Belle II Physics Results

Steven Robertson
Institute of Particle Physics, Canada
&
University of Alberta

On behalf of the Belle II Collaboration

DMNet International Symposium
Padova, Italy
Sept 28, 2023
The Belle II Experiment

Belle II is a B factory experiment at the SuperKEKB e^+e^- asymmetric-energy collider

- Design instantaneous luminosity of $6 \times 10^{35} \text{ cm}^{-2}\text{s}^{-1}$ with record of $4.7 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ already achieved
- Target data sample of 50 ab$^{-1}$
 ~30x combined data set of previous experiments
 - ~100 billion B mesons

Optimized for tracking and B vertex reconstruction, K - π particle identification, and precision calorimetry

- **Clean** environment with large solid-angle detector coverage and good missing energy reconstruction
- **Inclusive trigger** ($N_{\text{tracks}}>3$) as well as dedicated low-multiplicity triggers
Belle II experiment

Belle II data set now approaching the integrated luminosity of previous generation of B Factory experiments (BABAR and Belle)

- Current results based on < 1% of target data sample

Physics data taking began in 2019

- Total integrated luminosity of 362 fb\(^{-1}\) at the \(\Upsilon(4S)\) resonance
- 42 fb\(^{-1}\) recorded 60 MeV below \(\Upsilon(4S)\) ("offpeak")
- 19 fb\(^{-1}\) at 10.8 GeV for exotic hadron studies (\(\Upsilon(5S)\) and \(\Upsilon(6S)\) region)
Belle II physics program

Broad physics program for precision tests of SM predictions in B meson decays

- CKM matrix elements and CP-violation in the B meson sector
- Tree and loop-level (e.g. FCNC) processes probed to test for evidence of beyond Standard Model contributions

<table>
<thead>
<tr>
<th>Process</th>
<th>σ (nb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b\bar{b}$</td>
<td>1.1</td>
</tr>
<tr>
<td>$c\bar{c}$</td>
<td>1.3</td>
</tr>
<tr>
<td>Light quark $q\bar{q}$</td>
<td>~2.1</td>
</tr>
<tr>
<td>$\tau^+\tau^-$</td>
<td>0.9</td>
</tr>
<tr>
<td>e^+e^-</td>
<td>~40</td>
</tr>
</tbody>
</table>

Very extensive program of non-B physics as well:

- Quarkonium and “exotic states”
- Light Higgs, Z', ALPs, dark sector etc.
- Tau, charm precision measurements and rare decay searches
Outline

- Belle II introduction
- \(\tau \) lepton mass
- Charmed hadron lifetimes
- Lepton flavour universality and \(R(X), R(D^*) \)
- Search for \(B^+ \rightarrow K^+ \nu \bar{\nu} \)
- Prospects
Mass of the τ lepton is a fundamental SM parameter

- Use kinematic edge of M_{min} distribution in $\tau\rightarrow 3\pi\nu$ decays

Pseudomass endpoint method:

$$M_{\text{min}} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi})^2} \leq m_{\tau}$$

- Assumes neutrino is collinear with 3π direction, and utilizes beam energy constraint

$\tau^+\tau^-$ pairs are produced at Belle II in $e^+e^- \rightarrow \tau^+\tau^-$ with relatively high boost

- “Jetty” topology, with the decay daughters from the two taus cleanly separated into two “hemispheres”
- “Tag and probe” to cleanly and inclusively select τ signal candidate sample
τ lepton mass

Critical to control beam energy and track momentum scale calibrations

- Beam energy calibrated using B meson hadronic decays
- Momentum scale sensitive to magnetic field imperfections, detector material etc.
 Extract scale factors for K and π using $D^{*+} \to D^0 \to K^-\pi^+\pi^+$ from data
Mass determined from unbinned maximum likelihood fit to an empirical endpoint function:

\[m_\tau = 1777.09 \pm 0.08 \pm 0.11 \text{ MeV}/c^2 \]

- **Most precise experimental determination to date!**

Source

Uncertainty (MeV/c^2)

- Knowledge of the colliding beams:
 - Beam-energy correction: 0.07
 - Boost vector: < 0.01
- Reconstruction of charged particles:
 - Charged-particle momentum correction: 0.06
 - Detector misalignment: 0.03
- Fit model:
 - Estimator bias: 0.03
 - Choice of the fit function: 0.02
 - Mass dependence of the bias: < 0.01
- Imperfections of the simulation:
 - Detector material density: 0.03
 - Modeling of ISR, FSR and \(\tau \) decay: 0.02
 - Neutral particle reconstruction efficiency: \(\leq 0.01 \)
 - Momentum resolution: < 0.01
 - Tracking efficiency correction: < 0.01
 - Trigger efficiency: < 0.01
 - Background processes: < 0.01
- Total: 0.11

