as explained in section 4.1.2.3. Overall, training on real data might work
for specialized problems. In our case, we want to have a generalised neural network
so the "small" gain in performance is not worth all the problems.

The ultimate goal of separating for all six species simultaneously requires sam-
ples from all six species. It becomes not feasible to obtain real-data samples for
all particles without the mentioned problems. As a result, all the neural networks
employed in the subsequent sections are trained with pgMC.
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Figure 5.3: Particle-identification performance for K identification for the neural
network for 2 species trained in pgMC (in blue), and for the neural network for 2
species trained on the real-data D∗ (in black). (a) shows the performance evaluated
on the simulated-data D∗ (see section 4.1.3). (b) shows the performance evaluated
on the real-data sample of D∗ decays (see section 4.1.2.1).
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5.4 Feature Importance
It is very challenging to directly understand the inner workings of a neural network
by studying the trained neural network parameters. However, we can try to under-
stand the behaviour of a neural network by measuring the feature importance. It is
a techniques that quantifies the influence that an input variable has on the output.
This is done by permutation of inputs. To this end, we systematically shuffle the
values of individual input variables and observe the resulting impact on the net-
work’s performance, i.e we quantify the change in predictive accuracy compared to
the original performance (without any permutation).

Figure 5.4 shows the feature importance of the neural network for 2 species. The
charge and azimuthal angle are not important parameters for the neural network.
We observe that the TOP, CDC and ARICH give the highest feature importance.
This is an expected behaviour, due to the TOP is the most important detector
for K/π separation, followed by the CDC. The ARICH plays also an important
role8. One can note that among the log-likelihoods for the six species, the K and π
log-likelihoods are the most important ones for most of the detectors, as expected.
Furthermore, the other likelihoods have a non-zero importance.

Here, we only use kaon and pion tracks. Ideally, if the LD(h) were perfect, all
the information necessary for K/π separation would be contained in the LD(K)
and LD(π). Then, likelihoods for other species LD(h ̸= K, π) would be not give
additional information. Taking this into consideration, one possible explanation to
the improvement in performance is that the LD(h) are imperfect and some addition
information is stored in LD(h ̸= K, π) . The Pure Likelihood approach only uses
LD(K) and LD(π), while the neural network alos uses information from the other
LD(h ̸= K, π), which provides extra information.

The imperfection in LD(h) gives a hint on why the neural network outperforms
the Pure Likelihood (as shown in section 5.2). Another possible explanation is that
the neural network finds correlations between the likelihoods and uses them to im-
prove the performance. This would require an additional analysis.

8This is attributed to the cases where, the particle goes to the forward endcap and does not
cross the TOP detector.
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Figure 5.4: Shows the feature importance on the pgMC sample (see section 4.1.1)
of the neural network for 2 species (2 layers of 512 nodes). In the vertical axis the
inputs of the neural network are listed. In the horizontal axis, the importance of
each variable is shown. A larger value means that this parameter is more important
for the PID performance. A low bar indicates that the parameters are not important
for the neural network
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Chapter 6

Neural Network for Six Species:
Binary Classification

In this chapter, we test the performance of the neural network for 6 species with dif-
ferent data sets to asses whether it is a good alternative for PID. The first step is to
compare the performance of both of the neural networks, for 2 and 6 species; to asses
if there is any decrease in performance by incorporating more species. This is done
in section 6.1. Next, in section 6.2 we test the method specifically used for lepton
PID against the neural network. Additionally, it shows the importance of slightly
modifying our neural network to cope with lepton PID, which is a more complicated
task. Furthermore, we present performance tests on real data in section 6.3. In
section 6.4, we will analyze the dependence of the neural network performance on
kinematics ranges and bins. Finally, in section 6.5 we discuss the optimal architec-
ture for the neural network for 6 species.

The three networks, detailed in section 4.3.2, are used in the following. They will
be used using different normalisation. To give the reader an easier understanding
of the classification variables obtained after the normalization, tables are given in
appendix A.

6.1 Comparing Neural Network Performance: Two
Species vs Six Species Prediction

In chapter 5 we discussed the performance of the neural network with 2 species.
Now, we aim to test the neural network for 6 species for the same particles. To
assess whether there is any decrease in the performance for K/π separation when
increasing complexity of the task, i.e when training a network to distinguish among
all 6 species, we measure the performance for K/π separation of the neural network
for 6 species without cluster-shape and compare it with the performance form neural
network for 2 species. To ensure a fair comparison, we apply the binary normalisa-
tion procedure explained in section 4.4 to the neural network for 6 species without
cluster-shape. In other words, we place both sets of predictions on a common scale,
enabling a fair evaluation of their performance. For instance, when performing K/π

61
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Figure 6.1: (a) K/π separation performance for the neural network for 6 species
without cluster-shape (binary normalitzation) in orange, the neural network for 2
species in blue and the Pure Likelihood approach in red. The ROC curve for (a) kaon
identification and (b) π misidentification are shown. The performance is evaluated
on the real-data sample from D∗ decays (see section 4.1.2.1). Higher efficiencies for
the same misidentification rate mean better performance.

separation, Eq. (4.6) is used, where α is replaced by a kaon and β is replaced by a
pion i.e CNN(K : π).

Figure 6.1a show the ROC curve for K efficiency vs π misidentification rate for
the real-data D∗ sample. We use the neural network for 6 species without cluster-
shape (binary normalitzation) (coded 002 in table 4.2) to have a fair comparison,
since it has the same inputs as the neural network for 2 species (coded 001 in ta-
ble 4.2). Both neural networks (blue and orange curves) exhibit equal performance.
Furthermore, Fig. 6.1b shows the same for π efficiency against K misidentification
rate, where the same agreement is observed.

In addition, similar tests have been conducted on other data samples, yielding
consistent results. From this we conclude that the neural networks can be trained for
multi-class classification without compromising their performance for binary classi-
fication.

