Hadronic Vacuum Polarization measurement at Belle II

Yuki Sue

Nagoya University On behalf of the Belle II collaboration

The Muon g-2 Theory Initiative Workshop, September 4th-8th, 2023

Muon g-2 and Hadronic Vacuum Polarization (HVP)

- HVP contributes to the largest uncertainty in the prediction of muon g-2.
- Two approaches for estimating the HVP contribution of SM predictions.
 - Dispersion relations (w/ inputs from $e^+e^- \rightarrow$ hadrons data)
 - Lattice QCD

Muon g-2 and Hadronic Vacuum Polarization (HVP)

- HVP contributes to the largest uncertainty in the prediction of muon g-2.
- Two approaches for estimating the HVP contribution of SM predictions
 - Dispersion relations (w/ inputs from ee \rightarrow hadrons data)
 - Lattice QCD
- Belle II can provide the cross section for $e^+e^- \rightarrow hadrons$ to improve the theoretical prediction.
- Follow-up verification by ongoing experiments would be very useful.

SuperKEKB collider

- Asymmetric e⁺e⁻ collider
 - $-\sqrt{s} = M(Y(4S)) = 10.58 \text{ GeV}$
 - Design luminosity : 6×10^{35} cm⁻²s⁻¹
- Improvements from KEKB \bullet
 - Nano beam scheme

e

KEKB

– Higher design beam currents

Belle II detector

Particle Identification

- Aerogel RICH in the forward endcap
- Time-of-Propagation counter in the barrel
- K/ π ID : K efficiency 90% at 1.8% π fake •

Electromagnetic Calorimeter (ECL)

- CsI(TI) crystals + Waveform sampling
- Electron ID eff. 90% at <0.1% fake
 - Energy resolution 1.6-4%
- 94% of solid angle coverage

K-long and Muon Detector (KLM)

- Alternating iron and detector plates
- Scintillator / Resistive Plate Chamber
- Muon ID efficiency 90% at 2% fake

Vertex Detector (VXD)

- Inner 2 layers : Pixel
- Outer 4 layers : Double side strip
- σ(Track impact parameter) ~ 15 μm

Central Drift Chamber (CDC)

- 91% of solid angle coverage
- p_T resolution ~ 0.4%/p_T
- dE/dx resolution 5% (low-p PID)

Trigger and DAQ

- L1 Trigger rate 30 kHz (design)
- New trigger line for low-multiplicity events
- Constant improvements of trigger algorithm

Operation status

- World record instantaneous luminosity : 4.7×10^{34} /cm²/s
 - ~90% data taking efficiency : 1-2 fb⁻¹/day
- Recorded data : 424 fb⁻¹
 - 363 fb⁻¹ at √s = 10.58 GeV
- Long Shutdown 1 is finishing and new run will start at the end of 2023.
 - SuperKEKB upgrade for higher luminosity etc.
 - Full coverage of pixel detector
 - PMT replacement of the barrel PID detector for lifetime and robustness
 - Data-acquisition system upgrade

Radiative return method for HVP measurements

- Radiative return is also used in BaBar, KLOE, BESIII.
 - Other method is direct scan, e.g., Novosibirsk experiments.
- The energy of hadronic system can be scanned at fixed energy using ISR.
- The entire hadronic mass range can be accessed with a single dataset.
- About 7% of the ISR photons are produced within the detector acceptance.

Energetic ISR photon

HVP measurements at Belle II

- New low-multiplicity trigger lines enable this physics at Belle II.
 - Two independent triggers : Tracker and Calorimeter
 - Efforts to separate ISR processes from other QED reactions.
 - Almost 100% efficiency for energetic ISR
- Two channels are mainly under study.
 - 1. $e^+e^- \rightarrow \pi^+\pi^-$
 - The largest contribution to $a_{\mu}^{HVP} \sim 73 \%$
 - Target 0.5% precision using 363 fb⁻¹ data
 - Try to following BaBar methods as a base line
 - 2. $e^+e^- \rightarrow \pi^+\pi^-\pi^0$
 - The 2nd largest contribution to $a_{\mu}^{HVP} \sim 7 \%$
- Today we report the status of e⁺e⁻→π⁺π⁻π⁰ analysis to demonstrate the capability of Belle II for the ISR processes.

Recent measurements:

- Preliminary result from BES III [arXiv:1912.11208]
- BABAR has updated its results with full data [Phys. Rev. D 104, 112003 (2021)]

As for the $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ contribution $a_\mu(3\pi)$,

the uncertainty of $a_{\mu}(3\pi)$ is 2-3% for combination and 1.3% for BABAR alone.