Charmed hadron lifetimes

Charmed hadrons have lifetimes of order 0.1 - 1 ps, resulting in decay distances of typically 100 – 500 μm at B factories

- D^0, D^+, D_s^+, Λ_c^+ and Ω_c^0
- Decay time determined from flight distance between production and decay vertex
- Momentum vector constraint (from tracking) and hadron mass (from decay daughters)

Substantially improved vertex resolution and reduced beam spot size compared with Belle

Luminous region is $\{10,0.2,250\}$ μm $\{x,y,z\}$ (compared to $\{100,1,6000\}$ μm for Belle)
Charmed hadron lifetimes

Consider only high purity, large branching fraction decay modes

- Charm from B decays vetoed (to avoid lifetime bias)
- Backgrounds modelled using invariant mass sideband regions
- Very small background-related systematics

\[D^{*+} \to D^0 (\to K^- \pi^+) \pi^+ \]
\(~171k \text{ with } 99.8\% \text{ purity}\)

\[D^{*+} \to D^+(\to K^- \pi^+ \pi^+) \pi^0 \]
\(~59k \text{ with } 91\% \text{ purity}\)

\[\Lambda_c^+ \to p K^+ \pi^+ \]
\(~116k \text{ with } 93\% \text{ purity}\)

\[D_s^+ \to \phi (\to K^- K^+) \pi^+ \]
\(~116k \text{ with } 92\% \text{ purity}\)

\[\Omega_c^0 \to \Omega^- \pi^+ \]
\[\Omega \to \Lambda_c^0 (\to p \pi^-) K^- \]
\(~90 \text{ events with } 67\% \text{ purity}\)
Charmed hadron lifetimes

Lifetimes are extracted using an unbinned maximum-likelihood fit to the decay time (t) and decay-time uncertainty (σ_t)

- Signal distributions are convolutions of an exponential with a resolution function
- Simultaneous fit to signal and sideband regions with all shape parameters free
- Possible backgrounds from long-lived particles taken into consideration (e.g. $\Xi_c \rightarrow \Lambda_c^+ \pi$)

L-dependence of lifetimes

$$
\tau(D^0) = 410.5 \pm 1.1 \text{(stat.)} \pm 0.8 \text{(syst.)} \text{fs} \\
\tau(D^+) = 1030.4 \pm 4.7 \text{(stat.)} \pm 3.1 \text{(syst.)} \text{fs}
$$

Systematics at level of 0.2%

PRL 127 (2021) 21801
arXiv:2306.00365
PRL 130 (2023) 071802
PRD 107 (2023) L031103
Charmed hadron lifetimes

Not previously measured by BABAR or Belle!

- Most precise D^0, D^+, D_s^+ and Λ_c^+ lifetime measurements to date

Confirmation of unexpectedly long lifetime of Ω_c^0 by LHCb
- not the shortest-lived weakly decaying charm baryon

Clear demonstration of the performance of the Belle II tracking and vertexing system

- Precise detector alignment, calibration and understanding at a level not previously achieved at B factories
Semileptonic B decays occur via tree-level processes mediated by weak interaction

- Potentially provide experimentally clean and high-rate measurements of CKM matrix elements V_{ub} and V_{cb}
- Lepton flavour universality (LFU) tests provide theoretically clean SM probes in semileptonic decays
- Long-standing “anomaly” in LFU related to 3rd generation leptons:

Test LFU in ratio of $b \rightarrow c l \nu$ decays to 3rd generation τ relative to light 1st and 2nd generation e and μ

$$R(D^*) = \frac{\mathcal{B}(B \rightarrow D^* \tau \nu_\tau)}{\mathcal{B}(B \rightarrow D^* l \nu_\ell)}$$

- Alternatively, can study the inclusive ratio of branching fractions:

$$R(X) = \frac{\mathcal{B}(B \rightarrow X \tau \nu_\tau)}{\mathcal{B}(B \rightarrow X l \nu_\ell)}$$
B → Xτν signal events contain multiple neutrinos in the final state