6.2 Extension of the Neural Network for Lepton
Identification

The ultimate goal of this work is to propose a novel method that can be used for
both hadron and lepton identification. In previous section 6.1, the neural network
for 6 species without cluster-shape has already proven to outperform the Pure Like-
lihood approach for hadron PID.
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As explained in section 3.5, a boosted decision tree (BDT) is used at Belle II to
improve lepton PID. To include lepton PID, an extended version of the neural net-
work is proposed, which uses the same strategy as the BDT. This extended neural
network, combines the inputs of the neural network for 6 species without cluster-
shape, i.e Inputs Set 1 in table 4.1, but adds the ECL observables from the BDT,
i.e Inputs Set 2 in table 4.1, to optimize for lepton PID. This extended neural net-
work is called neural network for 6 species with cluster-shape, coded 003 in table 4.2.

In this chapter, despite not being explicitly written, the binary normalitzation
is always for used in the neural networks, for the particles we are comparing.

6.2.1 Influence of ECL Cluster-Shape Variables as Inputs
The first step is to compare the neural network for 6 species without cluster-shape
against the neural network for 6 species with cluster-shape, aiming to analyze the
impact of the additional ECL cluster-shape variables as inputs. For this purpose,
tests have been conducted with two different types of data samples.

Figure 6.2 shows the performance of the neural network for 6 species without
cluster-shape (orange) and the neural network for 6 species with cluster-shape (pur-
ple), evaluated on a real data sample of D∗ (see section 4.1.2.1). The performance for
both neural networks is very similar. The cluster-shape variant slightly outperforms
the other neural network. This illustrates that, for hadrons, including cluster-shape
variables does not cause any detriment in performance.

Tests have also been performed to assess the effect for lepton identification on
pgMC samples (section 4.1.1). Figure 6.3a shows the performance for µ/π sepa-
ration. Both neural networks, with and without cluster-shape variables, exhibit
superior performance compared to the BDT (depicted in green). Additionally, the
two neural networks perform similarly, with neural network with the cluster-shape
exhibiting a slightly better performance.

When evaluating the performance in e/π separation (Fig. 6.3b) the neural net-
work for 6 species with cluster-shape performs better than the BDT. Consequently,
with the neural network with cluster-shape we can improve electron identification.
However, the BDT outperforms the neural network for 6 species without cluster-
shape. Consequently, this demonstrates the necessity of incorporating the cluster-
shape variables as inputs in the neural network, showing that the ECL cluster-shape
variables introduced as inputs enable highly effective electron discrimination.

The neural network for 6 species with cluster-shape has been identified as the
optimal approach, both for lepton PID but also for hadron PID, improving the per-
formance compared to the network for 6 species without cluster-shape. Furthermore,
the neural network for 6 species with cluster-shape achieves a better performance
than the BDT in all considered cases. Consequently, this neural network will be



64 CHAPTER 6. NN FOR SIX SPECIES: BINARY CLASSIFICATION

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

π mis-ID Rate

0.5

0.6

0.7

0.8

0.9

1.0

K
E

ffi
ci

en
cy

Tested on Proc13+b D*

NN 6 species (K/π)
NN 6 species without cluster-shape (K/π)

Figure 6.2: Performance tested on real-data D∗ sample (see section 4.1.2.1) for K/π
separation of the neural network for 6 species with cluster-shape (binary normalitza-
tion) (purple) and for the neural network for 6 species without cluster-shape (binary
normalitzation) (orange).
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Figure 6.3: Performance tested on the pgMC sample (see section 4.1.1) of the neural
network for 6 species with cluster-shape (binary normalitzation) (purple), for the
neural network for 6 species without cluster-shape (binary normalitzation) (orange)
and for the BDT (green). (a) Shows µ/π separation and (b) shows e/π separation
but with a zoomed π misidentification rate.



6.3. REAL-DATA PERFORMANCE EVALUATION 65

used until the end of the work.

6.2.2 Performance Evaluation on pgMC Lepton Samples
Having defined the optimal neural network, the neural network with cluster-shape,
we aim to test it on other samples. We compare the new extended neural network
with the BDT and the Pure Likelihood approach on a pgMC sample (section 4.1.1)
of electrons, muons, and pions. Figure 6.4 shows, for e/µ, e/π and µ/π combina-
tions, the neural network for 6 species with cluster-shape (purple), the BDT (green),
and the Pure Likelihood approach(red).

Initially one can preform a fully lepton separation, e/µ separation, which is
shown in Figs. 6.4a and 6.4b. The BDT performs better than the Pure Likelihood
approach. Hence, the BDT proposed for leptons is accomplishing its purpose, help-
ing to improve the lepton PID. Furthermore, the neural network with cluster-shape
performs slightly better than BDT.

Figure 6.4c shows the performance for e/π separation. The neural network and
the BDT exhibit similar performance. Moreover, both methods outperform the Pure
Likelihood approach significantly.

In contrast, the performance for µ/π separation (see Fig. 6.4d), exhibit different
feature. The BDT performs similar or even worse than Pure Likelihood approach.
This can be attributed to the fact that the BDT was designed for electron identi-
fication, but as one consider other particles, its performance decreases. The neural
network gives clearly the best performance among all methods considered.

Overall, the neural network with cluster-shape exhibits performance levels at
least on par with, if not superior to the BDT. Therefore, one can conclude that
the neural network with cluster-shape has overall the best performance (compared
to the BDT and Pure Likelihood approach) when tested on pgMC samples from
electrons, muons and pions. Furthermore, the versatility of the neural network is
evident as it can be applied for both hadron and lepton PID, whereas the BDT is
primarily designed for lepton PID, in particular for electrons. The last statement
will become evident once we deal only with hadron separation i.e K/π (section 6.3).

6.3 Real-Data Performance Evaluation
The neural network with cluster-shape has already demonstrated high efficiency in
lepton PID in the pgMC sample (sections 6.2.1 and 6.2.2). However, one of the
main goals of the work is to have a universal neural network that can work both on
simulated and real-data sample, to use in with experimental data from the Belle II
experiment. Thus, final tests are required to validate its performance on real data.
The results are presented in Fig. 6.5 where, the neural network is depicted in purple,
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Figure 6.4: Performance for lepton identification tested on the pgMC sample (see
section 4.1.1) for the neural network for 6 species with cluster-shape (binary nor-
malitzation) in purple, the BDT in green and the Pure Likelihood approach in red.
(a) shows e efficiency against µ misidentification rate, (b) provides the same plot
as (a) but with a zoomed µ misidentification rate, (c) shows e efficiency against π
misidentification rate and (d) shows µ efficiency against π misidentification rate.
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the BDT in green and the Pure Likelihood approach in red.

