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Abstract. We report the status of a neural network regression model trained7

to extract new physics (NP) parameters in Monte Carlo (MC) simulation data.8

We utilize a new EvtGen NP MC generator to generate B → K∗0µ+µ− events9

according to the deviation of the Wilson Coefficient C9 from its SM value, δC9.10

We train a three-dimensional ResNet regression model, using images built from11

the angular observables and the invariant mass of the di-muon system, to extract12

values of δC9 directly from the MC data samples. This work is intended for13

future analyses at the Belle II experiment but may also find applicability at14

other experiments.15

1 Introduction16

The process B → K∗ℓ+ℓ− with ℓ = e, µ proceeds via a beauty-to-strange quark (b → s)17

flavor-changing neutral current, which is forbidden at tree-level in the Standard Model (SM)18

of particle physics but allowed at second order [1], and is therefore sensitive to beyond the19

Standard Model (BSM) physics.20

There are hints of new physics beyond the SM in the observed angular distributions of21

B → K∗ℓ+ℓ−. These can be more clearly identified in angular asymmetries, such as the22

forward-backward asymmetry (AFB), S 5, and others, described in Ref. [2]. It is possible that23

these angular asymmetries are lepton-flavor violating (LFV), with this possibility first directly24

explored in a 2021 Belle analysis [3]. It is also possible that BSM physics is lepton-flavor25

universal (LFU). In the future, determining the scenario from which these apparent anomalies26

originate — via SM interactions with unaccounted-for hadronic effects, or BSM physics —27

is a key experimental problem.28

We develop a new Monte Carlo (MC) model [4] for the EvtGen package and use that to29

produce “images" that are employed to train our neural network model. Our model is a three-30

dimensional, 34-layer, Residual Neural Network (ResNet) [5, 6] model trained to perform31

regression to extract Wilson Coefficient (Ci) [4, 7] information, δCi ≡ CBSM
i − CSM

i , directly32

from data. Hence, we recast the C9 fitting problem as a computer vision problem. To this end,33

we employ an MC simulation model to generate B0 → K∗0µ+µ− events, according to various34

BSM scenarios parameterized by Wilson Coefficients. From the resulting distributions we35

create “quasi-images" , which are then used to train a ResNet to perform a regression task.36

∗e-mail: sdubey@hawaii.edu



Our approach differs from the usual application of artificial intelligence methods in HEP,37

which involves classification to distinguish various categories of events such as signal versus38

background; jet classification; or particle identification (determining particle species) etc [8].39

In contrast, we will perform regression and extract a continuous parameter from data. This40

is similar to “fitting", a different but essential part of HEP analysis. Our neural network41

model learns the correlation between these images and their δC9 labels, which is equivalent42

to learning the mapping between the distributions and the δC9 labels. We apply regression and43

extract the parameter δCi, where δCi = 0.0 is the SM case. Our MC result is an example of44

extracting physics parameters directly from detector data. We note that the method presented45

here may be find broad applicability, even in the absence of LFV BSM physics.46

2 Monte Carlo Simulation Model47

Recently, we have implemented effective field theory couplings in a new MC generator [4]48

in the EvtGen framework [9]. The new MC generator uses the operator product expansion49

formalism in terms of Wilson Coefficients (WCs, which encode high energy/short distance50

physics information) C7, C9, C10, C′7, C′9, and C′10, where the latter three primed WCs corre-51

spond to right-handed couplings (the weak couplings in the SM are usually left-handed).52

Our EvtGen model is parameterizable in terms of the WCs’ deviation from their SM53

values, i.e. δCi. Each of the δCi can be chosen by the user [4]. Choosing a non-zero δCi54

has the effect of altering the correlations between four variables: q2 ≡ M(ℓ+ℓ−), the cosine of55

the lepton helicity angle cos(θℓ), the cosine of the helicity of the K∗ cos(θK∗ ), and the angle56

χ between the decay planes of the di-lepton and K∗ decay planes. Figure 1 shows the decay57

topology and the full set of angular observables.58

Figure 1: The B → K∗ℓ+ℓ− decay topology showing the observables [4]. For this study we
only consider the di-muon channel where ℓ = µ.