- Significant missing energy and limited kinematic constraints

Reconstruct the accompanying “tag B” in one of a large number of hadronic decay modes; referred to as “Full Event Interpretation” (FEI)

- Search for the signal B decay in the remainder of the event
- Signal electron or muon from
 \[\tau \rightarrow e\nu\bar{\nu}, \quad \tau \rightarrow \mu\nu\bar{\nu} \]
 \[p_{T,\text{lab}}(e) > 0.3/0.5 \text{ GeV}, \quad p_{T,\text{lab}}(\mu) > 0.4/0.7 \text{ GeV} \]
- Remaining reconstructed particles in the event comprise the hadronic system “X”

Primary experimental challenge is modelling and characterizing backgrounds, which arise from:

- B → Xlν \((l = e, \mu)\) decays
- generic B\(\bar{B}\) events with mis-reconstruction
- “continuum” q\(\bar{q}\) events
Data-driven $X\ell\nu$ modelling using M_X distribution in $p_B^\ell > 1.4$ GeV sideband region

Signal determined from 2D distribution of p_B^ℓ vs $M_{2\text{miss}}^2$

- Total of 34 bins in $(p_B^\ell, M_{2\text{miss}}^2)$ plane
- Four fit components in each of e, μ modes:
 - signal $B\rightarrow X\tau\nu$
 - $B\rightarrow X\ell\nu$ background
 - other BB background
 - continuum background
- Systematics dominated by data-driven corrections to background and signal modelling
Results consistent with SM expectation, and previous measurements (from LEP):

$$ R(X) = \frac{\mathcal{B}(B \rightarrow X \tau \nu_\tau)}{\mathcal{B}(B \rightarrow X \ell \nu_\ell)} $$

- Systematics dominated measurement, even with this “small” data set

Combined:

$$ R(X) = 0.228 \pm 0.016 (\text{stat}) \pm 0.036 (\text{syst}) $$

SM expectation: 0.223 ± 0.006
Alternative approach:

Exclusively reconstruct the hadronic “X” system in addition to the tag B

- Three D^* signal modes are considered:
 - $D^{*+} \rightarrow D^0\pi^+$ and $D^+\pi^0$
 - $D^{*0} \rightarrow D^0\pi^0$

- Identify electron or muon from
 - $\tau \rightarrow e\nu\bar{\nu}$, $\tau \rightarrow \mu\nu\bar{\nu}$

- Require that there are no additional charged tracks or π^0 candidates left over

- Residual calorimeter energy E_{ECL} and $M_{miss}^2 = (p_{e^+e^-} - p_B - p_{D^*} - p_l)^2$ used to extract signal

Primary experimental challenge is to understand the significant (and poorly known) backgrounds from $B \rightarrow D^{**}l\nu$
Very detailed data-driven validation of background and signal modelling based on studies of sideband regions

- Sideband regions enhanced in specific backgrounds:
 - \(B \rightarrow D^* l \nu \) sideband
 - \(q^2 < 3.5 \text{ GeV} \) (below \(m_\tau^2 \) threshold)
 - \(B \rightarrow D^{**} l \nu \) enhanced sideband
 - (i.e. requiring an additional \(\pi^0 \)) unknown rate and can mimic signal
 - \(D^* \) mass sideband
 - \((\Delta m_{D^*} = m_{D^*} - m_D) \) constrain fake \(D^* \) yields

- Excellent agreement between data and simulation after sideband-based corrections applied
$R(D^*)$ = \(0.267^{+0.041}_{-0.039}\) (stat) \(+0.028\) (syst)

First $R(D^*)$ experimental result from Belle II

- Consistent with SM and previous experimental results, but still fairly large statistical uncertainties
\(B^+ \rightarrow K^+ \nu \bar{\nu} \)

\(B^+ \rightarrow K^+ \nu \bar{\nu} \) is a rare decay in the SM occurring via a one-loop electroweak FCNC process

- Precise SM prediction:
 \[
 B(B^+ \rightarrow K^+ \nu \bar{\nu}) = (5.6 \pm 0.4) \times 10^{-6}
 \]
 (arXiv:2207.13371)

- Complementary to similar FCNC \(B \) decay such as \(B \rightarrow X_s \gamma \) and \(B \rightarrow K \ell^+ \ell^- \)

- Can be enhanced by BSM contributions, and signature of “\(K + E_{\text{miss}} \)” potentially sensitive to other non-SM models (e.g. dark sector)

Very challenging experimentally due to lack of kinematic constraints for background discrimination