First, we focus on hadron separation. Figure 6.5a shows the performance on a
D∗ sample (section 4.1.2.1), and therefore performing K/π separation. The BDT
gives the worst performance. This demonstrates the limited capability of the BDT
for hadron separation. The neural network outperforms all methods. Figure 6.5b
shows the p/π separation performance tested on the real-data Λ0 sample. Once
again, the BDT performs the worst in a hadron sample. The neural network ex-
hibits the best performance of all methods, improving the performance considerably.

Second, additional tests in hadron/lepton separation are performed. The J/Ψ
decays sample (section 4.1.2.3) provides the e and µ particles while the D∗ sample
provides the π particles. However, as explained in section 4.1.2.3, using real data
samples of J/Ψ decays is not feasible for |p⃗| < 1.5 GeV/c. Furthermore, an upper
limit of |p⃗| < 4.5 is applied to ensure a similar number of hadrons and leptons for
a fair comparison. Figure 6.5c, shows the e/π separation performance tested on
real-data sample. As for the simulated sample, the BDT gives a better performance
than the Pure Likelihood approach. Additionally, the performance of the neural
network is practically identical to that of the BDT. Figure 6.5d shows µ/π separa-
tion performance. The BDT performs similarly to the Pure Likelihood approach.
The neural network gives the best performance.

Overall, as for the simulated sample, the BDT is efficient for e identification in
real samples. However, the good BDT performance is limited to e identification. In
contrast, the neural network has proven to perform as well as the BDT for e, and
significantly better for other species.

The results presented in this section, combined with section 6.2.2, demonstrate
a crucial characteristic of the neural network, which we refer to as "universality".
The neural network for 6 species with cluster-shape has proven to systematically
outperform the Pure Likelihood approach for all combinations of hadrons, leptons
and hadron/leptons. Furthermore, it exhibits superior performance compared to
the BDT in all cases examined, with the exception of e separation, where the per-
formance is comparable but not worse. This observation holds for both real data
samples and pgMC.

Consequently the neural network has proven to be an exceptionally effective
method for PID. So far, specific tools, like the BDT, were developed for specific
separation tasks. However, the neural network allows to make binary separation with
any combination. Furthermore, the neural network possesses additional capabilities.
Section 7.3 shows it can also be employed for multi-class classification.
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Figure 6.5: Performance for the neural network for 6 species with cluster-shape (bi-
nary normalitzation) (purple), the BDT (green) and the Pure Likelihood approach
(red); tested on (a) the real-data D∗ sample (see section 4.1.2.1) for K/π separation,
(b) the real-data Λ0 sample see section 4.1.2.2) for p/π separation, (c) the real-data
D∗ and J/Ψ sample (see sections 4.1.2.1 and 4.1.2.3) for e/π separation, and the
real-data D∗ and J/Ψ sample (see sections 4.1.2.1 and 4.1.2.3) for µ/π separation.
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6.4 Performance Dependence on Kinematics

6.4.1 Performance in Kinematic Ranges
The PID performance, discussed in thesections 6.2.1, 6.2.2 and 6.3, represents an
average performance across the kinematic distribution of the sample used for testing.
In order to study the performance in kinematic regions, we show in the following
the PID performance as a function of the track momentum and the track cos θ. To
this end, Fig. 6.6 presents the ROC curves in three momentum regions and in three
regions of cos θ, tested on the real-data D∗ sample.

First, the aim is not to directly compare the two methods, but rather to analyse
the regions where the PID achieves superior performance. This is crucial because
the PID performance varies depending on the region. In the low momentum region
(|p⃗| < 0.7 GeV/c)(see to Fig. 6.6a), both methods exhibit remarkably high perfor-
mance. In contrast, in the the backward region (cos θ < −0.625) (see Fig. 6.6d),
both methods give relatively low performance. The low performance is caused by
the fact that in the backward region the TOP and ARICH, which are detectors
very important for K/π separation, are not present as shown in table 3.1. In the
remaining regions (Figs. 6.6b to 6.6d and 6.6f), an intermediate level of performance
is observed.

Second, we analyse the performance disparity between both methods. In the low
momentum region (refer to Fig. 6.6a) and high momentum region (|p⃗| > 2.0 GeV/c)
(see Fig. 6.6c), the neural networks clearly outperform the Pure Likelihood approach.
In the intermediate momentum region (0.7 < |p⃗| < 2.0 GeV/c), both methods ex-
hibit a similar PID performance. In the backward region and the barrel region
(−0.625 < cos θ < 0.846), shown in Figs. 6.6d and 6.6e, respectively, the neural
network outperforms the Pure Likelihood approach. However, in the forward region
(cos θ > 0.846), shown in Fig. 6.6f, the neural network performs similarly to the
Pure Likelihood approach. Only for low misidentification rates, the neural network
slightly outperforms the Pure Likelihood approach.

In summary, the neural network performs equally well or even better than the
Pure Likelihood approach in all regions. There is no region where the performance
of the Pure Likelihood approach surpasses that of the neural network. Consequently,
our neural network can be applied across all momentum and angular ranges without
compromising performance.

6.4.2 Performance in Kinematic Bins
To conduct a more detailed study of the momentum and cos θ dependency in PID
performance, it is necessary to assess the PID performance within specific (|p⃗|, cos θ)
bins. To this end, a threshold for the classification variable of the desired hypothesis
must be determined, as explained in section 3.4. This threshold is not universal, i.e.
the same threshold may have a different meaning for two different PID methods.
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Figure 6.6: ROC curve for K/π separation, evaluated on the real-data D∗ sample
(see section 4.1.2.1) for the neural network for 6 species with cluster-shape (binary
normalitzation) (purple) and the Pure Likelihood approach (red); in six kinematic
regions: (a) the low momentum region (|p⃗| < 0.7 GeV/c), (b) the intermediate
momentum region (0.7 < |p⃗| < 2.0 GeV/c), (c) the high momentum region (|p⃗| >
2.0 GeV/c), (d) the backward region cos θ < −0.625, (e) the barrel region −0.625 <
cos θ < 0.846, and (f) the forward region cos θ > 0.846.
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Consequently, we individually selected a threshold for each PID method to ensure
that the misidentification rate for π is the same for both methods. This approach
ensures a fair comparison of the efficiencies of the tested methods.

