Dark sector searches at Belle II

Enrico Graziani

INFN – Roma 3

on behalf of the Belle II Collaboration

OUTLINE OF THE TALK

✓ Light dark sector models
 ✓ Belle II searches
 ✓ Results
 ✓ Perspectives & Summary

Dark matter hunt with a light sector

Light dark matter hunt

Different signatures depending on the DM \leftrightarrow mediator mass relation

Probability of interaction of LDM detectors is negligible

- Search for mediators
- Search for missing energy signature
- Search for both

Additional benefits:

- Explanations of some astrophysics anomalies (PAMELA, AMS, FERMI, ...)
- Explanation of the $(g-2)_{\mu}$ effect

- Explanation (with additional hypotheses) of some flavour anomalies (LHCb, Belle, ...)
- Some light mediators (not interacting with quarks) could escape direct – search exclusion limits

Belle II trigger

Dark sector physics

- Low multiplicity signatures
- Huge backgrounds from beam, Bhabha, two-photon

Level 1 hardware-based combines info from CDC, ECL, KLM

- Tracks, clusters, muons
- Two-track trigger
- Three-track trigger
- E_{ECL}> 1 GeV trigger

Search overview: models \leftrightarrow signatures \leftrightarrow topologies

Models are growing up \sim exponentially (a warm thank's to theoreticians to provide us so many ideas). They should be used both to exclude (or confirm!) and as wonderful excuses to search for signatures & topologies as model independently as possible

Published or publicly shown

Invisible α in τ decays $\tau \rightarrow l \alpha$

LLP dark scalar in B decays B \rightarrow kS S \rightarrow ee, $\mu\mu$, $\pi\pi$, kk

Dark Higgsstrahlung A'h' A' \rightarrow µµ, h' invisibile

In progress

Not covered today. Have a look at back up slides

LLP Dark Higgsstrahlung with IDM A'h' A' $\rightarrow \chi_1 \chi_2$, h' $\rightarrow \mu \mu$, $\pi \pi$, kk Invisible dark photon $\gamma A' A' \rightarrow \chi \chi$

E. Graziani – Dark sector searches at Belle II - Brookhaven Forum 2023

Z': L_{μ} - L_{τ} model

Sterile v's

Light Dirac fermions

- Gauging L_{μ} L_{τ} , the difference of leptonic μ and τ number
- A new gauge boson which couples only to the 2° and 3° lepton family
- Anomaly free (by construction)
- It may solve
 - dark matter puzzle <</p>
 - ≻ (g-2)_µ
 - \succ B→K(^{*})µµ, R_κ, R_κ anomalies

Shuve et al. (2014), arXiv 1408.2727 Altmannshofer et al. (2016) arXiv 1609.04026

- Reinterpreted also as
- Muonphilic dark scalar $S \rightarrow (g-2)_{\mu}$
- Discovery mode for Z' and S
- Aggressive background suppression
- Exclusions on $Z' \sim$ Babar and Belle, with much less luminosity
- First limits on S with a dedicated search

E. Graziani – Dark sector searches at Belle II - Brookhaven Forum 2023

e⁺

е

Reinterpreted also as

- Leptophilic dark scalar $S \rightarrow (g-2)_{\mu}$
- ALP with τ coupling

- Look for peaks in the system recoiling against $\mu\mu$

E. Graziani – Dark sector searches at Belle II - Brookhaven Forum 2023

μ

τ

μ

g'

- Photon veto
- Aggressive background suppression
- Look for peaks in the system recoiling against μμ

PRL 130, 231801 (2023)

fully invisible Z' as origin of $(g-2)_{\mu}$ excluded for $0.8 < M_{z'} < 5.0 \text{ GeV/c}^2$

E. Graziani – Dark sector searches at Belle II - Brookhaven Forum 2023

Dark sector searches in Belle II: future directions

- Align all the searches to the full pre-shutdown luminosity 424 fb⁻¹
- In most cases with improved analysis techniques: second generation searches
- We have already reasonable luminosity projections for some of the analyses (Snowmass)
- We need to enter the dark photon business: both visible and (especially) invisible
- My guess: LLP searches will have a considerable weight in the next years (especially with a new displaced-vtx trigger) Low SM background, open the possibility to explore small couplings
- Some searches are motivated more than others by the g-2 anomaly. Their future may depend on external inputs. My guess: the g-2 focus is moving (has moved?) in the theory field: dispersion relations vs lattice
- Luminosity will increase, background will increase as well
 Most of the searches have low multiplicity signatures → badly affected by machine background
 Best effort to keep the single-object (track, muon, photon) trigger lines in working conditions
 Display-vertex trigger needed (efficiency decreases abruptly with lifetime): in preparation

