- Conference: MENU2023
- Place: Mainz, Germany
- Date: October 16th, 2023
- Type: Invited plenary talk
- Title: Hadron Spectroscopy at Belle & Belle II
- Time: 30 min. (presentation + Q&A)

Hadron Spectroscopy at Belle & Belle II

MENU 2023 October 16, 2023

Seongbae Yang (Korea University) on behalf of Belle & Belle II Collaborations

Contents

1. Introduction

-Belle & Belle II

-Hadron spectroscopy at Belle & Belle II

2. Transitions of $\Upsilon(10753)$

-Observation of $\Upsilon(10753) \rightarrow \chi_{bI}(1P)\omega$ decay

-Search for $\Upsilon(10753) \rightarrow \chi_{b0}(1P)\omega$ and $\omega \eta_b(1S)$ decays

3. New peak structures near the mass thresholds

- $\Lambda\eta$ threshold cusp in pK^- system

-New peak structures near the $\overline{K}N$ threshold in $\Lambda\pi$ system 4. Summary

Belle

- Physics beamtime: 1999~2010 years
- $\sqrt{s} = ~10.6 \text{ GeV}$
- Huge statistics, $\sim 10^9 B\overline{B}$ pairs, $\sim 1 \text{ ab}^{-1}$ integrated luminosity

Belle II

- SuperKEKB and Belle II upgrades
 - Higher beam current (× 2) and smaller beam focus (× $\frac{1}{20}$) at IR
 - Upgrades in all parts of the detector (vertex, resolution, trigger, and DAQ, ...)

- Instantanesous luminosity record of $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (world record)
- Total integrated luminosity of 428 fb⁻¹
- We plan to take 50 times more data (50 ab⁻¹) in the future

Physics Program

Hadron Spectroscopy at Belle & Belle II

- Huge statistics, Belle + Belle II: $\sim 1.5 \text{ ab}^{-1}$
- Excellent detector performance with 4π solid angle
- EM calorimeter for gamma detection ($\sigma_E/E = 2\%$ at 1 GeV)

*Belle, PRL 117, 011801 (2016)

Various channels for hadron spectroscopy

 $e^+e^- \rightarrow q\bar{q}$, *B* decays, $\Upsilon(1S)$ decays, and charmed baryon decays (for hyperons)

• Numerous significant results in hadron physics have been reported!!

2. Transitions of $\Upsilon(10753)$

Bottomonium Scheme

- Below $B\overline{B}$ threshold: States are well described by potential models
- Above $B\overline{B}$ threshold: Unexpected properties are seen.
 - Two charged Z_b^+ states ($B^{(*)}\overline{B}$ molecular states?)
 - Hadronic transitions are strongly enhanced
 - η transitions are not suppressed compared to $\pi^+\pi^-$ transitions

Observation of \Upsilon(10753)

- Measurement of $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$ cross sections
- Belle energy scan data in the energy range from 10.63 GeV to 11.02 GeV

*Belle, JHEP 10 (2019) 220

	$\Upsilon(10860)$	Ύ(11020)	New structure
$M (MeV/c^2)$	$10885.3 \pm 1.5 {}^{+2.2}_{-0.9}$	$11000.0\substack{+4.0 \\ -4.5 \\ -1.3}\substack{+1.0 \\ -1.3}$	$10752.7 \pm 5.9 {}^{+0.7}_{-1.1}$
$\Gamma ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

$$e^+e^- \rightarrow B\overline{B}$$
 cross sections
- A dip near 10.75 GeV

Energy Scan for \Upsilon(10753)

- In November 2021, Belle II collected unique energy scan data around 10.75 GeV
- The main goal was to confirm and study $\Upsilon(10753)$
- Total integrated luminosity: 19 fb⁻¹
- Fill in the gaps between the Belle points

Observation of \Upsilon(10753) \rightarrow \omega \chi_{bJ}

• Cross sections of $e^+e^- \rightarrow \omega \chi_{b1}$ and $\omega \chi_{b2}$

- Prediction for *D*-wave bottomonium state: 15

- Prediction for S-D mixed state: 0.2

 \rightarrow Close to S-D mixed state?

