New results of the CKM angle γ/ϕ_3 at Belle/Belle II

K. Trabelsi (IJCLab) karim. trabelsi @ in2p3.fr

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- \circ Theoretically pristine B \rightarrow DK approach
- ∘ Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$

relative magnitude of suppressed amplitude is $r_{\scriptscriptstyle B}$

$$r_{B} = \frac{|A_{suppressed}|}{|A_{favoured}|} \sim \frac{|V_{ub}V_{cs}^{*}|}{|V_{cb}V_{us}^{*}|} \times [color \ supp] = 0.1 - 0.2$$

relative weak phase is $\gamma,$ relative strong phase is δ_{B}

⇒ for $D\pi$: same dependence to γ , but different $r_B \sim 0.01 (V_{us} \rightarrow V_{ud}, V_{cs} \rightarrow V_{cd})$ 2

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- Theoretically pristine $B \rightarrow DK$ approach
- Access γ via interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$

 $B^{\pm} \rightarrow D K^{\pm}$ $B^{\pm} \rightarrow D^{*} K^{\pm}, D^{*} \rightarrow D \pi^{0}$ $B^{\pm} \rightarrow D^{*} K^{\pm}, D^{*} \rightarrow D \gamma$ $B^{\pm} \rightarrow D K^{*\pm}$ $B^{0} \rightarrow D K^{*0}$ $B^{\pm} \rightarrow D K \pi \pi$ $B \rightarrow \dots$

 $D \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}...$ $D \rightarrow K_{S}\pi^{0}, K_{S}\eta...$ $D \rightarrow KK\pi^{0}, \pi\pi\pi^{0}...$ $D \rightarrow K_{S}\pi\pi, K_{S}KK$ $D \rightarrow K_{S}\pi\pi\pi^{0}$ $D \rightarrow ...$

<u> γ measurements from $B^{\pm} \rightarrow DK^{\pm}$ </u>

- Reconstruct D in final states accessible to both D^0 and \overline{D}^0 0
 - D = D_{CP}, CP eigenstates as K^+K^- , $\pi^+\pi^-$, $K_S\pi^0$ **GLW method** (Gronau - London - Wyler)
 - D = D_{sup}, Doubly-Cabbibo suppressed decays as K π **ADS method** (Atwood - Dunietz - Soni)
 - Three-body decays as $D \rightarrow K_S \pi^+ \pi^-$, $K_S K^+ K^-$ **BPGGSZ** (Dalitz) method (Bondar - Poluektov - Giri - Grossman - Soffer - Zupan)
 - Largest effects due to 0

- charm mixing
 - charm CP violation
 - charm CP violation
 - negligible
 Y.Grossman, A.Soffer, J.Zupan [PRD 72, 031501 (2005)]

- Different B decays (DK, D^*K, DK^*)
 - different hadronic factors (r_B, δ_B) for each

- We plan to ultimately collect many ab^{-1} of e^+e^- collisions at (or close to) the Y(4S) resonance, so that we have:
 - a (Super) B-factory (~ $1.1 \times 10^9 \text{ B}\overline{\text{B}}$ pairs per ab⁻¹)

For exclusive decays: high efficiency for K_s^0 , π^0 reconstruction

– a (Super) charm factory $({\sim}1.3\times10^9~c\,\overline{c}~pairs~per~ab^{-1})$

(but also charmonium, X, Y, Z, pentaquarks, tetraquarks, bottomonium...) (scan data are also crucial here)

- a (Super) τ factory (~0.9 × 10⁹ $\tau^+ \tau^-$ pairs per ab⁻¹)
- exploit the clean e⁺e⁻ environment to probe the existence of exotic hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

Belle II run I (2019-2022)

data taking from March 2019 to June 2022

→ despite difficult conditions since March 2020 (Covid, war in Ukraine, energy cost...)

luminosity: 4.7×10^{34} /cm²/s! > 2 fb⁻¹ per day!