3 Creating the Images59

Samples of MC events are generated with δC9 ∈ [−2.0, 0.0], as global theory fits for the60

dimuon-specific δC9 appear to favor a negative value near -0.9 [10]. Twenty-two values61

are chosen in the above range and 1 × 106 events are generated for each of the δC9 values.62

Approximately 2.4×104 B0 → K∗0µ+µ− generator-level-only events populate a single image.63



This corresponds to approximately 250 ab−1-equivalent integrated luminosity at a Belle II64

upgrade (assuming the Belle signal reconstruction efficiency, five times the Belle II target65

integrated luminosity.66

Images are produced by binning the q2 value of each event in bins of cos(θµ), cos(θK∗ ),67

and χ. There are 100 bins in each angular variable. Therefore, the shape of the input image68

is (height, width, depth) = (100, 100, 100). In effect, we have created a grid of voxels (3D69

pixels). We treat the q2 values as grayscale values, so that the images are input as tensors to70

the neural network and each have shape (100, 100, 100, 1), where the value 1 denotes the71

number of color channels. Figure 2 shows two examples of these images for different values72

of δC9.73

(a) Voxel grid image for δC9 = 0.0 (SM) (b) Voxel grid image for δC9 = −0.8

Figure 2: Voxel grid images used for training and evaluation of the ResNet. Each angular
bin is a range of angular values. The angular range is divided into 100 equal-width bins.
Examples for the cases of δC9 = 0.0 (SM) and δC9 = 0.8 are shown. The color of the voxels
does not indicate that the image has multiple color channels and is only used for visualization.

4 The Neural Network74

As discussed above, a ResNet variation of the CNN is employed. Specifically, a three-75

dimensional variation of the ResNet studied in Ref. [5] is used and is built using Tensor-76

Flow [11] and Keras [12]. There are 34 convolutional layers in the main neural network path,77

utilizing the ReLU activation function [6]. Stochastic gradient descent is used for optimiza-78

tion. The loss function is the mean absolute error (MAE) [6]. At the end of network there is79

one fully-connected layer employing 5000 neurons, followed by a drop-out layer with a 50%80

drop-out probability. The final layer is a dense layer with one neuron and a linear activation81

function that performs the regression task to extract δC9 values directly from the images 1.82

No hyperparameter optimization was done as the initial model appeared to performed well.83

1The linear activation function is used as its range is a continuum of values in (−∞,∞).



4.1 Training the Neural Network84

Approximately 12000 voxel grid images are used for training, corresponding to about 54085

images for each δC9 value. This training set is split with approximately 20% reserved for86

validation. To facilitate learning, the learning rate is reduced every five epochs by a factor of87

1/5, if no improvement in the validation loss is seen. Early stopping is implemented if there88

is no improvement in the validation loss (MAE) after 50 epochs. Training is performed using89

the GPU nodes of the University of Hawai‘i’s MANA HPC cluster.90

5 Results91

As this is a AI/ML model for regression and not classification, standard tools to assess the92

trained model used in classification, e.g. the receiver operating characteristic (ROC) curve,93

are not applicable here. Instead to test the model, we examine ensembles of MC simulation94

experiments. For each of the 22 WCs that were used to generate training images, statistically95

independent samples of 1600 images are generated for testing. Each of the ensembles of 160096

images are passed through the trained network and a distribution of predicted δC9 values are97

obtained. These distributions are fitted with a Gaussian function and the mean and width98

from these fits are used to assess performance. We also perform this test using δC9 values99

that are between the ones used to generate the training images. This provides a further test of100

model robustness.101

These ensembles tests are performed for all δC9 values used to generate images for train-102

ing and for δC9 values between the ones used to generate images that were not used in train-103

ing. The fit results are plotted against their generated values to obtain a linearity plot, shown104

in Fig. 3.105

Figure 3: From ensemble experiments, it is seen that the trained ResNet is able to correctly
extract the different δC9 values from independent and unlabeled images. The black points are
from experiments where the images are generated according to δC9 values the ResNet has
been trained with, and the red points are from experiments where the images are generated
according to δC9 values with which the ResNet has not been trained.