- Previous searches by \(B \) factories have relied on exclusive reconstruction of the accompanying “tag \(B \)” in hadronic or semileptonic decay modes

New Belle II analysis utilizes an “inclusive” search strategy

- Large statistical advantage (~8\% compared with ~0.4\% for hadronic tagging), but challenging backgrounds

- Conventional “hadronic \(B \) tag” method as an auxiliary measurement
B$^+ \rightarrow K^+\nu\bar{\nu}$

Select signal candidate as charged kaon which yields the minimal mass of the di-neutrino q^2 (computed as the recoil from the kaon)

- Utilize event topology, the signal kaon, and information about additional particles in the event

Three step selection process:

- Event preselection

 $4 \leq N_{\text{tracks}} \leq 10$, $E_{\text{total}} > 4$ GeV and $17^\circ < \theta_{\text{miss}} < 160^\circ$

- BDT1 - Event shape variables (12 inputs)

- BDT2 - Kinematic and “rest-of-event” quantities (35 inputs)

Precise understanding of the background is critical:

- Use multiple control channels to validate all aspects of the analysis performance

- Background mainly from B decays, with $B^+ \rightarrow K^+K^0\bar{K}^0$, $B^+ \rightarrow K^+\pi\pi$, $B \rightarrow Xc(\rightarrow K_L^0 + X)$, and pion mis-identification being problematic
Backgrounds containing K_L^0 are potentially a significant issue

- K_L^0 detector performance verified directly in data using radiative $\phi \rightarrow K_L^0 K_s^0$
- $B^+ \rightarrow K^+ K^0 \bar{K}^0$ branching fraction is poorly constrained. Use $B^+ \rightarrow K^+ K_s^0 \bar{K}_s^0$ to estimate $B^+ \rightarrow K^+ K_L^0 \bar{K}_L^0$

Pion and lepton enriched samples to study $B \rightarrow X_c (\rightarrow K_L^0 + X)$
- scaling MC predictions leads to excellent agreement with data
$B^+ \rightarrow K^+ \nu \bar{\nu}$

Signal extracted from binned maximum likelihood fit to q^2 and classifier output:

- 3.6σ evidence for $B^+ \rightarrow K^+ \nu \bar{\nu}$ occurring at a rate somewhat above SM expectation
 \[\mu = 5.6 \pm 1.1\text{(stat)}^{+1.0}_{-0.9}\text{(syst)} \]

- Hadronic tag analysis consistent with no signal, and SM prediction
 \[\mu = 2.2 \pm 2.3\text{(stat)}^{+1.6}_{-0.7}\text{(syst)} \]

$B_{\text{incl}} = (2.8 \pm 0.5 \text{ (stat)} \pm 0.5 \text{ (syst))} \times 10^{-5}$

$B_{\text{had}} = (1.1^{+0.9}_{-0.8} \text{ (stat)}^{+0.8}_{-0.5} \text{ (syst))} \times 10^{-5}$
Prospects

Belle II is now approaching an integrated luminosity which is directly competitive with the previous generation of B factories

- Improvements in detector, trigger, and analysis strategies have enabled precision measurements and new physics with early Belle II data, and demonstrated the capabilities of the upgraded detector

- Very active ongoing program of research with many new results across a very broad range of physics topics

Data collection and physics program is just beginning!

- Stay tuned for new results with world's largest B Factory data set

![Graph showing peak luminosity and integrated luminosity over time with labels for LS1 and LS2 periods and recorded luminosity of 424 fb⁻¹.]
Additional material
Charmed hadron lifetimes

Factor of 2 improvement in impact parameter resolution compared with BABAR or Belle
Signal:

\[M^2_{\text{miss}} = (p_{e^+e^-} - p_B - p_{D^*} - p_l)^2 \]

\[E_{\text{ECL}} = \sum E_{\text{clus}} \]

where \(E_{\text{clus}} \) are clusters that were not used in tag B or D* reconstruction
\[B^+ \rightarrow K^+ \nu \bar{\nu} \]

Very detailed signal validation:

- Kaon identification performance corrected using \(D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+ \) control samples, and validated using \(B^+ \rightarrow D^0 (\rightarrow K^+ \pi^-) h^+ \) (\(h = K, \pi \))
- Veto \(D^0 \) daughters to mimic signal signature

\[B^+ \rightarrow J/\psi K^+ \text{ with } J/\psi \text{ daughters removed to validate MC modelling of extra neutrals} \]