Belle II run I (2019-2022)

- \Rightarrow 362 fb⁻¹ at the Y(4S) resonance (rest off resonance, and scan)
- ⇒ Belle II results presented here with 128 fb⁻¹, 189 fb⁻¹, 362 fb⁻¹, always adding Belle data sample
 (BPGGSZ)
 (GLW)
 (GLS)

BPGGSZ study $\mathbf{B} \rightarrow \mathbf{D}(\mathbf{K}_{\mathbf{S}}^{\mathbf{0}}\mathbf{h}^{+}\mathbf{h}^{-})\mathbf{h}^{-} \stackrel{h = \pi, K}{(\text{Belle/Belle II collaboration})}$

8

GLW study for $B \rightarrow D(KK)K$ and $D(K_S^0 \pi^0)K_{\text{submitted to JHEP}}^{arXiv:2308.05048}$

CP-even, $D \rightarrow K^+ K^-$, CP-odd, $D \rightarrow K_S^0 \pi^0$

Fitting simultaneously the $B \rightarrow D\pi$ and DK samples, where $D \rightarrow K\pi$, $D \rightarrow KK$ and $K_S^0 \pi^0$, Belle and Belle II samples

Observables (three branching -fraction ratios and six charge asymmetries):

$$R_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}\pi^-) + \mathcal{B}(B^+ \to D_{CP\pm}\pi^+)},$$

$$R_{\text{flav}} \equiv \frac{\mathcal{B}(B^- \to D_{\text{flav}}K^-) + \mathcal{B}(B^+ \to \overline{D}_{\text{flav}}K^+)}{\mathcal{B}(B^- \to D_{\text{flav}}\pi^-) + \mathcal{B}(B^+ \to \overline{D}_{\text{flav}}\pi^+)}.$$

$$\mathcal{A}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)},$$

Yields of B^{\pm} with the D decaying to X (CP+, CP-, flav) expressed as:

$$Y_{\pi}(B^{\pm} \to D_X K^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X K)] N(B \to D_X \pi) R_X \delta (1 - \varepsilon_{\pm}),$$

$$Y_K(B^{\pm} \to D_X K^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X K)] N(B \to D_X \pi) R_X \delta \varepsilon_{\pm},$$

$$Y_{\pi}(B^{\pm} \to D_X \pi^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X \pi)] N(B \to D_X \pi) (1 - \kappa_{\pm}),$$

$$Y_K(B^{\pm} \to D_X \pi^{\pm}) = \frac{1}{2} [1 \mp \mathcal{A}(B \to D_X \pi)] N(B \to D_X \pi) \kappa_{\pm},$$

 ϵ is efficiency to identify a kaon (~ 80-85%), κ rate for misidentifying a pion (~ 7-8%)

$$\mathcal{R}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{(\mathcal{B}(B^- \to D_{\text{flav}}K^-) + \mathcal{B}(B^+ \to \overline{D}_{\text{flav}}K^+))/2} \approx \frac{R_{CP\pm}}{R_{\text{flav}}}, \qquad \qquad \mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3, \qquad \qquad \mathcal{R}_{CP\pm} = \pm 2r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP\pm}.$$

GLW study for B \rightarrow **D**(**KK**)**K and D**(**K**⁰_S π ⁰)**K** arXiv:2308.05048 submitted to JHEP

Using Belle (711 fb^{-1}) and Belle II (189 fb^{-1}) , (previous measurement with Belle only 250 fb⁻¹) Fitting simultaneously the $B \rightarrow D\pi$ and DK samples, $D \rightarrow K\pi$ and...

with asymmetry ~ 0 for $B \rightarrow D(K \pi)K$ modes

GLW study for B \rightarrow **D**(**KK**)**K and D**(**K**⁰_S π ⁰)**K** arXiv:2308.05048 submitted to JHEP

Fitting simultaneously the $B \rightarrow D\pi$ and DK samples, $D \rightarrow K\pi$ and ... $D \rightarrow KK$ and ...

GLW study for $B \rightarrow D(KK)K$ and $D(K_S^0 \pi^0)K_{\text{submitted to THEP}}^{arXiv:2308.05048}$

Fitting simultaneously the $B \rightarrow D\pi$ and DK samples, $D \rightarrow K\pi$ and ... $D \rightarrow KK$ and $K_s^0 \pi^0$

In GLW, CP-odd state accessible only to B-factories

 $\mathcal{R}_{CP+} = 1.164 \pm 0.081 \pm 0.036,$ $\mathcal{R}_{CP-} = 1.151 \pm 0.074 \pm 0.019,$ $\mathcal{A}_{CP+} = (+12.5 \pm 5.8 \pm 1.4)\%,$ $\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%.$

