Belle II track finding and hit filtering using precise timing information

Christian Wessel (DESY) on behalf of the Belle II Tracking and Vertexing group

Connecting the Dots 12.10.2023

christian.wessel@desy.de

HELMHOLTZ

The Experimental Setup

SuperKEKB B-Factory

- Located at KEK, Tsukuba, Japan
- Asymmetric e⁺e⁻ (4 / 7 GeV) collider at $\sqrt{s} = 10.58$ GeV corresponding to m_{Y(4S)}
 - Also significant $c\overline{c}$ and $\tau^{+}\tau^{-}$ production
- Aiming for $\mathscr{L} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - Nano beam scheme
- Current WR: $\mathscr{L} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Collected 424 fb⁻¹ since 2019
- Goal: $\int \mathscr{G} dt = 50 \ ab^{-1}$

1µm

• Currently in long shutdown 1

5mm

直岡

Tsuchiura

Mobara

PRÄFEKTUR

Chiba

Kashima 鹿嶋

> Kamisu 神栖

FEKTUR

The Experimental Setup

Belle II

- Multi purpose, near 4π detector
- Roughly 7x7x7 m³
- 2 DEPFET pixel layers
- 4 double sided silicon strip layers
- Central drift chamber
- Particle identification: Time of Propagation (barrel) and Aerogel Ring Imaging Cherenkov (forward) detectors
- Electromagnetic calorimeter
- 1.5 T magnetic field
- K^0_{L} and muon detector

The Experimental Setup

Belle II tracking and vertexing detectors

- 2 DEPFET pixel layers
 - r = 14, 22 mm
 - 7.68M pixel
 - Pixel size 50 x (55 85) μm²
 - 20 μs integration time
 - 0.2% X₀ per layer
- 4 double sided silicon strip layers
 - Up to r = 135 mm
 - 223k strips
 - Strip pitch 50 / 75 (r-φ), 160 / 240 μm (z)
 - < 1% X₀ per layer
- Central drift chamber
 - Up to r = 112 cm
 - 14.3k wires in 9 super layers
 - 5 axial and 4 stereo super layers
 - Drift cell size: ~1 cm up to ~2 cm
- Coverage in θ : 17° to 150°

Physics at Belle II

Precision

_

. . .

- Probing the standard model with high precision measurements
 - Search for rare processes
 - Branching fraction measurements
 - Time dependent CP violation
 - Tests of lepton flavour universality
 - Standard model parameters
 - Dark sector searches

Physics at Belle II

Precision

- Probing the standard model with high precision measurements
 - Search for rare processes
 - Branching fraction measurements
 - Time dependent CP violation
 - Tests of lepton flavour universality
 - Standard model parameters
 - Dark sector searches

. . .

• Physics results relying on excellent tracking and vertexing performance

DESY. | Connecting The Dots 2023 | 12.10.2023 | C. Wessel | Tracking at Belle II

The Tracking Environment

Tracking

- Clean environment with well known initial state: Υ (4S)
 - Can calibrate beam spot using precise vertexing
- Soft momentum spectrum
 - Mean p_t at 400 MeV/c multiple scattering is an issue
- Around 10 tracks per hadronic event in fiducial volume
- Majority of events Bhabha or two photon scattering
- Used on High Level Trigger: need fast track finding algorithms with high efficiency and low fake rate down to p_t = 50 MeV/c
 - Bunch crossings every 4 ns → high probability of background tracks from previous bunch crossing being reconstructed in triggered event
- Tiny signal fraction among silicon hits at target luminosity
 - O(0.1%) of hits in PXD
 - < 10% of hits in SVD</p>
- \rightarrow Use precise timing information from SVD to reject fake hits in future

The Tracking Environment

Tracking data flow

- Employ a combination of global and local tracking algorithms (paper)
- Track fits performed with GenFit's Deterministic Annealing Filter (DAF) (paper, github)
- Same software (basf2, paper, github) used online (high level trigger) and offline

CKF: Combinatorial Kalman Filter

Used for inter-detector reconstruction

VXDTF2: Vertex Detector Track Finder 2

- Silicon only track finding in SVD
- Sector map concept using "Sectors on Sensors" (paper)
- Applies geometrical and timing cuts between hits learned during training

Tracking Performance

Tracking performance

- Track finding efficiency vs p_t and $cos\theta$
- Above 90 % for most of the phase space covered by Belle II detector
 - 93.6 % efficiency on average

DESY. | Connecting The Dots 2023 | 12.10.2023 | C. Wessel | Tracking at Belle II

Tracking Performance

Tracking performance

- Increased rate of fake and beam background tracks for low and high values of p_{t} and $\cos\theta$
 - More small angle $e^+e^- \rightarrow e^+e^-(\gamma)$ scattering and $e^+e^- \rightarrow e^+e^-f\bar{f}$ (two photon process) with low p_t and in very forward and backward directions \rightarrow actual tracks from physis backgrounds
 - At high p_t: random combinations of hits and low number of tracks from BB events

Precise SVD timing

SVD data reconstruction

- SVD analogue signal shaped with APV25 chip developed for CMS
- One sample each 31.44 ns
- 6 samples collected per strip after trigger
- Shaping function $f(t) \propto \frac{t}{\tau} \cdot e^{-\frac{t}{\tau}}$ with shaping time $\tau = 50$ ns
- Estimate cluster time with ns precision
 - Use samples with highest information density
- Hit time more difficult to estimate correctly if hit time $\ll 0$
 - Missing rising edge of shaping function
- Signal hits centered around 0
 - Usually signal clusters within 50 ns from the collision time

