The Silicon Vertex Detector of the Belle II Experiment

 $\label{eq:Suryanarayan Mondal} Suryanarayan Mondal on behalf of the Belle II SVD collaboration$

September 25, 2023

Mondal (University and INFN of Pisa)

IPRD23 - Siena

September 25, 2023 1 / 19

김 글 제 김 제 글 제 글 제

Outline

1 Belle II experiment & Silicon Vertex Detector

(2) SVD operation status and performance

3 Software developments toward high luminosity

4 LS1 activity

5 Summary

Silicon Vertex Detector in Belle II experiment

- Belle II experiment at luminosity frontier in search for new physics beyond standard model
- SuperKEKB collider: Asymmetric ${\rm e^+e^-}$ collisions at $\Upsilon(4S)$ resonance at 10.58 GeV
- Vertex Detector (VXD) sits nearest to the interaction point with total 6 Layers
 - Inner 2 layers of Pixel Detector (PXD): DEPFET pixel sensor
 - 4 layers of Silicon Vertex Detector (SVD): Double-sided strip
 - Requirements: excellent vertex resolution and operation in a high-background environment

Main SVD features

- Standalone tracking for low momentum tracks and precise vertexing of K_s
- Extrapolate tracks to PXD
- Provide particle identification using dE/dx.
- $\underline{S}VD$ sensors are organised in electrically and structurally independent ladders

Layer	Ladder	Sensors per Ladder	Radius (mm)
3	7	2	39
4	10	3	80
5	12	4	104
6	16	5	135

Forward sensors are slanted to maximise acceptance with smaller incidence angle
Low material budget of 0.7% X₀ per layer

SVD sensors & front-end

- Double-sided Silicon Strip Detectors (DSSD): provides 2D spatial information: u/P-side $\rightarrow r\phi$, v/N-side $\rightarrow z$
- $\bullet~172\,\text{sensors}$ with 224k readout strips covering $1.2\,\text{m}^2$
- Readout chip on top of sensor: origami concept
- 3 different types of DSSD shapes

172 sensors	125	60	61 ← → 41
	x14 Small	x120 Large	x38 Trapezoidal
# of p-strips*	768	768	768
p-strip pitch*	50 µm	75 µm	50-75 µm
# of n-strips*	768	512	512
n-strip pitch*	160 µm	240 µm	240 µm
thickness	320 µm	320 µm	300 µm
manufacturer	н	PK	Micron

*readout strips – one floating strip on both sides

Front-end ASIC APV25

- Radiation hard: >100 Mrad
- Fast pulse shaping time of 50 ns
- Power consumption: 0.4 W/chip
- 128 channels per chip
- Multi-peak mode at 32 MHz
 - Records 6 samples
 - 3/6-mixed acquisition also ready for high luminosity runs

the Image

Outline

1 Belle II experiment & Silicon Vertex Detector

2 SVD operation status and performance

3 Software developments toward high luminosity

4 LS1 activity

5 Summary

Mondal (University and INFN of Pisa)

SVD operation status

Timeline

- March 2019: First Physic Data with VXD
- July 2022: Long-Shutdown (LS1) activity
 - Accelerator and detector maintenance & improvements
 - $\bullet ~~ \textbf{VXD}~ \textbf{upgrade}~ with~ new~ \mathsf{PXD} + \mathsf{current}~\mathsf{SVD}$
- December 2023: Resume beam operation

Smooth and stable operation without major issues

- ${\scriptstyle \bullet}\,$ Masked strips are less than 1%
- Stable environment and calibration constants' evolution consistent with expectation
- Excellent detector performance ⇒
 Good signal-to-noise ratio (SNR), precise position resolution and large hit efficiency (>99%)
- Background effects are well under control Mondal (University and INFN of Pisa)
 IPRD:

SVD cluster charge & SNR

Good stability of cluster charge and SNR from 2020 & 2022

- Cluster charge normalised to track length similar in all sensors
- Small changes observed in SNR due to noise increase by radiation damage, as expected
 - MPV 13-30 depending on sensor position

Mondal (University and INFN of Pisa)

IPRD23 - Siena

I ► < 클 ► < 클 ► < 클 ► 클 = </p>
September 25, 2023
8 / 19

SVD cluster position resolution

- Position resolution is calculated from the cluster position with respect to the track extrapolation using $e^+e^- \rightarrow \mu^+\mu^-$ sample.
- Stable position resolution is observed during the operation.
- Good resolution, generally as expected with pitch expectations (dotted line)