✤ We are eager of new dark models. Theorists never disappoint our expectations

Summary

- The persisting null results from new physics at LHC searches and in direct underground searches make the light dark sector scenario more and more attractive
- Belle II started a broad program of searches orthogonal/complementary to LHC
- Will lead the world sensitivity in most of them

BACKUP SLIDES

Belle II detector

Key factors for dark sector physics: trigger, high backgrounds, precise knowledge of acceptance/vetoes, PID

Sterile v's

Light Dirac fermions

- Gauging L_{μ} L_{τ} , the difference of leptonic μ and τ number
- A new gauge boson which couples only to the 2° and 3° lepton family
- Anomaly free (by construction)
- It may solve
 - > dark matter puzzle <</p>
 - ≻ (g-2)_µ
 - \succ B→K(^{*})µµ, R_κ, R_{κ*} anomalies

Shuve et al. (2014), arXiv 1408.2727 Altmannshofer et al. (2016) arXiv 1609.04026

$$\sum_{\nu_a}^{Z'} + \sum_{\nu_a}^{\nu_s} + \sum_{\nu_s}^{\nu_s} + \sum_{\nu_s}^{\nu_s}$$

Sterile neutrino abundance

- Gauging L_{μ} L_{τ} , the difference of leptonic μ and τ number
- A new gauge boson which couples only to the 2° and 3° lepton family
- Anomaly free (by construction)
- It may solve
 > dark matter puzzle
 > (g-2)_µ
 Sterile v's
 Light Dirac fermions
 - \succ B→K(^{*})µµ, R_κ, R_{κ*} anomalies

Shuve et al. (2014), arXiv 1408.2727 Altmannshofer et al. (2016) arXiv 1609.04026

Belle II dark sector search overview: projections

Belle II dark sector search overview: projections

LLP dark scalar in B decays B \rightarrow kS S \rightarrow ee, $\mu\mu$, $\pi\pi$, kk

Dark matter hunt: «classical» approach

New virtual particles in loops/trees transitions, deviation from SM expectations (B factories, LHCb)

If NP found in direct searches, it is reasonable to expect NP effects in *B*, *D*, tau decays

Energy frontier

Direct production of new particles limited by beam energy (LHC – ATLAS, CMS)

Cosmic frontier

Direct effect search in (mostly) underground experiments

Dark photon: introduction

P. Fayet, Phys. Lett. B **95**, 285 (1980), P.Fayet, Nucl. Phys. B **187**, 184 (1981)

- Paradigm of the vector portal extension of the SM
- QED inspired: $U(1)' \rightarrow$ new spin 1 gauge boson A'
- Couples to SM hypercharge Y through kinetic mixing ε
- Couples to dark matter with strength α_{D}
- Mass through Higgs or Stuckelberg mechanism

two basic scenarios depending on A' vs χ DM mass relationship m_{A'} < 2m_{χ} \Rightarrow A' decays visibly to SM particles (*I*, *h*)

 $m_{A'} > 2m_{\chi} \Rightarrow A'$ decays $\approx 100\%$ invisibly to DM particles

Dark photon: luminosity projections

E. Graziani – Dark sector searches at Belle II - Brookhaven Forum 2023

Inelastic dark matter with dark Higgs

- Dark photon A' and dark Higgs h'
- Two dark matter states χ_1 and χ_2 with a small mass splitting
- χ_1 is stable \rightarrow dark matter candidate
- χ_2 is generally long-lived
- h' is generally long-lived and mixes with SM H₀
- Signature: up to two displaced vertices

 $[, \mu^-, \pi^-, K^-]$

 $e^+[, \mu^+, \pi^+, K^+]$

 \sim

 χ_2

 $[\mu^{-}, \pi^{-}, K^{-}], \tau^{-}]$

 $\mu^+, \pi^+, K^+, \tau^+$