For a target average π misidentification rate of 2 %, this results in a thresh-
old of 0.9887977595519104 for the Pure Likelihood approach and a threshold of
0.7469493898779755 for the neural network PID method. In Fig. 6.7 (top left), the
K efficiency on real data is displayed as a function of track momentum. Below ap-
proximately 1 GeV/c, the neural network slightly outperforms the Pure Likelihood.
In the range 1 ≲ |p⃗| ≲ 1.5 GeV/c, both methods yield a similar K efficiencies.
Beyond about 1.5 GeV/c, the neural network surpasses clearly the Pure Likelihood
approach. In this region, the performance is better by about a factor of about 1.5. In
Fig. 6.7 (top right), the π misidentification rate is shown, where the neural network
exhibits a similar momentum dependence as the Pure Likelihood approach. A minor
difference can be found in two small peaks around in 1 GeV/c and around 3 GeV/c,
where the neural network show a slightly higher misidentification rate compared to
the Pure Likelihood approach.

In Fig. 6.7 (bottom left), the K efficiency on real data is presented as a function
of cos θ. The neural network displays a weaker dependency on cos θ while maintain-
ing an overall higher efficiency, particularly for cos θ > 0. However, in this range,
the π misidentification rate is also higher for the neural network (bottom right plot).
Further, in the forward region (cos θ > 0.84) the K efficiency for the neural network
is lower. However, this does not indicate a worse performance of the neural net-
work since the misidentification rate of the Pure Likelihood approach also increases
in this region. Further, there is a clear decay in performance in both methods for
cos θ < −0.5, due to the explanation given above for the backward region.

It is interesting to point out that the Pure Likelihood approach exhibits a large
spike of the π misidentification rate at cos θ ≈ −0.5. We avoid this spike in the neural
network by disregarding the TOP information in the region −0.55 < cos θ < −0.50
(as seen in section 4.3.3) without losing performance9 in this region for the neural
network.

Additionally, in Fig. 6.8, the same performance measures are presented for more
relaxed thresholds. The threshold is set at 0.4370874174834967 for the Pure Likeli-
hood approach and 0.47729545909181836 for the neural network, which both corre-
spond to a π misidentification rate of 10.6 %.

The neural networks has a higher K efficiency (displayed in top left plot) in all
the momentum range, but for a small region (1 ≲ |p⃗| ≲ 1.5 GeV/c), where the
the efficiency is similar to the Pure Likelihood approach. On the top right, the π
misidentification rate is again depicted. The neural network exhibits lower misiden-

9The only bin in this region where the Pure Likelihood approach has higher K efficiency is at
cos θ ≈ −0.5. However, the π misidentification rate explodes in this bin for the Pure Likelihood
approach.
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Figure 6.7: Performance for K/π separation for a target average π misidentification
rate of 2 %, on the real-data D∗ sample as a function of the track momentum (top
row) and as a function of cos θ (bottom row). The left column shows the K effi-
ciency. The right column shows the π misidentification rate. The red data points
represent the performance of the Pure Likelihood approach. The purple data points
represent the performance of the neural network for 6 species with cluster-shape
(binary normalitzation).
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Figure 6.8: Same as Fig. 6.7, but for a target average π misidentification rate of
10.6 %.
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tification rates in the ranges of 0 ≲ |p⃗| ≲ 1 GeV/c and |p⃗| ≳ 2.3 GeV/c.

The neural network exhibits a higher K efficiency (bottom left plot) in the range
cos θ > −0.5. In this same range, the misidentification rates for both methods are
comparable. Specifically, for −0.5 < cos θ < 0.5, the neural network has a slightly
higher misidentification rate, whereas for cos θ > 0.5, the Pure Likelihood approach
has a higher misidentification rate. For the range cos θ < −0.5, the neural network
shows a similar or slightly lower K efficiency (bottom left plot). However, it yields a
much lower misidentification rate compared to the Pure Likelihood approach. Hence,
one can conclude that in this region the neural networks still outperforms the Pure
Likelihood approach.

Overall, when considering the information from both Fig. 6.7 and Fig. 6.8, it
aligns with the findings observed in Fig. 6.6: since there is no region where the neu-
ral network performs worse than the Pure Likelihood approach, the neural network
can be applied across all momentum and angular ranges. Nevertheless, one should
take into account that there may not be a significant improvement when applied in
intermediate momentum range or forward angular region.

For completeness we also studied the dependence on the azimuthal angle (ϕ), as
shown in Fig. 6.9. There is not a strong dependence of the K efficiency (left) or in
the π misidentification rate (right) on ϕ. The neural network has higher efficien-
cies for all ϕ bins than the Pure Likelihood approach. The neural network exhibits
a similar ϕ dependence as the Pure Likelihood approach in the misidentification rate.
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Figure 6.9: Performance for K/π separation for a target average π misidentification
rate of 2 %, on the real-data D∗ sample as a function of ϕ. The left column shows
the K efficiency. The right column shows the π misidentification rate. The red data
points represent the performance of the Pure Likelihood approach. The purple data
points represent the performance of the neural network for 6 species with cluster-
shape (binary normalitzation).
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Figure 6.10: Performance tested on real-data D∗ sample (see section 4.1.2.1) for
K/π separation of the neural network for 2 species with 2 hidden layers of 128
nodes (black) and of the neural network for 6 species (binary) with 2 hidden layers
of 128 nodes (green).

In summary, ϕ does not play a significant role for the PID performance, and
hence for comparing PID methods. The weak ϕ dependence can be explained by
the fact that the PID detectors distribution are designed symmetric in ϕ.

