Belle II Physics Results

Steven Robertson

Institute of Particle Physics, Canada & University of Alberta

On behalf of the Belle II Collaboration

DMNet International Symposium Padova, Italy Sept 28, 2023

The Belle II Experiment

Belle II is a B factory experiment at the SuperKEKB e^+e^- asymmetric-energy collider

- Design instantaneous luminosity of 6 x 10³⁵ cm⁻²s⁻¹ with record of 4.7 x 10³⁴ cm⁻²s⁻¹ already achieved
- Target data sample of 50 ab⁻¹
 ~30x combined data set of previous experiments

- ~100 billion B mesons

KL and muon detector Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EN Calorimeter Cal(TI), waveform sampling electronics electrons (7 GeV) Vertex Detector 2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD Central Drift Chamber Smaller cell size, long lever arm

Optimized for tracking and B vertex reconstruction, $K - \pi$ particle identification, and precision calorimetry

- Clean environment with large solidangle detector coverage and good missing energy reconstruction
- Inclusive trigger (N_{tracks}>3) as well as dedicated low-multiplicity triggers

Sept 28, 2023

Belle II experiment

Physics data taking began in 2019

- Total integrated luminosity of 362 fb⁻¹ at the $\Upsilon(4S)$ resonance
- 42 fb⁻¹ recorded 60 MeV below $\Upsilon(4S)$ ("offpeak")
- 19 fb⁻¹ at 10.8 GeV for exotic hadron studies ($\Upsilon(5S)$ and $\Upsilon(6S)$ region)

Belle II data set now approaching the integrated luminosity of previous generation of B Factory experiments (*BABAR* and Belle)

Current results based on < 1% of target data sample

Belle II physics program

 σ (nb)

1.1

1.3

~2.1

0.9

~40

Broad physics program for precision tests of SM predictions in B meson decays

- CKM matrix elements and CP-violation in the B meson sector
- Tree and loop-level (e.g. FCNC) processes probed to test for evidence of beyond Standard Model contributions

Process

bb

 \overline{C}

Light quark qq

 $\tau^+\tau^-$

 e^+e^-

Very extensive program of non-B physics as well:

- Quarkonium and "exotic states"
- Light Higgs, Z', ALPs, dark sector etc.
- Tau, charm precision measurements and rare decay searches

5

- Belle II introduction
- τ lepton mass
- Charmed hadron lifetimes
- Lepton flavour universality and R(X), $R(D^*)$
- Search for $B^+ \rightarrow K^+ v \bar{v}$
- Prospects

τ lepton mass

Mass of the τ lepton is a fundamental SM parameter

• Use kinematic edge of M_{\min} distribution in $\tau \rightarrow 3\pi v$ decays

Pseudomass endpoint method:

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_{\pi}$$

• Assumes neutrino is collinear with 3π direction, and utilizes beam energy constraint

- $\tau^+\tau^{\scriptscriptstyle -}$ pairs are produced at Belle II in $e^+e^{\scriptscriptstyle -} \to \tau^+\tau^{\scriptscriptstyle -}$ with relatively high boost
 - "Jetty" topology, with the decay daughters from the two taus cleanly separated into two "hemispheres"
 - "Tag and probe" to cleanly and inclusively select τ signal candidate sample

τ lepton mass

Critical to control beam energy and track momentum scale calibrations

- Beam energy calibrated using B meson hadronic decays
- Momentum scale sensitive to magnetic field imperfections, detector material etc. Extract scale factors for K and π using $D^{*+} \rightarrow D^0 (\rightarrow K^-\pi^+) \pi^+$ from data

τ lepton mass

Sept 28, 2023 Belle II Physics Results

Charmed hadrons have lifetimes of order 0.1 - 1 ps, resulting in decay distances of typically $100 - 500 \ \mu m$ at B factories

- D^0, D^+, D_s^+ , Λ_c^+ and Ω_c^0
- Decay time determined from flight distance between production and decay vertex
- Momentum vector constraint (from tracking) and hadron mass (from decay daughters)

Substantially improved vertex resolution and reduced beam spot size compared with Belle

Luminous region is {10,0.2,250} µm {x,y,z} (compared to {100,1,6000} µm for Belle)

Consider only high purity, large branching fraction decay modes

- Charm from B decays vetoed (to avoid lifetime bias)
- Backgrounds modelled using invariant mass sideband regions
- Very small backgroundrelated systematics

1.96

1.95

Belle II

1.94

 $L dt = 207 \text{ fb}^{-1}$

Sept 28, 2023

Belle II Physics Results

1.0 10000

> 8000 6000

4000

2000

1.93

Candidates per

Steven Robertson

2

2.01

Data

- Total fit

····· Background

Ŧ

1.97 1.98 1.99

 $M(\phi \pi^+)$ [GeV/ c^2]

Lifetimes are extracted using an unbinned maximumlikelihood fit to the decay time (t) and decay-time uncertainty (σ_t)

- Signal distributions are convolutions of an exponential with a resolution function
- Simultaneous fit to signal and sideband regions with all shape parameters free
 - Possible backgrounds from long-lived particles taken into consideration (e.g. $\Xi_c \rightarrow \Lambda_c^+ \pi$)

Systematics at level of 0.2%

•

Not previously measured by BABAR or Belle!

