

Search for Inelastic Dark Matter with a Dark Higgs at Belle II

Light Dark World 2023, Karlsruhe

Patrick Ecker on behalf of the Belle II collaboration | 19.09.2023

Inelastic Dark Matter with a Dark Higgs

The Model

- 4 Dark Sector particles: χ_1 , χ_2 , h', A'
- 7 free model parameters (3 masses, 2 mixing angles, 2 couplings)
- up to two displaced vertices + missing energy

[Duerr, Ferber, Garcia-Cely, Hearty, Schmidt-Hoberg(JHEP 04 (2021), 2012.08595)]

Presentation of the Limits for this 7D Parameter Space

- Perform a bump hunt on the invariant mass of the Dark Higgs M^{h'}_{inv}
- Present the results in the plane of the Dark Higgs mass and Dark Higgs mixing angle for a grid of the other five parameters (O(5) per model parameter)

Model Parameters

- Mass of the Dark Photon
- Mass of the χ_1
- Mass of the Dark Higgs
- Mixing Angle of Dark Photon with the SM photon
- Mixing Angle of Dark Higgs with the SM Higgs boson
- Coupling of Dark Photon to DM g_X
- Coupling of Dark Higgs to DM f

Experimental Challenges

Both the reconstruction efficiency and the trigger efficiency drop with displacement of the vertices!

Experimental Challenges

Institute of Experimental Particle Physics

Background Distributions

One selection for all model parameter configurations: Requiring at least one displaced to get rid of most SM background, suppress pair conversions and K⁰_S's, etc.

 Our current selection delivers a nearly background free scenario in all final states in the signal window

signal width is approximately 10 times smaller than

Reco Channel: $h'(\rightarrow K^+K^-)\gamma_2(\rightarrow e^+e^-)$

e*e=→T*t

Mhi. (GeV/c2)

Projections

Expected Belle II sensitivity from the pheno paper 100 fb^{-1} (solid) and 50 ab^{-1} (dashed) [Duerr, Ferber, Garcia-

- Cety, Hearty, Schmidt-Hoberg (JHEP 04 (2021), 2012.08595)] Analysis ongoing with current Belle II dataset of $363 \, \text{fb}^{-1}$
- Our efficiency is lower than in JHEP 04 (2021), 0-25% depending on model parameters and final state \rightarrow Expect around one order of magnitude less sensitivity
- Expect to cover a huge unexplored region of parameter space
- Interesting Field
 - Belle II dark scalar search [2306.02830]
 - iDM pheno paper [Duerr, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, Tunney (JHEP 02 (2020) 039, 1911.03176)]
 - iDM seach at CMS [2305.11649]

Karlsruhe Institute of Technology

Model Parameters

Dark Higgs Branching Fractions

- Until now only looked into the ${f h}' o \mu^+\mu^-$ final state
- In most of the Dark Higgs mass region the decay into pions/kaons dominates
- Include also these final states in the analysis
- Still only consider χ₂ → e⁺e[−] to use hie trigger line

• BF(h'
$$\rightarrow \pi^+\pi^-$$
) = $\frac{2}{3}$ BF(h' $\rightarrow \pi\pi$)

•
$$BF(h' \rightarrow K^+K^-) = \frac{2}{4}BF(h' \rightarrow KK)$$

Recombination

Used Versions

- MC15 run-independent Background MC
- Private signal MC produced with release-06-00-08
- light-2210-devonrex

Signal

- Build h' candidates: $h' \rightarrow \mu^+ \mu^-$
- Build χ_2 candidates: $\chi_2 \rightarrow e^+e^-$
- Perform vertex fit on both vertices

Build ROE

- Track requirements: θ in CDC acceptance, $N_{hits}^{CDC} > 20, dr < 0.5 \text{ cm}, |dz| < 2 \text{ cm}$
- ECL requirements: θ in CDC acceptance, *E* > 50 MeV
- Missing Energy
 - $E_{miss} = E_{cms} E_{\mu^+} E_{\mu^-} E_{e^+} E_{e^-}$

Selection Criteria

Signal Shape Fits

Fitting the signal shape using a Double Sided Crystal Ball function

- Fixing the n_l and n_r parameters to n_{l/r} = 3 to get a more stable fit
- All other paramters are kept floating
- Fix the shape parameters in the final fit

Double Sided Crystal Ball

$$\vec{\Theta} = (\mu, \sigma, \alpha_l, \alpha_r, n_l, n_r)$$

$$f\left(x; \vec{\Theta}\right) = \begin{cases} A_l \left(B_l - \frac{x - \mu}{\sigma}\right)^{-n_l} & \text{for } \frac{x - \mu}{\sigma} < \alpha_l, \\ \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right) & \text{for } \alpha_l \le \frac{x - \mu}{\sigma} \le \alpha_r, \\ A_r \left(B_r - \frac{x - \mu}{\sigma}\right)^{-n_r} & \text{for } \frac{x - \mu}{\sigma} > \alpha_r, \end{cases}$$

$$A_{l/r} = \left(\frac{n_{l/r}}{|\alpha_{l/r}|}\right)^{n_{l/r}} \exp\left(-\frac{|\alpha_{l/r}|^2}{2}\right)$$

$$B_{l/r} = \frac{n_{l/r}}{|\alpha_{l/r}|} - |\alpha_{l/r}|$$

Signal Shape

■ Signal width of O(2 - 6 MeV) (given by detector resolution)

The width varies with the Dark Higgs mass m_h and the Dark Higgs lifetime