6.5 Architecture of Neural Network for Six Species
Section 5.1 shown that for a neural network for 2 species, it is enough to use an
architecture with 2 hidden layers of 128 nodes. However, in this chapter, the two
neural networks for 6 species, which are the ones detailed in table 4.2, have 2 hidden
layers of 512 nodes. The reason for this is that an increased complexity of the task
usually requires to increment the nodes of the neural network.

Figure 6.10 shows that a neural network for 2 species with 2 hidden layers of 128
nodes) has better performance than a neural network for 6 species without cluster-
shape (binary) with 2 hidden layers of 128 nodes. This concludes that 2 hidden
layers of 128 nodes are not enough to cope with the extension to separate all six
species.

To find the optimal architecture for the six species separation, we always use
2 hidden layers, and we incrementally increase the number of nodes in the hidden
layers until signs of overfitting are observed. Figure 6.11 shows validation loss func-
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tion for the number of nodes set to 1000. It is very noisy it is especially that the
loss of the validation sample increases at some point. This is a clear indication of
overfitting. Slight indication of overfitting were also found around 800 nodes.

Consequently, to avoid overfitting we use 2 hidden layers of 512 nodes in the
neural networks for 6 species, both with and without cluster-shape. Figure 4.16b
shown that we do not have overfitting with this architecture.

0 100 200 300 400 500

Epoch

0.32

0.34

0.36

0.38

0.40

0.42

0.44

lo
ss

validation
training

Figure 6.11: Loss function for the validation sample. The dip of the arrow indicates
the loss value.



Chapter 7

Neural Network for Six Species:
Multi-Class Classification

So far, our focus has been on evaluating the performance of various methods for
binary classification, where the objective is to distinguish between only two species.
However, there are scenarios where it is crucial to simultaneously separate more
than two species, which falls under the domain of multi-class classification.

Initially, we include an examination of the neural network’s outputs in section 7.1.
This also provides information about species similarities. For multi-class classifica-
tion, the same methods as before can be used. However, the normalization process
needs to be adjusted for multi-class classification, as outlined in section 7.2. In
section 7.3, we discuss the performance of the various methods for multi-class classi-
fication and we compare it to one from binary classification. Next, in section 7.4 we
will analyze the dependence on kinematics bins for the multi-class methods. A study
of the global PID performance, i.e all studying the six particles simultaneously, is
done in section 7.5. At the end, section 7.6 we evaluate the multi-class performance
for various species in the background.

Naturally, the neural network for 2 species, capable of separating only K and π,
is not suitable for multi-class classification. Therefore, in the realm of multi-class
classification, we compare the Pure Likelihood approach with the neural network
for 6 species with cluster-shape. Again, to give the reader an easier understanding
of the classification variables obtained after the normalization, tables are given in
appendix A.

7.1 Evaluation of the Neural Network’s Output
It is interesting to see the direct outputs of the neural network. This yield insights
into which particle species are relatively easier or more challenging to distinguish.
Figure 7.1 shows the output of the neural network ONN(h) for the different species,
for particle-gun samples of various species.

77
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Figure 7.1: Distribution of the output of the neural network for hypothesis h,
ONN(h), for a particle-gun sample of true tracks of (a) K, (b) π, (c) p, (d)µ and (e)
e. Here ONN(K) is shown in blue, ONN(π) is shown in yellow, ONN(p) is shown in
red, ONN(e) is shown in green, ONN(µ) is shown in purple and ONN(d) is shown in
brown.
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As expected, ONN(K) peaks at 1 for the kaon sample, whereas the other ONN(h)
for h ̸= K peak at 0 (see Fig. 7.1a). However, both the ONN(π) and ONN(p) dis-
tributions exhibit a tail for kaon sample. This indicates that protons and pions are
the species most difficult to differentiate from kaons.

Similarly, ONN(π) exhibit a peak at 1 for the pion sample. And the other ONN(h)
for h ̸= π peak at 0 (see Fig. 7.1b). Once again, tails are observed for both ONN(p)
and ONN(K). This indicates that protons and kaons are the species most difficult
to differentiate from pions.

The same is shown for proton tracks (Fig. 7.1c), where one can observe that
ONN(p) peaks at 1, with other peaking at 0. Additionally, ONN(K) exhibits a tail,
reaffirming that kaons are the particles most closely to protons. This suggests that
the signature of protons in the PID detectors is similar, though not identical, to
that of kaons. Therefore, separating protons from kaons will be more challenging
than distinguishing them from any other particle. As a result, it is evident that the
neural network possesses sufficient separation power to discriminate hadrons.

Figure 7.1d shows the same for muon tracks. It can be seen that ONN(µ) peaks
at 1, whereas the other ONN(h) values for h ̸= µ peak at 0. Further, a tail can be
observed for ONN(π). This can be explained by the fact that the muon mass is close
the pion mass, which leads to a similar signature of these two species in the PID
detectors, which makes their differentiation more challenging.

In contrast, for electron tracks, the outcomes are notably distinct. As shown
in Fig. 7.1e, a clear peak at 1 is observed for electrons, with a corresponding clear
peak at 0 for other hypotheses, with no tail existent. Further, ONN(e) for the other
particles (Figs. 7.1a to 7.1d) is peaking at 0 clearly, with no tail. The neural network
has thus demonstrated its proficiency in distinguishing between leptons, specially
performing for electrons.

In summary, we conclude that the network has successfully captured the dis-
tinctive features of each species, offering an good separation capability across all
hypotheses. Additionally, this information regarding similarities among particles
will prove valuable in later stages in this chapter.

7.2 Multi-class Normalitzation

For the neural network for 6 species in multi-class classification, we still use the
same output variables. However, we perform a different normalitzation. We aim to
perform α/J separation, where α represents one particle specie and J represents a
selected set of particle species, denoted as J = {β, γ, δ, ϵ ...}. Hence, we aim to
separate α from all species in J . For the the neural network for 6 species (multi-
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class), classification variables are defined as

C(α : j) = ONN(α)
ONN(α) +

∑
ji=β,γ...