• Most precise D^0 , D^+ , D_s^+ and Λ_c^+ lifetime measurements to date

R(X) and R(D*)

Semileptonic B decays occur via tree-level processes mediated by weak interaction

- Potentially provide experimentally clean and high-rate measurements of CKM matrix elements V_{ub} and V_{cb}
- Lepton flavour universality (LFU) tests provide theoretically clean SM probes in semileptonic decays
- Long-standing "anomaly" in LFU related to 3rd generation leptons:

Test LFU in ratio of $b \rightarrow c l v$ decays to 3^{rd} generation τ relative to light 1^{st} and 2^{nd} generation e and μ

$$R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \ell \nu_{\ell})}$$

Alternatively, can study the inclusive ratio of branching fractions:

$$R(X) = \frac{\mathcal{B}(B \to X \tau \nu_{\tau})}{\mathcal{B}(B \to X \ell \nu_{\ell})}$$

Sept 28, 2023

Belle II Physics Results

EPS-HEP 2023 189 fb⁻¹

- $B \to X \tau \nu$ signal events contain multiple neutrinos in the final state
- Significant missing energy and limited kinematic constraints

Reconstruct the accompanying "tag B" in one of a large number of hadronic decay modes; referred to as "Full Event Interpretation" (FEI)

- Search for the signal B decay in the remainder of the event
- Signal electron or muon from $\tau \rightarrow ev\overline{v}, \quad \tau \rightarrow \mu v\overline{v}$

 $p_{T,\text{lab}}(e) > 0.3/0.5 \text{ GeV},$ $p_{T,\text{lab}}(\mu) > 0.4/0.7 \text{ GeV}$

• Remaining reconstructed particles in the event comprise the hadronic system "X"

Primary experimental challenge is modelling and characterizing backgrounds, which arise from:

- $B \rightarrow X l \nu \ (l = e, \mu)$ decays
- generic $B\overline{B}$ events with mis-reconstruction
- "continuum" $q\overline{q}$ events

EPS-HEP 2023 189 fb⁻¹

Data-driven X*l*v modelling using M_X distribution in $p^B_l > 1.4$ GeV sideband region

Signal determined from 2D distribution of p^{B}_{l} vs M^{2}_{miss}

- Total of 34 bins in $(p^{B}_{l}, M^{2}_{miss})$ plane
- Four fit components in each of e, μ modes:
 - − signal B→Xτν
 - $B \rightarrow X l v$ background
 - other $\rm B\overline{B}$ background
 - continuum background
- Systematics dominated by data-driven corrections to background and signal modelling

EPS-HEP 2023 189 fb⁻¹

Results consistent with SM expectation, and previous measurements (from LEP):

$$R(X) = \frac{\mathcal{B}(B \to X\tau\nu_{\tau})}{\mathcal{B}(B \to X\ell\nu_{\ell})}$$

- $R(X_{\tau/e}) = 0.232 \pm 0.020 \text{ (stat)} \pm 0.037 \text{ (syst)}$ $R(X_{\tau/\mu}) = 0.222 \pm 0.027 \text{ (stat)} \pm 0.050 \text{ (syst)}$
- Systematics dominated measurement, even with this "small" data set

Combined:

 $R(X) = 0.228 \pm 0.016(\text{stat}) \pm 0.036 \text{ (syst)}$

SM expectation: 0.223±0.006

R(D*)

Lepton Photon 2023 189 fb⁻¹

Alternative approach:

Exclusively reconstruct the hadronic "X" system in addition to the tag B

• Three D* signal modes are considered:

 $D^{*^+} \longrightarrow D^0 \pi^+$ and $D^+ \pi^0$ $D^{*0} \longrightarrow D^0 \pi^0$

- Identify electron or muon from $\tau \rightarrow ev\overline{v}, \ \tau \rightarrow \mu v\overline{v}$
- Require that there are no additional charged tracks or π^0 candidates left over
- Residual calorimeter energy E_{ECL} and $M^2_{miss} = (p_{e+e-} p_B p_D* p_l)^2$ used to extract signal

Primary experimental challenge is to understand the significant (and poorly known) backgrounds from $B \rightarrow D^{**}lv$

Lepton Photon 2023 189 fb⁻¹

Very detailed data-driven validation of background and signal modelling based on studies of sideband regions

Sideband regions enhanced in specific backgrounds:

 Excellent agreement between data and simulation after sidebandbased corrections applied