6 Discussion106

As seen in the linearity plot in Fig. 3, the ResNet appears to be able to obtain a mapping107

between δC9 values and MC signal events when those events are recast into images. However,108

as one approaches the SM δC9 = 0.0 value, performance degrades since the images closer to109

the SM are harder to distinguish. Further, when compared to the results of the 4D unbinned110

maximum likelihood fit to generator-level signal MC samples in Ref. [4], the error bars from111

the ensemble test for δC9 = 0.0 can be 60% larger, at 250 ab−1-equivalent signal events.112

Nevertheless, we do not interpret this as a major defect for the method presented here. These113

issues are likely to be ameliorated with more training data and an extension of the training114

data to the positive δC9 range, so that the model can better learn the mapping. We expect115

further improvements by separating B and B̄ events into separtate images, and removing116

multiple entries in bins, which constitute approximately 3% of all bins.117

Further, using a 4D unbinned maximum likelihood fit has a number of problems in a118

real high-energy physics experiment. In the presence of backgrounds and resolutions, it is119

difficult to parameterize the backgrounds, efficiency, and resolution in multiple dimensions.120

These associated issues can be greatly mitigated if the task is recast as a computer vision121

problem.122

The main issue with the method described here is one of computational power and stor-123

age. We used δC9 and high-statistics generator-level MC samples for the demonstration. In124

reality, a fully trained and useful model would have to be trained using images according to125

all the WCs mentioned above, as well as different integrated luminosities (assuming applica-126

bility at Belle II).127

7 Conclusion128

We have trained a three-dimensional ResNet to learn a mapping between different δC9 val-129

ues and images created using MC simulations of B → K∗µ+µ− decays. We have recast the130

problem of fitting complicated multi-dimensional distributions using maximum likelihood131

techniques as a standard computer vision problem. This should make it easier to take into132

account experimental complexities such as backgrounds and experimental resolutions, and133

does not require projecting down to a lower dimension (e.g. in this case to angular asymme-134

tries such as AFB and S 5), losing potentially valuable information. Our approach may also135

find application to studies of B̄0 → D∗+ℓ−ν̄, where a new BSM physics generator has also136

recently been developed [13].137

It has been shown that a ResNet is indeed able to learn this correlation and successfully138

extract information about the relevant physics parameters. Difficulties with this method will139

likely be mitigated with increased training sample sizes and additional computational re-140

sources. We will improve and publish results after the generation of an enhanced training141

set.142

8 Acknowledgements143

We thank our colleagues on Belle II as well as the KEK computing group for their excellent144

operation of the KEK computing center. We have used the University of Hawai‘i MANA HPC145

cluster. The technical support and advanced computing resources from University of Hawai‘i146

Information Technology Services – Cyberinfrastructure, funded in part by the National Sci-147

ence Foundation CC* awards # 2201428 and # 2232862 are gratefully acknowledged. We148

also thank Hongyang Gao (ISU) for his seminal suggestion to use computer vision techniques149

to search for new physics couplings, and Chunhui Chen (ISU) for facilitating the meeting, as150



well as Peter Sadowski (UHM) and Jeffrey Schueler (UNM) for their helpful discussions on151

machine learning and technical advice.152

References153

[1] S.L. Glashow, J. Iliopoulos, L. Maiani, Phys. Rev. D 2 (1970)154

[2] R. Aaij et al., Journal of High Energy Physics 2017, 55 (2017)155

[3] S. Wehle et al. (Belle Collaboration), Phys. Rev. Lett. 126, 161801 (2021)156

[4] A. Sibidanov et al., Detecting lepton universality violation in angular distributions of157

B→ K∗ℓ+ℓ− decays (2022), 2203.06827158

[5] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition (2015),159

1512.03385160

[6] A. Geron, Hands-on machine learning with scikit-learn, keras, and TensorFlow,161

2nd edn. (O’Reilly Media, Sebastopol, CA, 2019)162

[7] M.D. Schwartz, Quantum Field Theory and the standard model (Cambridge University163

Press, 2013)164

[8] HEP ML Community, A Living Review of Machine Learning for Particle Physics, and165

references therein, https://iml-wg.github.io/HEPML-LivingReview/166

[9] D.J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001)167

[10] W. Altmannshofer, P. Stangl, The European Physical Journal C 81, 952 (2021)168

[11] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems169

(2015), software available from tensorflow.org, https://www.tensorflow.org/170

[12] F. Chollet et al., Keras, https://keras.io (2015)171

[13] B. Bhattacharya et al., Phys. Rev. D 107, 015011 (2023)172