ONN(ji)
(7.1)

The values of C(α : j) range from 0 to 1. This approach is referred to as the the
neural network for 6 species (multi-class: α,β,γ,δ,...). For example, if one aims to
distinguish K from three other particle types {π, µ, e}, the classification variables
read as follows:

C(K : π, µ, e) = ONN(K)
ONN(K) + ONN(π) + ONN(µ) + ONN(e) (7.2)

For the Pure Likelihood in the multi-class case, we use the same variables as de-
fined in Eq. (3.5). We can use analogously Eq. (7.1) replacing the outputs ONN(h)
by the likelihoods L(h) to obtain the Pure Likelihood multi-class classification vari-
ables. They read as:

C(α : j) = L(α)
L(α) +

∑
ji=β,γ...

L(ji)
(7.3)

This gives the Pure Likelihood approach (multi-class: α,β,γ,δ,...). It shares the same
limitations discussed in section 3.4. We can do analogously the same for Eq. (7.2):

C(K : π, µ, e) = L(K)
L(K) + L(π) + L(µ) + L(e) (7.4)

In the following we use the Pure Likelihood approach and neural network for
6 species with cluster-shape. Despite being able to predict for 6 species, by using
different normalizations we normalize it to 2 species in the case of binary; we nor-
malize it to 4 species as an example (sections 7.3, 7.4 and 7.6); and we normalize it
to 6 species in global PID (section 7.5).

7.3 Comparison of Multi-Class and Binary Clas-
sification

The first step is to compare the performance of binary classification against multi-
class classification to asses if there is an overall decrease in performance by increas-
ing the possible species as hypotheses. To this end, we are considering K and π as
tracks. However, our aim extends beyond separating kaons from pions; we want to
distinguish kaons from a predefined set of other potential hypotheses, i.e separating
K from {π, µ, e}. As an example, in this section we select the following potential
species hypotheses: K, π, e, and µ. We choose only these four particles as constitute
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Figure 7.2: K/π separation performance on the D∗ sample (see section 4.1.2.1). The
methods normalized for K, π are displayed in solid lines: the neural network for 6
species (binary normalitzation) in purple and the Pure likelihood approach (binary)
in red. The methods normalized for K,π,e,µ are displayed in dashed lines: the
neural network for 6 species (multi-class: K,π,e,µ) in brown and the Pure likelihood
approach(multi-class: K,π,e,µ) in blue.

the main product decays observed in Belle II. Protons and deuterons are compara-
tively less frequent.

Here, one can define two kinds of tasks. In the first category, we have methods
capable of predicting between two hypotheses (K/π): the Pure Likelihood approach
(binary) and the neural network (with binary normalization), represented by solid
red and purple lines, respectively. These methods are the same in chapter 6.

In our example, the methods designed for multi-class classification are normal-
ized to the four species mentioned. They are represented by dashed lines. They are
the Pure Likelihood approach (multi-class: K,π,e,µ) in blue (see Eq. (7.4)), and the
neural network (multi-class: K,π,e,µ) in brown (see Eq. (7.2)). In the following, the
species inside the brackets indicate for which particles are the multi-class methods
normalized to.

Figure 7.2 shows the multi-class classification performance on the real-data D∗

sample for K/π separation. The neural network (binary) exhibits better performance
than the neural network (multi-class: K,π,e,µ). Similarly, the Pure Likelihood ap-
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proach(binary) outperforms the Pure Likelihood approach (multi-class: K,π,e,µ).
This suggests that methods separating between two hypotheses tend to perform
better than those separating for four hypotheses. Furthermore, we observe that the
neural network also enhances the performance for multi-class classification.
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Figure 7.3: Same as Fig. 7.2, but for π efficiency against K misidentification rate.

When we separate π from {K} or {K, µ, e} (see to Fig. 7.3), the performance
changes drastically. The neural network (binary) and neural network (multi-class:
K,π,e,µ) exhibit a substantial difference between each other, with the binary out-
performing. Similarly, the Pure Likelihood approach(binary) and Pure Likelihood
approach (multi-class: K,π,e,µ) have the same behaviour. Additionally, in π/K sep-
aration, the neural network (multi-class: K,π,e,µ) consistently outperforms the Pure
Likelihood approach (multi-class: K,π,e,µ), underlining its capability for multi-class
classification tasks.

Figure 7.2, i.e K efficiency and π misidentification rate, shows a minimal dif-
ference in performance between the neural network (binary) and neural network
(multi-class: K,π,e,µ); and then a minimal difference for the Pure Likelihood ap-
proach (binary) and Pure Likelihood approach (multi-class: K,π,e,µ). Hence, incor-
porating e and µ in the normalization process has a minor effect in K/π separation
due to the clear distinction between K and other particles. On the other hand,
including e and µ in the normalization process completely alters the performance in
π/K separation (see Fig. 7.3), as the pions tend to be more frequently misidentified
with muons. This difference is caused by the similar masses of π and µ particles,



7.4. PERFORMANCE IN KINEMATIC BINS 83

0.0 0.2 0.4 0.6 0.8 1.0
Classification output for hypothesis

0

5000

10000

15000

20000

25000

30000

35000

40000

N
um

be
ro

fµ
tr

ac
ks

Filter: |p| < 0.5 GeV/c

K hypothesis
π hypothesis
p hypothesis
e hypothesis
µ hypothesis
d hypothesis

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Classification output for hypothesis

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
ro

fπ
tr

ac
ks

Filter: |p| < 0.5 GeV/c

K hypothesis
π hypothesis
p hypothesis
e hypothesis
µ hypothesis
d hypothesis

(b)

Figure 7.4: Distribution of the output of the neural network ONN(h) for h hypothesis
for a particle-gun sample of true (a) µ and (b) π tracks in the low momentum region.
Here ONN(K) is shown in blue, ONN(π) is shown in yellow, ONN(p) is shown in red,
ONN(e) is shown in green, ONN(µ) is shown in purple and ONN(d) is shown in brown.

making them difficult to differentiate. The limited power of discrimination between
π and µ arises from the constraints of current detectors, particularly in the low
momentum range |p⃗| < 0.5 GeV/c. dE/dX and Cherenkov radiation measurements
effectively measure the particles mass and hence fail to distinguish between π and
µ, as mπ ≈ mµ. The KLM is the only detector capable of performing π/µ sepa-
ration, which does not perform well in low momenta region. This is demonstrated
in Fig. 7.4a in µ tracks within the low momenta range. It is evident that ONN(µ)
(purple) does not exhibit a distinct peak at 1, as it ideally should. Similarly, ONN(π)
(yellow) does not peak at 0, but rather at approximately 0.4. This discrepancy is
also observed in Fig. 7.4b, which illustrates the same scenario for π tracks. This
highlights the importance of careful consideration when comparing more than two
particles, as the performance depends on which species are considered for the sepa-
ration.