• Search for $\Upsilon(10753) \rightarrow \gamma X_{h}$

e

- Search for $X_{\rm b}$ in $M(\omega \Upsilon(1S))$
 - \rightarrow Reflections from $\Upsilon(10753) \rightarrow \omega \chi_{b1}$ and $\omega \chi_{b2}$ are seen.
 - \rightarrow No significant signal of X_b is observed.

\sqrt{s} (GeV)	10.653	10.701	10.745	10.805
Upper limits on $\sigma_{\rm B}(e^+e^- \rightarrow \gamma X_{\rm b}) \cdot B(X_{\rm b}\omega\Upsilon(1S))$ (pb)	(10.14, 0.55)	(0.25, 0.84)	(0.06, 0.14)	(0.08, 0.37)

*with varying $M(X_b)$ from 10.45 to 10.65 GeV/ c^2

Search for $\Upsilon(10753) \rightarrow \omega \eta_b(1S)$ and $\omega \chi_{b0}$

• Tetraquark interpretation predicts a strong transition of $\omega \eta_b(1s)$ compared to $\Upsilon \pi^+ \pi^-$ transition.

$$\frac{\Gamma(\omega\eta_b)}{\Gamma(\Upsilon\pi^+\pi^-)} \sim 30$$

There is no convenient way to reconstruct η_b .

• In charmonium section, $Y(4220) \rightarrow \omega \chi_{c0}$ transition is enhanced compared to $\omega \chi_{c1}$ and $\omega \chi_{c2}$. But $e^+e^- \rightarrow \omega \chi_{b0}$ was not observed in the full reconstruction due to $B(\chi_{b0} \rightarrow \gamma \Upsilon(1S)) = (1.94 \pm 0.27)\%$.

• Search for these above transitions by the recoil mass of $\omega \to \pi^+ \pi^- \pi^0$

$$M_{\text{recoil}}(\pi^{+}\pi^{-}\pi^{0}) = \sqrt{\left(\frac{E_{c.m.} - E^{*}}{c^{2}}\right)^{2} - \left(\frac{p^{*}}{c}\right)^{2}}$$

• $\omega \to \pi^+ \pi^- \pi^0$ recoil mass distributions

 \rightarrow No significant χ_{b0} and $\eta_b(1s)$ signals are observed.

• $\sigma(e^+e^- \to \omega\eta_b(1s)) < 2.5 \text{ pb} * \sigma(e^+e^- \to \Upsilon(2S)\pi^+\pi^-) = \sim 3 \text{ pb}$ \rightarrow These results do not support the tetraquark prediction of $\Upsilon(10753)$.

New Peak Structures near the Mass Thresholds

• New peak structures have been observed near the mass threshold.

- \rightarrow They do not always indicate new hadron resonances.
- \rightarrow Linesahpe analysis is required to identify the structure.
- X(3872) structure near $D^0 \overline{D}^{*0}$ threshold

Breit-Wigner model

Flatté model

18

Hyperons in Charmed Baryon Decays

- Better S/N ratio compared to $e^+e^- \rightarrow q\bar{q}$ production.
- Possible to choose a suitable decay channel.
- $\Lambda(1670)$ in $\Lambda_c^+ \to \eta \Lambda \pi^+$ decays
 - First observation of a peak structure of $\Lambda(1670)$

Belle, PRD 103, 052005 (2021)

$\Lambda\eta$ Threshold Cusp in pK^- System

- Full data sample of Belle, 980 fb⁻¹
- Dalitz plot for $\Lambda_c^+ \to p K^- \pi^+$,

• $M(pK^{-})$ Distribution of $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ decays

 \rightarrow A new narrow peak structure near the $\Lambda\eta$ threshold

- Two approaches to explain the narrow peaking structure.
 - (a) Breit-Wigner function: a new resonance
 - (b) Flatté function: a visible cusp enhanced by $\Lambda(1670)$ pole