Lepton Photon 2023 189 fb⁻¹

 $B^+ \to K^+ v \bar v$ is a rare decay in the SM occurring via a one-loop electroweak FCNC process

Precise SM prediction:

 $B(B^+ \rightarrow K^+ v \bar{v}) = (5.6 \pm 0.4) \times 10^{-6}$

(arXiv:2207.13371)

- Complementary to similar FCNC B decay such as $B \to X_s \gamma$ and $B \to K l^+ l^-$
- Can be enhanced by BSM contributions, and signature of " $K + E_{miss}$ " potentially sensitive to other non-SM models (e.g. dark sector)

Very challenging experimentally due to lack of kinematic constraints for background discrimination

 Previous searches by B factories have relied on exclusive reconstruction of the accompanying "tag B" in hadronic or semileptonic decay modes

New Belle II analysis utilizes an "inclusive" search strategy

- Large statistical advantage (~8% compared with ~0.4% for hadronic tagging), but challenging backgrounds
- Conventional "hadronic B tag" method as an auxiliary measurement

B(→Kvv)B ΒĒ qq Select signal candidate as charged kaon which yields the minimal mass of the di-neutrino q^2 (computed as the recoil from the kaon) Utilize event topology, the signal kaon, and information 8×10^{-2} about additional particles in the event Event shapes Belle II preliminary Neutral B Charged B Three step selection process: $B^+ \rightarrow K^+ \nu \bar{\nu}$ Event preselection • Exp 8, Run 3123 $4 < N_{\text{tracks}} < 10$, $E_{\text{total}} > 4 \text{ GeV}$ and $17^\circ < \theta_{miss} < 160^\circ$ Belle II preliminary simulation ΟŰ 0.20.40.68.0 1.0 sphericity BDT1 Event shape variables -• (12 inputs) 6000 Candidates 4000 BDT2 -Kinematic and "rest-of-event" Signal [x50] quantities (35 inputs) 2000

Precise understanding of the background is critical:

- Use multiple control channels to validate all aspects of the analysis performance
- Background mainly from B decays, with $B^+ \rightarrow K^+ K^0 \overline{K^0}$, $B^+ \rightarrow K^+ nn$, $B \rightarrow Xc(\rightarrow K_L^0 + X)$, and pion mis-identification being problematic

0.94

0.96

BDT2 classifier output

0.92

1.0

0.98

$\mathbf{B}^+ \to \mathbf{K}^+ \mathbf{v} \bar{\mathbf{v}}$

Backgrounds containing K_L^0 are potentially a significant issue

- K_L^0 detector performance verified directly in data using radiative $\phi \rightarrow K_L^0 K_s^0$
- $B^+ \rightarrow K^+ K^0 \overline{K}^0$ branching fraction is poorly constrained. Use $B^+ \rightarrow K^+ K_s^{\ 0} \overline{K}_s^{\ 0}$ to estimate $B^+ \rightarrow K^+ K_L^{\ 0} \overline{K}_L^{\ 0}$

Pion and lepton enriched samples to study $B \rightarrow X_c (\rightarrow K_L^0 + X)$

 scaling MC predictions leads to excellent agreement with data

Signal extracted from binned maximum likelihood fit to q^2 and classifier output:

 $B_{incl} = (2.8 \pm 0.5 \text{ (stat)} \pm 0.5 \text{ (syst)}) \times 10^{-5}$

• 3.6 σ evidence for $B^+ \rightarrow K^+ v \bar{v}$ occurring at a rate somewhat above SM expectation

 $\mu = 5.6 \pm 1.1(\text{stat})^{+1.0}_{-0.9}(\text{syst})$

 Hadronic tag analysis consistent with no signal, and SM prediction

 $\mu = 2.2 \pm 2.3(\text{stat})^{+1.6}_{-0.7}(\text{syst})$

Prospects

Belle II is now approaching an integrated luminosity which is directly competitive with the previous generation of B factories

- Improvements in detector, trigger, and analysis strategies have enabled precision measurements and new physics with early Belle II data, and demonstrated the capabilities of the upgraded detector
- Very active ongoing program of research with many new results across a very broad range of physics topics

Data collection and physics program is just beginning!

 Stay tuned for new results with world's largest B Factory data set

Additional material

Sept 28, 2023Belle II Physics ResultsSteven RobertsonDMNet202325

Factor of 2 improvement in impact parameter resolution compared with BABAR or Belle

Steven Robertson

Charmed hadron lifetimes

Very detailed signal validation:

- Kaon identification performance corrected using $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$ control samples, and validated using $B^+ \rightarrow D^0 (\rightarrow K^+ \pi^-) h^+$ (h= K, π)
- Veto D⁰ daughters to mimic signal signature

 B⁺→ J/ψ K⁺ with J/ψ daughters removed to validate MC modelling of extra neutrals