• The difference in the cross section between the experiments below 1.1 GeV produces the error.

Eur. Phys. J. C 80, 241 (2020) Phys. Rev. D 101, 014029 (2020) J. High Energy Phys. 08 137 (2019)

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ Analysis overview

- Target precision : $\delta a_{\mu}(3\pi) \sim 2\%$
- $\pi^+\pi^-\pi^0$ Mass range : 0.6-3.5 GeV
- Dataset : 2019-2021 Summer 190 fb⁻¹
- Key items
 - Trigger
 - Background reduction and estimation
 - Efficiency corrections
 - Unfolding
- Blind analysis
 - Study of analytical methods using MC and validation using 10% data.
 - Final confirmation under way using full data set.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$: Event selection

- Two tracks + three photons : $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma_{ISR} \rightarrow \pi^+\pi^-\gamma\gamma\gamma_{ISR}$
 - Tracks : dr < 0.5 cm and |dz| < 2cm and p_T > 0.2 GeV/c
 - Photons : E > 100 MeV + at least one photon must be energetic ISR (E^{CMS}> 2 GeV in barrel ECL)
- π^0 reconstruction
 - $-\,$ Invariant mass of two photons within 0.123-0.147 GeV/c^2
- Select events using four-momentum kinematic fit (4C-Kfit) χ^2
 - $-\chi^2_{4C}(3\pi\gamma)$ < 50 is used for the cross section measurement
- Cuts to reduce remaining backgrounds
 - A) Background not containing real π^0 : $e^+e^- \rightarrow e^+e^-\gamma$, $\pi^+\pi^-\gamma$, $\mu^+\mu^-\gamma$
 - B) Charged kaon : $e^+e^- \rightarrow K^+K^-\pi^0\gamma$
 - C) $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$
 - D) Background not containing real ISR : Non-ISR qqbar and $\tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$

Background reduction cuts (1)

- A) Background not containing real π^0 : e⁺e⁻ \rightarrow e⁺e⁻ γ , $\pi^+\pi^-\gamma$, $\mu^+\mu^-\gamma$
 - Pion/Electron ID : $L(\pi/e) > 0.1$
 - $M^{2}_{recoil}(\pi^{+}\pi^{-}) > 4 \text{ GeV}^{2}/c^{4}$
- B) Charged kaon : $e^+e^- \rightarrow K^+K^-\pi^0\gamma$
 - Pion/Kaon ID : $L(\pi/K) > 0.1$
- $C) \quad e^+e^- {\longrightarrow} \pi^+\pi^-\pi^0\pi^0\gamma$
 - Reconstruct $\pi^+\pi^-\pi^0\pi^0\gamma$ (with additional π^0)
 - 4C kinematic fit under $\pi^+\pi^-\pi^0\pi^0\gamma$ hypothesis, and $\chi^2_{4C}(4\pi\gamma) > 30$

Background reduction cuts (2)

- D) Background not containing real ISR : Non-ISR qqbar (dominated by $\pi^+\pi^-\pi^0\pi^0$) and $\tau^+\tau^$
 - i. $M(\pi^{\pm}\gamma_{ISR}) > 2 \text{ GeV/c}^2$ to reduce high momentum $\rho^{\pm} \rightarrow \pi^{+}\pi^{0}$
 - ii. $M(\gamma_{ISR}\gamma)$ cut to reduce ISR candidate from π^0 -decay photon
 - iii. Cluster shape cut to reduce ISR-like photon in which two photon from of π^0 are merged

In total,

 $M(3\pi) < 1.05 \text{ GeV/c}^2$: the background fraction is reduced from 8.9% to 2.2% with 9% signal loss. $M(3\pi) > 1.05 \text{ GeV/c}^2$: the background events are reduced by 78% with 11% signal loss.

Background estimation

Estimate by determining a mass-dependent data-MC scale factor using a control sample.

$$N_{\text{Signal}}^{\text{data}} = N_{\text{Signal}}^{\text{MC}} \cdot \frac{N_{\text{Control}}^{\text{data}}}{N_{\text{Control}}^{\text{MC}}}$$

- $e^+e^- \rightarrow K^+K^-\pi^0\gamma$: Invert π/K ID : $L(\pi/K) > 0.1 \Rightarrow L(\pi/K) < 0.1$
- $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$: Reconstruct $\pi^+\pi^-\pi^0\pi^0\gamma$ and select $\chi^2(4\pi\gamma) < 30$
- Non-ISR qqbar : $0.10 < M(\gamma_{ISR}\gamma) < 0.17 \text{ GeV} / \text{large cluster second moment} \chi^2_{4c}(3\pi\gamma) \text{ versus } \chi^2_{4c}(4\pi\gamma)$