Direct evidence of opposite A_{CP} for even and odd states

arXiv:2306.02940, accepted by JHEP

<u>GLS</u> study for B^{\pm} \rightarrow D(K_S^0 K^{\pm} \pi^{\mp}) K^{\pm}

Using Belle (711 $\mbox{fb}^{-1})$ and Belle II (362 $\mbox{fb}^{-1})$

four asymmetries and three branching-fraction ratios

$$\mathcal{A}_{m}^{Dh} \equiv \frac{N_{m}^{Dh^{-}} - N_{m}^{Dh^{+}}}{N_{m}^{Dh^{-}} + N_{m}^{Dh^{+}}} \quad \text{with} \quad h = \pi, K,$$
$$\mathcal{R}_{m}^{DK/D\pi} \equiv \frac{N_{m}^{DK^{-}} + N_{m}^{DK^{+}}}{N_{m}^{D\pi^{-}} + N_{m}^{D\pi^{+}}}$$

$$\mathcal{R}_{\rm SS/OS}^{D\pi} \equiv \frac{N_{\rm SS}^{D\pi^-} + N_{\rm SS}^{D\pi^+}}{N_{\rm OS}^{D\pi^-} + N_{\rm OS}^{D\pi^+}}.$$

$$\begin{split} A^{DK}_{\rm SS} &= -0.089 \pm 0.091 \pm 0.011, \\ A^{DK}_{\rm OS} &= 0.109 \pm 0.133 \pm 0.013, \\ A^{D\pi}_{\rm SS} &= 0.018 \pm 0.026 \pm 0.009, \\ A^{D\pi}_{\rm OS} &= -0.028 \pm 0.031 \pm 0.009, \\ R^{DK/D\pi}_{\rm SS} &= 0.122 \pm 0.012 \pm 0.004, \\ R^{DK/D\pi}_{\rm OS} &= 0.093 \pm 0.013 \pm 0.003, \\ R^{D\pi}_{\rm SS/OS} &= 1.428 \pm 0.057 \pm 0.002, \end{split}$$

those results alone do not allow for an unambigious determination of ϕ_3 , will be combined with other results

14

ϕ_3/γ determination with Belle/Belle II (preliminary)

inputs: four different methods, 17 different final states

B decay	D decay	Method	Data set
			$(Belle + Belle II)[fb^{-1}]$
$B^+ \rightarrow Dh^+$	$D \rightarrow K_{ m s}^0 h^- h^+$	BPGGSZ	711 + 128 [JHEP 02 063 (2022)]
$B^+ \to D h^+$	$D ightarrow K_{ m s}^0 \pi^- \pi^+ \pi^0$	BPGGSZ	711 + 0 [JHEP 10 178 (2019)]
$B^+ \rightarrow Dh^+$	$D ightarrow K_{ m S}^0 \pi^0, K^- K^+$	GLW	711 + 189 [arxiv:2308.05048]
$B^+ \to D h^+$	$D \rightarrow K^+\pi^-, K^+\pi^-\pi^0$	ADS	711 + 0 [PRL 106 231803 (2011)]
$B^+ \to D h^+$	$D ightarrow K_{ m S}^0 K^- \pi^+$	GLS	711 + 362 [arxiv:2306.02940]
$B^+ \rightarrow D^* K^+$	$D ightarrow K_{ m S}^0 \pi^- \pi^+$	BPGGSZ	605 + 0 [PRD 81 112002 (2010)]
$B^+ \to D^*K^+$	$egin{aligned} D & ightarrow K^0_{ m s} \pi^0, K^0_{ m s} \phi, K^0_{ m s} \omega, \ K^- K^+, \pi^- \pi^+ \end{aligned}$	GLW	210+0 [PRD 73 051106 (2006)]

 $B^0 \! \! \rightarrow \! D^{(*)} h^{(*)}$ decays are not included : minimal impact and introduce additional external parameters

Inputs on D decays dynamics: other experiments

(preliminary)