Overall, one observe an intrinsic problem with multi-class classification which
is an overall decrease in performance. This observation aligns with the expected
behaviour, as the inclusion of additional particles in the prediction process increases
the likelihood of misidentification of K or π as other species. Furthermore, we
observed that there is a consistent superiority of the neural network (multi-class:
K,π,e,µ) over the Pure Likelihood approach (multi-class: K,π,e,µ).

7.4 Performance in Kinematic Bins
Further, a performance analysis in kinematic bins (|p⃗|, cos θ) has been conducted
for multi-class classification using the real-data D∗ sample. The results for K ef-
ficiency and π misidentification rate are presented in Fig. 7.5, for a target average
π misidentification rate of 2 %. Both the neural network (binary) shown in pur-
ple, and the neural network (multi-class: K,π,e,µ) shown in brown, exhibit similar
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performance. The same hold for Pure likelihood approach (binary) (red) and Pure
likelihood approach (multi-class: K,π,e,µ) (blue). We observe similar dependence
as for the binary classification (see section 6.4.2).

However, this does not apply to π efficiency and K misidentification rate (see
Fig. 7.6). Figure 7.6 (top left) shows the π efficiency on real data as a function of the
track momentum. The neural network (multi-class: K,π,e,µ) has higher efficiency
than the Pure Likelihood approach (multi-class: K,π,e,µ) across all momentum
ranges. In the top right, the K misidentification rate is shown. Below 1 GeV/c,
both methods exhibit a similar misidentification rate. In the range of 1 ≲ |p⃗| ≲ 2.5
GeV/c, the neural network (multi-class: K,π,e,µ) has a significantly lower misiden-
tification rate compared to the Pure Likelihood approach (multi-class: K,π,e,µ).
Beyond approximately 2.5 GeV/c, the neural network (multi-class: K,π,e,µ) shows
a slightly higher misidentification rate compared to the Pure Likelihood approach
(multi-class: K,π,e,µ). Nevertheless, within this momentum range, the π efficiency
is approximately 2.5 times higher for the neural network (multi-class: K,π,e,µ),
indicating that it performs better than the Pure Likelihood approach (multi-class:
K,π,e,µ). Additionally, it is evident that below 1 GeV/c in top-left plot, the dis-
crepancy between both neural network methods (purple against brown) and be-
tween both Pure Likelihood approach methods (red against blue) is exceptionally
large when compared to other regions. This is attributed to the low µ/π separation
power, as explained above. For that, the binary normalized methods perform much
better than the multi-class normalized ones.

Figure 7.6 (bottom left) shows the π efficiency on real data as a function of cos θ.
The neural network (multi-class: K,π,e,µ) exhibits higher efficiency than the Pure
likelihood approach (multi-class: K,π,e,µ) across the entire range of cos θ, with a
particularly notable improvement for cos θ > −0.5. However, for cos θ < −0.5, both
methods show a clear decline in performance, as elaborated in the previous section
for the backward region. Furthermore, beyond cos θ ∼ 0.85, there is a reduction in
efficiency for both methods. Moving to the K misidentification rate (bottom right
plot), its behaviour depends on the considered region. For −0.5 < cos θ < 0.25,
the K misidentification rate is lower for the neural network (multi-class: K,π,e,µ);
whereas in the other region, it is lower for the Pure Likelihood approach (multi-class:
K,π,e,µ). Additionally, a spike similar to the one observed previously for Pure like-
lihood approach (binary) can be seen for Pure likelihood approach (multi-class:
K,π,e,µ) in the K misidentification rate plot at cos θ ≈ −0.5. This spike is once
again circumvented for the neural network (multi-class: K,π,e,µ) by excluding the
TOP information in the region −0.55 < cos θ < −0.50 (as detailed in section 4.3.3),
without compromising performance in this region.

Up to this point, we compared both multi-class methods, i.e blue versus brown.
Furthermore, one can compare both of the neural network methods, i.e brown vs
purple. For any kinematic bin, the efficiency of the neural network (binary) is ei-
ther similar or superior to that of the neural network (multi-class: K,π,e,µ) with
comparable misidentification rates. This finding underscores the consistency of the
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Figure 7.5: Performance for K identification for a target average π misidentification
rate of 2 %, on the real-data D∗ sample as a function of the track momentum (top
row) and as a function of cos θ (bottom row). The left column shows the K efficiency.
The right column shows the π misidentification rate. The red data points represent
the performance of the Pure likelihood approach (binary). The purple data points
represent the performance of the neural network for 6 species with cluster-shape
(binary). The blue data points represent the performance of the Pure likelihood
approach (multi-class: K,π,e,µ). The brown data points represent the performance
of the neural network for 6 species with cluster-shape (multi-class: K,π,e,µ).
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Figure 7.6: Same as Fig. 7.5 but for π identification for a target average K misiden-
tification rate of 2 %.
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Figure 7.7: K/π separation performance on the D∗ sample (see section 4.1.2.1)for
the neural network for 6 species (multi-class: K,π,e,µ,p,d) in brown, and the Pure
likelihood approach (multi-class: K,π,e,µ,p,d) in blue.

neural network.

7.5 Global PID

In this section, we extend the concept of multi-class classification to encompass all
six particle species, including not only K, π, e, and µ, as done above, but also d and
p. This is called usually global PID. In this context, we aim to evaluate the perfor-
mance of the neural network (multi-class: K,π,e,µ,p,d) against the Pure Likelihood
approach (multi-class: K,π,e,µ,p,d).