Signal extraction after event selection

- The signal is estimated by fitting $M(\gamma\gamma)$ in each $M(3\pi)$ bin, to remove ulletthe combinatorial background in yy
 - Fit and integral over 0.123-0.147 GeV/c²

15

Estimated background is subtracted from the spectrum. ullet

Extracted spectrum and background

Detection efficiency and Data-MC correction

- 1st order Detection efficiency is estimated using MC of the x20 larger statistics.
- Possible differences between data and MC are checked by data.
- Main items important in this analysis:
 - Trigger efficiency
 - High energy photon detection efficiency
 - Tracking efficiency
 - $-\pi^0$ efficiency
 - $-\chi^2$ selection
 - Background reduction cut efficiency

Trigger efficiency

- ISR events are triggered by the energy trigger (E_{total} > 1 GeV) in the calorimeter.
- The efficiency can be measured by using the events triggered independently by the track trigger.
 - Efficiency for energetic ISR > 99%
- The systematic uncertainty related to trigger is well suppressed, 0.2%.
- The high trigger efficiency for energetic ISR is also beneficial for other ISR processes.

Belle II trigger efficiency measured by $\mu\mu\gamma$ (data)

Tracking efficiency

- Tracking efficiency is confirmed by tag-and-probe method using τ pairs.
- Track loss due to shared hits on the drift chamber is confirmed.
 - Evaluate using the $e^+e^-\!\!\!\!\rightarrow\!\pi^+\pi^-\!\pi^0\gamma$ process at the ω resonance.
- Define $\Delta \varphi \coloneqq \varphi(\pi^+) \varphi(\pi^-)$
- The Inefficiency due to track loss is given by $f = \frac{N(\Delta \varphi < 0) N(\Delta \varphi > 0)}{2N(\Delta \varphi < 0)}$
 - The track loss in MC is 4%.
- In total, the systematic uncertainty of tracking is 0.8%.

 π^0 detection efficiency is 50-60%.

Evaluate efficiency using the e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$ events around ω resonance. $\pi^{0} \text{efficiency} = \frac{N(\text{Full reconstruction} : \gamma_{\text{ISR}}\pi^{+}\pi^{-}\pi^{0})}{N(\text{Partial reconstruction} : \gamma_{\text{ISR}}\pi^{+}\pi^{-})}$

Partial reconstruction $\pi^+\pi^-\gamma$: ISR + Two tracks

• The squared 3π mass $M(\pi^+\pi^-\pi^0_{recoil})$ is defined as

$$M^{2}(\pi^{+}\pi^{-}\pi^{0}_{\text{recoil}}) = (p_{\pi^{+}} + p_{\pi^{-}} + p_{\text{recoil}})^{2}$$

- Recoil momentum p_{recoil} is determined by kinematic fit to π⁺π⁻γ with hypothesis that recoil mass equals π⁰ mass. (1-constraint)
- Fit on $M(\pi^+\pi^-\pi^0_{recoil})$ distribution around ω resonance to estimate the number of $3\pi\gamma$.
 - Count the number of events in $\boldsymbol{\omega}$ region.

 π^0 detection efficiency is 50-60%.

Evaluate efficiency using the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$ events of ω resonance.

 $\pi^{0} \text{efficiency} = \frac{N(\text{Full reconstruction} : \gamma_{\text{ISR}} \pi^{+} \pi^{-} \pi^{0})}{N(\text{Partial reconstruction} : \gamma_{\text{ISR}} \pi^{+} \pi^{-})}$

Full reconstruction : Partial reconstruction + π^0 selection + $\chi^2_{4C,3\pi\gamma} < 50$

- Fit M($\gamma\gamma$) with signal extraction parameters at ω region events
 - Signal: Novosibirsk function + Gaussian (Fixed parameters)
 - Background : Quadratic function (Floated parameters)

The π⁰ efficiencies independently evaluated by the data and MC are in good agreement.

The systematic uncertainty related to π^0 is 1.0%.

 The uncertainty is evaluated by variations of the M(γγ) signal pdf, background pdfs, and selections.

Unfolding

- The background-subtracted spectrum is unfolded to mitigate the effect of detector response and final-state radiation.
- The data-MC resolution difference is determined by a Gaussian convolution fit to the $\omega, \Phi,$ and J/ ψ resonances.
 - The agreement is good typically with a mass resolution around 7-10 MeV.