 r_D : amplitude ratio

 $\delta_{\!D}\!\!:$ strong-phase difference

$$R_D = r_D^2$$

 κ_D : coherence factor

$$R_{GLS} = \frac{\mathscr{B}(D^0 K^-)}{\mathscr{B}(D^0 \pi^-)}$$

Decay	Observable	Value	Source	
$D \rightarrow K^{+}\pi^{-}$	$R_D^{K\pi}$	$(3.44 \pm 0.02) imes 10^{-3}$	HELAV	[hfley web cerp ch]
	$\delta_D^{K\pi}$	$(191.7\pm3.7)^\circ$	HF LAV	[may.web.cem.cn]
$D \rightarrow H^{-} h$	$r_D^{K\pi}\cos(\delta_D^{K\pi})$	-0.0562 ± 0.0081	BESIII	[EP IC 82 1000 (2022)]
	$r_D^{K\pi} \sin(\delta_D^{K\pi})$	-0.011 ± 0.012	DESIII	
	$r_D^{K\pi\pi^0}$	0.0447 ± 0.0012		
	$\kappa_D^{K\pi\pi^0}$	0.81 ± 0.06	CLEO + LHCb	[PLB 765 (2017)]
$D \rightarrow K^+ \pi^- \pi^0$	$\delta_D^{K\pi\pi^0}$	$(198 \pm 15)^{\circ}$		
$D \rightarrow K + \pi + \pi$	$r_D^{K\pi\pi^0}$	0.0440 ± 0.0011		
	$\kappa_D^{K\pi\pi^0}$	0.78 ± 0.04	BESIII	[JHEP 05, 164 (2021)]
	$\delta_D^{K\pi\pi^0}$	$(196 \pm 15)^{\circ}$		
$D o K_{ m S}^0 K^- \pi^+$	$(r_D^{K^0_{ m S}K\pi})^2$	0.356 ± 0.034		
	$\kappa_D^{K_{ m S}^0K\pi}$	0.94 ± 0.12	CLEO	[PRD 85, 092016 (2012)]
	$\delta_D^{K^0_{ m S}K\pi}$	$(-16.6 \pm 18.4)^{\circ}$		
	$(r_D^{\overline{K}^0_{ m S}K\pi})^2$	0.370 ± 0.003	LHCb	[PRD 93, 052018 (2012)]
$B^+ \rightarrow Dh^+$	R_{GLS}	$0.0789 {\pm} 0.0027$	PDG	

Results: 1D scans

(preliminary)

60 input observables and 16 auxiliary D-decay inputs

Summary

- Belle II has now on tape a sample equivalent to that of BaBar, half of Belle
- Allow to refine our tools, improve our analyses, understanding our detector
- BPGGSZ, GLW, GLS results with Belle + Belle II are recently obtained
- first Belle + Belle II combination: $\phi_3 = (78.6 \pm 7.3)^\circ$, consistent with WA within $2\sigma_{(\phi_3 = (66.2^{+3.2}_{-3.6})^\circ)}$
- Currently preparing the detector and the machine to ramp-up at full speed
- $\circ~$ Will resume data-taking next Winter, on our way to the $10^{35} cm^{-2} s^{-1}$ world

GLS relations

$$\begin{split} A_{SS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} - \delta_D)\sin\phi_3}{1 + (r_B^{DK})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}, \\ A_{OS}^{DK} &= \frac{2r_B^{DK}r_D\kappa_D\sin(\delta_B^{DK} + \delta_D)\sin\phi_3}{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ A_{SS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} - \delta_D)\sin\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ A_{OS}^{D\pi} &= \frac{2r_B^{D\pi}r_D\kappa_D\sin(\delta_B^{D\pi} + \delta_D)\sin\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}. \\ R_{SS}^{DK/D\pi} &= R\frac{1 + (r_B^{DK})^2r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{1 + (r_B^{D\pi})^2r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{DK} + \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{DK/D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{DK}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}, \\ R_{OS}^{D\pi} &= R\frac{(r_B^{DK})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}{(r_B^{D\pi})^2 + r_D^2 + 2r_B^{D\pi}r_D\kappa_D\cos(\delta_B^{D\pi} - \delta_D)\cos\phi_3}. \end{split}$$

few words on y determination

- Toy study with WA values of the hadronic parameters: uncertainty on ϕ_3 is 12°
- Repeat it and replace one parameter at a time with our fitted value:

Parameters	Precision on φ3 (º)	
WA values	12	Some contribution from r_p^{DK} as well :
+ our fitted r_B^{DK}	10.5	- Our r_B^{DK} is 1.5σ larger than WA
+ our fitted δ^{DK}_B	10.0	- Uncertainty on $\phi_3 \propto 1/r_B^{DK}$
+ our fitted $r_B^{D\pi}$	9.5	
+ our fitted $\delta^{D\pi}_B$	8.1	
+ our fitted ϕ_3	7.1	Consistent with our nominal results