- Excellent **cluster time** resolution of less than 3 ns
 - SuperKEKB bunch spacing: ${\sim}6\,\text{ns}$
 - $\,$ sVD acquisition window: $\,{\sim}100\,\text{ns}$
- Track time is computed using all the hits on a tracks.
- **Event-time** in SVD is computed using all the clusters associated to selected tracks in an event.
 - $\bullet\,$ The computation of event-time in SVD is \sim 2000 times faster than the same from CDC
 - This feature speeds up the High Level Trigger (HLT) reconstruction helping it cope higher luminosity.

Outline

1 Belle II experiment & Silicon Vertex Detector

2 SVD operation status and performance

3 Software developments toward high luminosity

4 LS1 activity

5 Summary

Mondal (University and INFN of Pisa)

Reconstruction at high luminosity

- High luminosity comes with high beam backgrounds
- The accurate SVD time will be crucial in rejecting background and will allow to maintain the current excellent tracking performance
 - hit-time-based selection to remove off-time clusters
 - $\, \bullet \,$ cluster time used to find suitable u/v pairs
 - tracking filters are trained with cluster time information

SVD hit-time: all clusters

Background rejection with SVD hit-time selection

- Large contamination of off-time clusters in tracks if SVD time is not used in reconstruction
- The time-based hit selection and tracking filters reject the majority of the bkg while keeping above 99% of signal
 - $|t_{u,v}| < 50 \text{ ns } \& |t_u t_v| < 20 \text{ ns}$
- Exploiting SVD time, the SVD Occupancy limit can be set at 4.7%.
 - There are still room for improvement

SVD hit-time: clusters-on-tracks

Mondal (University and INFN of Pisa)

IPRD23 - Siena

Background rejection with SVD cluster grouping

- Alternative method to the absolute cut on time to better exploit the hit time information
- Clusters are classified in groups on an event-by-event basis, based on time, and only the signal group is made available for tracking
 - \implies Bkg rejection increased over the previous method reducing the rate of fake track due to bkg hits by 16%

 Along with track-time selection, this method allows to set the SVD occupancy limit at 6%.

Mondal (University and INFN of Pisa)

Nominal background prediction : SVD hit occupancy

Present average hit occupancy is 0.5% at L3

• well under control.

- Nominal extrapolation to target luminosity shows small safety margin w.r.t. 4.7% limit.
 - With large uncertainty due to future machine evolution and possible interaction region re-design, conservative extrapolation (8.7%) even exceeds 6% limit
- Small safety margin and possible interaction region redesign motivates vertex detector upgrade (S. Bettarini in next talk ...)

Outline

1 Belle II experiment & Silicon Vertex Detector

2 SVD operation status and performance

3 Software developments toward high luminosity

4 LS1 activity

5 Summary

VXD re-installation in LS1

Intense hardware activities on the SVD for the VXD de-installation/re-installation

May 10	VXD extraction	Belle II	
May 17	SVD detachment	activity	
June 1	SVD commissioning	in	
June 28	New VXD assembly	clean	
July 14	New VXD commissioning	room	
July 28	New VXD installation	Rollo II	
ongoing	Functional tests & commissioning with cosmic-ray	Delle II	

No major issue on SVD during LS1 activity

Upgraded VXD is re-installed during LS1
 New complete PXD + current SVD

< ロ > < 同 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

IPRD23 - Siena

Mondal (University and INFN of Pisa)

IPRD23 - Siena

September 25, 2023

18/19

Summary

- SVD is performing stably and excellently as expected
 - The design, construction, operation and performance of the Belle II silicon vertex detector is published in the SVD Technical Paper (JINST 17 P11042 2022)
- ${\scriptstyle \bullet}$ During LS1, VXD is now re-installed at Belle II with new PXD2 and current SVD
 - commissioning with cosmic-ray is ongoing
- Improving SVD software against future high luminosity
 - The accurate SVD time will be crucial in rejecting background and will allow to maintain the current excellent tracking performance
- Background extrapolation to target luminosity shows hit occupancy could exceed our limit, while radiation dose is within safety margin:
 VXD upgrade is under discussion ⇒ more robust against high background and matching possible new interaction region now under evaluation