EventT0 and Track Time Estimation

From hit times to track times

- In the past: used CDC based EventT0 estimation
 - Multiple iterations of GenFit DAF with full CDC information of track \rightarrow long execution time
- Superseded by EventT0 determination with SVD
 - Calculate track time as average of time of clusters associated to the outgoing track-arm
 - EventT0 = Average of all SVD cluster times of clusters in all tracks for $p_t > 250$ MeV/c to avoid curling tracks
 - If no tracks with p_t > 250 MeV/c and sufficient number of SVD hits are present, EventT0 is based on ECL information
 - 2000 x faster than CDC method
 - Less than 1 ns resolution on data
- Relative track time
 - Difference between average of all SVD cluster times within a track and EventT0
 - Will be provided to analysts in the future

SVD time grouping

Concept

- Before: cuts on absolute SVD cluster time helpful
 - $|t_{u,v}| < 50$ ns for single cluster
 - $|t_u t_v| < 20$ ns for space point creation
- Many background clusters per event survive
 - Number will increase with increasing luminosity

SVD time grouping

Concept

- Before: cuts on absolute SVD cluster time helpful
 - $|t_{u,v}| < 50$ ns for single cluster
 - $|t_u t_v| < 20$ ns for space point creation
- Many background clusters per event survive
 - Number will increase with increasing luminosity
- New idea: Check individual cluster times per triggered event and group them
 - Signal clusters from same bunch crossing close in time
 - Histogram hits and fit with Gaussian
 - If cluster time > 3σ away from group \rightarrow new group
 - Group closest to 0 and with highest number of clusters is priority group
- Only form 3D space points from clusters from priority group
 - Reduce number of reconstructed background tracks

SVD time grouping

Performance

- Background rejection depends on background levels
 - Examples on this slide for **simulated** backgrounds for nominal luminosity
- Priority time group (ID = 0) nicely centered around 0 in cluster time
 - Mostly background free

Tracking performance with SVD time grouping

Performance

- Grouping shows no degradation in track finding efficiency
- Significantly reduces fake rate
 - 50 % less fake tracks and tracks from beam backgrounds
- Small reduction in clone rate (tracks reconstructed multiple times)
 - Ingoing track arm with time > 0 so hits don't belong to priority group anymore

	Hit time grouping off	Hit time grouping on	Relative difference
Track finding efficiency	93.67 ± 0.24 %	93.69 ± 0.24 %	+0.02 %
Charge efficiency	98.68 ± 0.11 %	98.74 ± 0.11 %	+0.06 %
Fake rate	9.55 ± 0.29 %	4.37 ± 0.20 %	-54.26 %
Clone rate	3.81 ± 0.19 %	3.56 ± 0.18 %	-6.62 %

Track Flip-and-Refit

Wrongly assinged track charges

- Found to have a small fraction of tracks with wrongly assigned charge in certain phase space region
 - Low pt curling tracks in the transverse plane
 - \rightarrow Use two BDT based methods to improve situation
- BDTs use track features
 - 1. Seed information (estimates for momentum, point of closest approach), SVD and CDC hit content, **track time**, ...
 - 2. Fit information of flipped tracks, fit p-value, **track time**, result of first BDT
- High efficiency and purity of selecting and flipping tracks selected
 - Around 1.2 % of all tracks selected
 - Successful correction of charge for 50 % of tracks with wrong charge assignment

Track Flip-and-Refit

Results and improvements from flip and refit

• Succesfully correcting wrongly reconstructed track charges in up to 86 % in certain phase space regions

Track Flip-and-Refit

Results and improvements from flip and refit

- Up to 11.5 % of flipped tracks in certain phase space regions
- Majority of flipped tracks are flipped correctly

Conclusion

- Belle II tracking works reliably and with high efficiency both online and offline
- Reconstructed tracks are used to produce world leading physics results
 - D⁺, D⁰, Λ_{c} lifetimes, τ mass, ...
- Precise timing information from SVD in the future
 - Used to calculate EventT0
 - Used to significantly reduce the number of fake tracks from non-triggered collisions by employing time grouping
- Newly developed method of flipping and refitting employing machine learning used to reduce number of tracks with wrongly assigned charge
 - Reduction of up to 50% in certain phase space region
- Positive effect of both methods demonstrated in simulation
 - To be applied during data taking and offline processing in the future next data taking period starts in spring 2024
- Further improvements on tracking will ensure that Belle II can continue to produce world leading physics results
- Increased beam backgrounds will be a major challenge for operation and reconstruction

Thank you for your attention!

VXDTF2

SVD only track finding

- 3D space points from combining clusters from both sides of a SVD sensor
- Concept of "Sectors on Sensors" to create sector map
 - Each sensor divided in several sectors
 - Only hits on sectors know to be related are considered
 - Apply selection criteria called "filters"
 - Unique for sector combinations
 - Two-hit or three-hit combinations
 - Based on geometric quantities or timing information
- Requires training with Monte Carlo events to learn the relations and filter selection criteria
 - Usually Y(4S) events, with additional high momentum muons and Bhabha events
 - Sector map learns the geometry without explicit definition

Contact

Deutsches Elektronen-Synchrotron DESY Dr. Christian Wessel Belle II christian.wessel@desy.de

www.desy.de