Parameters	Our value	WA	Difference (ơ)
$\phi_3(°)$	$78.6^{+6.8}_{-7.0}$	$66.2^{+3.4}_{-3.6}$	1.6
$\delta^{DK}_B(°)$	$138.4_{-9.3}^{+8.1}$	$128.0^{+3.8}_{-4.0}$	1.1
r_B^{DK}	0.117 ± 0.012	0.0996 ± 0.0026	1.5
$\delta^{D\pi}_B(^\circ)$	$347.0^{+8.7}_{-9.6}$	$294.0^{+9.7}_{-11.0}$	3.8
$r_B^{D\pi}$	0.016 ± 0.005	0.0049 ± 0.0005	2.2

 $r_B^{D\pi}/r_B^{DK} \approx 1/20$

Our results: $\sim 1/7$

- p-value of the comparison: 0.07% (globally 4.25σ away)
- Results are 4σ away from WA

Impact from $D\pi$

- Start with the most sensitive channel: K⁰_Shh (BPGGSZ)
- Compare with LHCb values: 2σ away
- Perform a test: replace
 ξ-parameters with LHCb central values (not the uncertainties) and repeat the fit

Parameters	Belle(II) (10-2)	LHCb (10-2)	Difference (σ)
x_+^{DK}	-11.28 ± 3.15	-9.30 ± 0.98	0.60
y_+^{DK}	-4.55 ± 4.20	-1.25 ± 1.23	0.75
x_{-}^{DK}	9.24 ± 3.27	5.68 ± 0.96	1.05
y_{-}^{DK}	10.00 ± 4.20	6.55 ± 1.14	0.79
$x_{\xi}^{D\pi}$	-11.09 ± 4.75	-5.47 ± 1.99	1.10
$y_{\xi}^{D\pi}$	-7.90 ± 5.44	0.71 ± 2.33	1.46

Parameters	Our value	WA	Difference (σ)
$\phi_3(°)$	79.1 ± 8.11	$66.2^{+3.4}_{-3.6}$	1.46
$\delta^{DK}_B(`)$	136.4 ± 9.0	$128.0^{+3.8}_{-4.0}$	0.86
r_B^{DK}	0.116 ± 0.012	0.0996 ± 0.0026	1.34
$\delta^{D\pi}_B(\degree)$	334.8^{+21}_{-43}	$294.0^{+9.7}_{-11.0}$	1.68
$r_B^{D\pi}$	0.007 ± 0.005	0.0049 ± 0.0005	0.42

- p-value of the comparison: 31% (1.2σ)
- · Better agreement with WA

Impact from D\pi

- Expected value of $r_B^{D\pi} = 0.0053 \pm 0.0007$ [Phys. Rev. D 94, 054021 (2016)]
- Extra Gaussian constraint on $r_B^{D\pi}$ to its expected value \rightarrow p-value for this fit is 63.4%

Parameters	Our value	WA	Difference (σ)
$\phi_3(\degree)$	80.4 ± 7.8	$66.2^{+3.4}_{-3.6}$	1.66
$\delta^{DK}_B(°)$	136.0 ± 7.9	$128.0^{+3.8}_{-4.0}$	0.91
r_B^{DK}	0.120 ± 0.012	0.0996 ± 0.0026	1.66
$\delta^{D\pi}_B(^{\circ})$	342.6 ± 21	$294.0^{+9.7}_{-11.0}$	2.07
$r_B^{D\pi}$	0.0055 ± 0.0007	0.0049 ± 0.0005	0.70

Better agreement with WA

Long-shutdown (LS1) activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- accelerator improvements: injection, non-linear collimators, monitoring...
- additional shielding and increased resilience against beam bckg
- replacement of beam-pipe
- installation of 2-layered pixel vertex detector
- replacement of photomultipliers of the central PID detector (TOP)
- completed transition to new DAQ boards (PCIe40)
- work on other detectors as CDC, KLM...
- improved data-quality monitoring and alarm system

VXD extraction in May

TOP MCP-PMT replacement work

PXD2 at KEK since March

CDC FE reinstallation work

Belle II calendar

run 1 (→ June 2022): integrated luminosity ~0.43 ab⁻¹, 4-5×10³⁴/cm²/s PXD complete (2 layers) to be installed during **LS1** (2022-2023) (+beampipe + TOP PMTs) **run 2** (→ 2027): integrated luminosity 5-10 ab⁻¹, 2×10³⁵/cm²/s **2027: collider upgrade (QCS+RF)** → installation upgraded detector **run 3** (→ 2035): 50 ab⁻¹