Flatté function

$$\frac{dN}{dm} \propto \left|f(m)\right|^2 = \left|\frac{1}{m - m_f + \frac{i}{2}\left(\Gamma' + \bar{g}_{\Lambda\eta}k\right)}\right|^2,$$

where m_f : Flatté mass

Γ': a sum of partial widths other than $\Lambda \eta$ decay $\bar{g}_{\Lambda \eta}$: coupling constant of $\Lambda \eta$ channel $k: \sqrt{2\mu_{\Lambda \eta}(m - m_{\Lambda} - m_{\eta})}, *k$ is imaginary when $m < m_{\Lambda} + m_{\eta}$

- Breit-Wigner and Flatté functions with a constant coherently added
- The cusp shape is unaffected by resonances in higher partial waves

• The interference term with different *L* vanishes with an integral over the decay angle.

• S-wave resonances such as $\Lambda(1405)$ can make an interference effect. As they are rather far away, and their effect are approximated as a constant

→ Then, $\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$ is a reasonable choice.

→ Flatté function is significantly favored than Breit-Wigner function.

New peak structures near $\overline{K}N$ threshold in $\Lambda\pi$ system

• New $\Lambda \pi$ peak structures near $\overline{K}N(I = 1)$ threshold in $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$ decays - No prediction from standard quark model $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$

 \rightarrow Exotic hadron?

→ Threshold cusp whose shape reflects the scattering length of $\overline{K}N(I = 1)$ interaction?

*Belle, PRL 130, 151903 (2023)

- Full data sample of Belle, 980 fb⁻¹
- Distribution of $M(\Lambda \pi^+ \pi^- \pi^+)$
 - clear peak structure of Λ_c^+ is seen.
 - Mass window $\left| M(\Lambda \pi^+ \pi^- \pi^+) M_{\Lambda_c^+} \right| < 8 \text{ MeV}/c^2$

*Belle, PRL 130, 151903 (2023)

*Belle, PRL 130, 151903 (2023)

Mode	$E_{\rm BW}~({\rm MeV}/c^2)$	$\Gamma (\text{MeV}/c^2)$	χ^2/NDF
$\overline{\Lambda\pi^+}$	1434.3 ± 0.6	11.5 ± 2.8	74.4/68
$\Lambda \pi^{-}$	1438.5 ± 0.9	33.0 ± 7.5	92.3/68

Parameterization of Dalitz model

- Neglecting the Λ_c^+ form factor
- \overline{K} -N complex scattering length: a + bi

*Belle, PRL 130, 151903 (2023)

$$f_D = \frac{4\pi b}{(1+kb)^2 + (ka)^2}, \qquad E > m_{\bar{K}N}$$
$$= \frac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, \qquad E < m_{\bar{K}N},$$

where
$$\kappa = \sqrt{2\mu(E - m_{\overline{K}N})},$$

 $k = \sqrt{2\mu_{\Lambda\eta}(m_{\overline{K}N} - E)},$
 $\mu = \frac{m_{\overline{K}}m_N}{(m_{\overline{K}} + m_N)}.$

• The Dalitz model is largely consistent with the Flatté model by fixing m_f far away from $\overline{K}N$ threshold.

• Fit results with Dalitz model

*Belle, PRL 130, 151903 (2023)

- The scattering length is larger than the previous results

 \rightarrow The effect of the neglected decay form factor?

• Comparing to Breit-Wigner results, we can't identity them.

Transitions of Y(10753)

- $\Upsilon(10753) \rightarrow \chi_{bI}(1P) \omega$ decays are observed.

- No significant signals of $\Upsilon(10753) \rightarrow \chi_{b0}(1P)\omega$ and $\omega \eta_b(1S)$ decays are observed.

New peak structures near the mass thresholds

- A threshold cusp at the $\Lambda \eta$ threshold is observed in pK^- system. The peak structure favors the Flatté model significantly. - New $\Lambda \pi$ peak structures near the $\overline{K}N$ threshold are observed in $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$ decays. They are not predicted by standard quark model.

*Backup Slides

Flatté model

*V. Baru et al., Eur. Phys. J. A 23, 523 (2005)