Figure 7.7 shows the K/π separation performance for global classification on the
real-data D∗ sample, thus considering K and π as tracks. It shows that the neu-
ral network (multi-class: K,π,e,µ,p,d) (brown) consistently outperforms the Pure
Likelihood approach (multi-class: K,π,e,µ,p,d) (blue). The similar behaviour is ob-
served in π/K separation (see Fig. 7.8). This superior performance underscores the
efficacy of the neural network approach in handling the complexities introduced by
more particle species.
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Figure 7.8: Same as Fig. 7.7 but for π efficiency against K misidentification rate.

7.6 Sample with Various Species in the Background
So far, multi-class classification has only been tested for K or π tracks. However, we
also aim to evaluate performance when dealing with more than two species tracks.
This is useful for samples with various species in background, which happens in
experimental data.

Therefore, we use a pgMC sample for K, π, e, and µ tracks simultaneously,
with equal track quantities. The species chosen for PID significantly impacts the
ROC curve, as shown above. For instance, to analyse the efficiency of K, one needs
corresponding plots for misidentification rate of π, e, and µ. Thus, it is necessary to
define a variable that allows the creation of one ROC curve per particle efficiency.
For that purpose, we define a ROC curve for a particle h, where we represent its
efficiency against the total impurity in a selected-h sample. The total impurity is
defined as:

Impurity (h) = #Fake

#Total
= #Fake

#True + #Fake
=

∑
i ̸=h

misIDiNi

effhNh +
∑
i ̸=h

misIDiNi

(7.5)

Here, h represents the particle specie we want to select, effh is the efficiency of h
particle, i represents the other species, misIDi is the miss-identification of a particle
of species i being identified as h, and Nj is the number of tracks for J species in the
pgMC sample.
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Figure 7.9: ROC curve evaluated on the pgMC sample decays (see section 4.1.1) for
the neural network for 6 species with cluster-shape (multi-class: K,π,e,µ) (brown)
and for the Pure likelihood approach (multi-class: K,π,e,µ) (blue). (a) shows K
efficiency against its impurity, (b) shows π efficiency against its impurity, (c) shows
e efficiency against its impurity, and (d) shows µ efficiency against its impurity.

Figure 7.9a illustrates the K efficiency versus impurity of a selected-K for the K,
π, µ, and e pgMC sample. One can clearly see that the neural network (multi-class:
K,π,e,µ) (brown) clearly outperforms the Pure likelihood approach (multi-class:
K,π,e,µ) (blue). Furthermore, the same type of analysis can be done for the other
species: Fig. 7.9b shows the same for π, Fig. 7.9d for µ, and Fig. 7.9c for e. The
results observed are consistent.

In summary, this section demonstrates that the neural network is well-suited for
multi-class classification, in all cases outperforming the Pure likelihood approach,
with more than two differnt species tracks.



90 CHAPTER 7. NN FOR 6: MULTI-CLASS CLASSIFICATION



Chapter 8

Conclusions and Outlook

8.1 Conclusions
Beginning with the initial works of Tsaklidis et al. [8] and Wallner et al. , we have
demonstrated a substantial improvement in K/π separation performance through
the introduction of a specialized neural network with two outputs. The performance
is affected, despite not being crucial, by the neural network architecture. It was op-
timized using hyperparameter tuning. Furthermore, by using feature importance,
we found were this improvement comes from. It is due to the fact that in the calcu-
lation of likelihoods, approximations were made. This advancement represented an
initial significant leap forward in the methodologies employed so far in the Belle II
experiment.

This motivated us to extend this approach to the identification of all species
with a single neural network, i.e. to develop a universal PID method. Remarkably,
this more complex task did not result in a loss in performance in K/π separation
when compared to the specialized neural network. On the contrary, it comes with
a multitude of advantages. For instance, the neural network with two outputs is
limited to K/π separation, while the neural network with 6 is not.

The neural network with six outputs not only allows for K/π separation, but
also allows binary classification of any combination of two charged particle species,
including both hadrons and leptons. The new neural network with six outputs out-
performed the Pure Likelihood approach in all studied cases. Also, neural network
with six outputs performs better than the Boosted Decision Tree (BDT) for lepton
PID, in all cases. Moreover, its adaptability to a diverse range of sample, both real
and simulated data, show its versatility. Therefore, the neural network with six
outputs surpasses its neural network with two outputs.

Furthermore, the neural network with six outputs allows for multi-class classi-
fication. We shown that multi-class classification task comes with a reduction of
overall performance for all methods. The neural network for six outputs shown the
best performance also in multi-class classification compared to the Pure Likelihood
approach.
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We have successfully achieved our initial objectives by creating a PID method
that demonstrates superior performance across all mentioned cases, surpassing ex-
isting methods used in the Belle II experiment.

8.2 Outlook
While we achieved encouraging results, there is room for enhancements and future
developments. The advancements presented in this master thesis not only represent
a substantial leap forward in classification methodologies for the Belle II experiment,
with the improved performance. They also open up a multitude of possibilities for
future research and applications in this field.

One area with significant potential for improvement lies in the selection of in-
puts. For instance, one can integrate more detailed information obtained from the
detectors as we did it with the ECL cluster-shape variables. This has the potential
to overcome limitations of the likelihood calculation.

Furthermore, we can add information from other detectors, like the PXD detec-
tor, which has not been implemented so far.

Most of the inputs are related with the log-likelihood information. As previously
explained, these requires modelling, which might be imperfect. More accurate like-
lihood can be developed in the future. They could easily be incorporated in the
neural network approach by retraining the neural network.



Appendix A

Neural Networks With Their
Normalizations

Table 4.2 shows the main three neural networks presented in this work. However,
the neural networks can be used in different ways depending on the normalitzation
process employed. Sections 3.4 and 4.4 shows the binary normalitzation, whereas
section 7.2 shows the multi-class normalitzation. Furthermore, different multi-class
classification cases are used.

Tables A.1 and A.2 give the classification variables, obtained from normalizing
the neural networks, of the different cases shown along the work.
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