Systematic uncertainty and prospects

- Major systematic uncertainty comes from π^0 and tracking efficiencies.
 - In M(3π) > 1.05 GeV, the uncertainty of selection efficiency is dominant.
- For $a_{\mu}(3\pi)$, the total uncertainty is expected to be 2% including stat. uncertainty of 0.5%.
- The results will be released within a few months.

Sourco	Systematic uncertainty (%)				
Source	M < 1.05 GeV/c ²	$M > 1.05 \text{ GeV/c}^2$			
Trigger	0.2	0.2			
ISR photon detection	0.7	0.7			
Tracking	0.8	0.8			
π^0 reconstruction	1.0	1.0			
χ^2 distribution	0.3	0.3			
Selection	0.2	1.9*			
Integrated luminosity	0.7	0.7			
Radiative correction	0.5	0.5			
Total systematics	1.8	2.6			

Systematic uncertainties for $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section (Preliminary)

* Statistical error dominant

Conclusion

- Belle II has collected 424 fb⁻¹ data, and further data taking will be going on for over 10 years.
 Long shutdown 1 is finishing and new run will start from the end of 2023.
- Measurements related to muon g-2 are active and in progress at Belle II.
- The analysis of $e^+e^- \rightarrow \pi^+\pi^-$ targets 0.5% precision.
- The analysis of $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ is at the final stage.
 - We aim at ~2% precision using 190 fb⁻¹ data.
 - Blind analysis is introduced.
 - Major systematic uncertainty comes from π^0 and tracking.
 - The results will be released within a few months.

24

e⁺e⁻→π⁺π⁻ : Status at Belle II

- Target precision : 0.5% of $a_{\mu}(2\pi)$
- Trying to follow BaBar methods as a base line.
- Systematics uncertainty dominant analysis
 - BaBar: 232 /fb [Phys. Rev. D 86 (2012), 032013]
 - We can use large statistics to control systematic uncertainties.
- Implementation of kinematic fitting tools
 - Useful for reducing background and correction for tracking efficiency.
 - Implementation of basic fitter has been completed.
- Sanity check on signal generator and background MC using < 2 fb⁻¹ data.
- Design of data-driven efficiency corrections $\frac{\text{Track}}{\pi-\text{III}}$ for tracking, trigger and $\pi/\mu/K$ ID is ongoing. Back

	Sources	0.3–0.4	0.4–0.5	0.5-0.6	0.6–0.9	0.9–1.2
S	Trigger/filter	5.3	2.7	1.9	1.0	0.7
	Tracking	3.8	2.1	2.1	1.1	1.7
	π -ID	10.1	2.5	6.2	2.4	4.2
J.	Background	3.5	4.3	5.2	1.0	3.0
	Acceptance	1.6	1.6	1.0	1.0	1.6
	Kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9
	Correl. $\mu \mu$ ID loss	3.0	2.0	3.0	1.3	2.0
	$\pi\pi/\mu\mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3
	Unfolding	1.0	2.7	2.7	1.0	1.3
	ISR luminosity	3.4	3.4	3.4	3.4	3.4
	Sum (cross section)	13.8	8.1	10.2	5.0	6.5

 $ee \rightarrow \pi\pi$ uncertainty (10⁻³) at BaBar

Trigger challenge at Belle II

26

- Light hadron cross section measurement at BELLE was suffered from the trigger efficiency.
 - The measurement for $\sigma(e^+e^- \rightarrow \pi^+\pi^-\pi^0)$ was attempted, but could not be published. [J. Crnkovic, PhD thesis, Illinois U. (2013)]
- Bhabha veto has been upgraded to avoid the inefficiency and uncertainty.
 - BELLE bhabha veto was based on only θ angle.
 - Belle II 3D bhabha veto uses θ and Φ angle.
- The trigger efficiency of EM Calorimeter triggers for energetic ISR can be measured by making the orthogonal tracking trigger a reference.

Performance : Tracking Efficiency

- Tracking efficiency is measured by tag-and-probe method on $ee \rightarrow \tau \tau \rightarrow 1 \times 3$ prong.
 - 3 good quality tracks for tag
 - Look for 4th track for probe
- Uncertainty for tracking efficiency is 0.30% per track.

Data/MC discrepancy of tracking efficiency

Performance : Photon Detection Efficiency

- Photon detection efficiency is measured using $ee \rightarrow \mu\mu\gamma$ events.
 - Detection efficiency is estimated by taking match between a ECL cluster and the missing momentum of dimuon system.
- Data/MC agreement is good. Uncertainty for photon detection efficiency is 0.30%.