IPRD23 - Siena

Backup

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ○ へ () September 25, 2023 1/7

Origami chip-on-sensor

- Readout chip placed directly on top of Sensor
 - Wrapped flex to read signal from both side
 - $\, \bullet \,$ Chips are thinned to $100 \mu m$ to reduce material budget
 - Shorter signal propagation length; smaller capacitance and noise
- $\bullet\,$ Single side cooling tube with CO_2

SVD 3/6-mixed DAQ mode

- SVD Data Acquisition consumes time which can attach a significant dead time at higher trigger rates
- Dead time can be reduced by acquiring less SVD samples per event
- Acquiring data with 3-mixed-6 samples is important to reduce the dead time which is useful at higher trigger rate
- 3-mixed-6 sample mode is prepared and tested in 2020c
- 3 or 6 samples are acquired in each event based on trigger jitters: Fine TRG (3-sample) Coarse TRG (6-sample)

* 3% dead-time at 30 kHz with $R_3 = 0$ * 1% dead-time at 30 kHz with $R_3 = 0.4$

Mondal (University and INFN of Pisa)

IPRD23 - Siena

▶ < 클 ▶ < 클 ▶ < 클 ▶ 클 ⊨ ♡ Q (?) September 25, 2023 3/7 Integrated radiation dose on SVD

- Dose on SVD is constantly monitored using Diamond sensors and hit occupancy
 - $\bullet\,$ Total integrated damage on L3, 70krad, $1.6\times10^{11} \textit{n}_{\rm eq}/\rm{cm}^2$
 - No degradation of detector performance is observed
- Expected radiation damage at nominal luminosity, \sim 0.35Mrad, \sim 8 \times 10¹¹ $n_{\rm eq}/{\rm cm}^2$ per year
- Irradiation campaign on SVD sensors
 - with 90 MeV e⁻ beam at ELPH, Tohoku Univ. July 2022
 - Evaluated radiation tolerance of SVD sensors up-to 10Mrad, $3\times 10^{13} {\it n}_{\rm eq}/{\rm cm}^2$
- SVD has a good safety margin for integrated radiation effects: expected to operate well at nominal luminosity for many years
 Mondal (University and INFN of Pisa)

Radiation effects on SVD : strip noise and leakage current

- As expected, noise increases with increased radiation dose
 - ${\scriptstyle \bullet}$ increase ${<}20\%$ (30%) for N (P) side
 - dominated by the inter-strip capacitance
 - non-linear due to fixed oxide charges, expected to be saturated
- Linear increases of leakage current with radiation dose as expected
 - proportional to the equivalent neutron fluence (expected from NIEL model)
 - Contribution to noise negligible now due to short APV25 shaping time
 - $\,$ $\,$ After 6 Mrad dose strip noise contribution from leakage current would reduce the Layer3 SNR ${<}10$

Radiation effects: full depletion voltage

- Bulk damage changes the effective doping and the full depletion voltage, *V*_{FD}.
- □ For operated SVD sensors, the V_{FD} is measured with N-side noise vs bias voltage.

 \Rightarrow No change in V_{FD} observed so far (<70 krad)

- □ In the irradiation campaign, the clear change in V_{FD} is confirmed with large radiation damage.
 - Type inversion: 2 Mrad, $6 \times 10^{12} n_{eq}/cm^2$
 - Based on experience on BaBar SVT sensor, SVD sensor will work well above type inversion
 ⇒ CCE measurement to confirm it.

* EPS Slide of Sato-san

Mondal (University and INFN of Pisa)

IPRD23 - Siena

SVD cluster grouping

- We start with an empty histogram of 0.5ns binwidth. •
- The for each cluster in a event
 - We **add** a Normalized Gaussian to the histogram.
 - mean is the cluster time.
 - width is the cluster time resolution
- Resolutions are already calculated and stored in the payloads along other parameters.
 - Resolutions are calculated for 3 types of sensors. 2 sides and for upto clusters size of 6.
 - Sensor types are
 - 0:L3
 - 1: L456. Sensor 1
 - 2 : L456, Others

Then we find all the peaks by fitting and removing Gaussian from the histogram.

IPRD23 - Siena

September 25, 2023 7/7

QA