LEPTON FLAVOR UNIVERSALITY STUDIES AT BELLE AND BELLE II

Bob Kowalewski

University of Victoria

representing the Belle II collaboration

Motivation for studying LFU in B decays

- Universality: W boson couples to weak isospin → isodoublets couple with equal strength
- Non-SM contributions (e.g. LQ, H^+ , SUSY) are not in general universal
- Semileptonic decays are \approx clean; FFs and experimental uncertainties partially cancel in ratios R of $b \rightarrow q\tau v/q\mu v/qev$ decay rates
- Differences in angular asymmetries for different lepton flavors are also sensitive to BSM physics and have small systematic uncertainties

Motivation for studying LFU in B decays

- Universality: W boson couples to weak isospin → isodoublets couple with equal strength
- Non-SM contributions (e.g. LQ, H^+ , SUSY) are not in general universal
- Semileptonic decays are \approx clean; FFs and experimental uncertainties partially cancel in ratios R of $b \rightarrow q\tau v/q\mu v/qev$ decay rates
- Differences in angular asymmetries for different lepton flavors are also sensitive to BSM physics and have small systematic uncertainties

And... there is a long-standing tension between the LFU-sensitive quantities R(D) and $R(D^*)$ and SM predictions:

3.3σ tension as of summer 2023

Analyses presented in this talk

Notation: $R_{\ell_2/\ell_1}(h) \equiv \frac{\mathcal{B}(B \to h\ell_2 \nu)}{\mathcal{B}(B \to h\ell_1 \nu)}$ and $X \equiv \sum_i h_i$

• $R_{\tau/\ell}(D^*)$ from Belle II (189 fb⁻¹), preliminary (Lepton-Photon 2023)

• $R_{\tau/\ell}(X)$ from Belle II (189 fb⁻¹), preliminary (EPS-HEP 2023)

• $R_{e/\mu}(X)$ from Belle II (189 fb⁻¹), PRL 131, 051804

• $R_{e/\mu}(D^*)$ from Belle (711 fb⁻¹), PRD 108, 012002

- (Tests of light-lepton universality in angular asymmetries of $(B \rightarrow D^* \ell \nu)$ from Belle II (189 fb⁻¹), arXiv:2308.02023, submitted to PRL
- Measurement of differential distributions in $B \rightarrow D^* \ell \nu$ from Belle (711 fb⁻¹), PRD 108.012002
- (New test of LFU using angular coefficients from Belle (711 fb^{-1}) , preliminary

Belle II detector and dataset

- Asymmetric collisions, $E_{e^-} = 7 \text{ GeV}$, $E_{e^+} = 4 \text{ GeV}$
- Large solid angle coverage
- Better tracking/vertexing than Belle

- Belle CsI(Tl) crystals, new electronics
- Excellent particle ID (dE/dx, TOP, Cherenkov)
- Initial state 4-vector known \rightarrow kinematic constraints available

Experimental environment at $\Upsilon(4S)$

The $B\overline{B}$ pairs are produced near threshold: B and \overline{B} decay products are \approx isotropic and overlap

- Leptons and kaons can be reliably selected, but overall multiplicity of pions and photons is large: $\mathcal{O}(10)$ each
- combinatorial challenge for reconstruction of shortlived hadrons (e.g. D^* , D)
- hard to cleanly isolate decays involving multiple missing particles, where few kinematic constraints are available

Background reduction: B tagging

Hadronic FEI (full event interpretation) used in the analyses shown here

- Fully reconstruct one B in a hadronic decay mode, e.g. $B \rightarrow D^{(*)}n(\pi^{\pm})m(\pi^{0})$; require $n \leq 3$ and $m \leq 1$ in most modes (trade-off between efficiency and purity)
- Demand remaining particles match desired signal decay up to soft neutral activity (*completeness*)
- Reduces $e^+e^- \rightarrow q\bar{q}$ continuum background, $B \leftrightarrow \bar{B}$ feed-across background
- Initial state known, can determine $p_{\rm miss}$, $M_{\rm miss}^2 = p_{\rm miss}^2$

Cost: B_{tag} efficiency $\leq 1\%$

Measuring $R_{\tau/\ell}(D^*)$ – analysis strategy

 reconstruct tau and light-lepton decays into the same final state particles to cancel many systematic uncertainties

$$R_{\tau/\ell}(D^*) \propto \frac{N(B \to D^*[\tau \to \ell \bar{\nu} \nu]\nu)}{N(B \to D^* \ell \nu)}$$

- Tag the other *B* to greatly reduce background and obtain *kinematic* and *completeness* $(\Upsilon(4S) \rightarrow B_{tag}B_{sig} + "nothing")$ constraints
- Balance efficiency/purity through selection of B_{tag} and B_{sig} decay modes $D^{*+} \rightarrow D^{0}\pi^{+}, D^{*+} \rightarrow D^{+}\pi^{0} \text{ or } D^{*0} \rightarrow D^{0}\pi^{0}$ $D^{0} \rightarrow K^{-}\pi^{+}(\pi^{0}), K^{-}\pi^{+}\pi^{-}\pi^{+}, K^{0}_{s}\pi^{+}\pi^{-}(\pi^{0}), K^{0}_{s}\pi^{0}, h^{+}h^{-}$ $D^{+} \rightarrow K^{0}_{s}\pi^{+}, K^{-}h^{+}\pi^{+} \text{ where } h^{+} = K^{+} \text{ or } \pi^{+}$
- Distinguish $\overline{B} \to D^* \tau^- \nu$ from $\overline{B} \to D^* \ell^- \nu$ and background using M_{miss}^2 , require no unused charged particles and small *unassigned neutral ECL energy* (E_{ECL})
- Determine yields with a 2D binned template likelihood fit

 $R_{\tau/\ell}(D^*)$ – control samples

Validate / correct modeling of fit template variables using control samples; e.g.

$R_{\tau/\ell}(D^*)$ templates and fit

- Sources separated in M_{miss}^2 , E_{ECL} space •
- other sources (e.g. $\overline{B} \to D^{(*)}D_s^-$) not shown; • shapes similar to $B \rightarrow D^{**} \ell \nu$

Category	Yield determination
Signal $D^* au u$	Floated
Normalization $D^*\ell v$	Floated
Background from $D^{**}\ell v$	Floated
Other Background with true D^*	Fixed from MC
Background with fake D^*	Floated with sideband constraint

 $B \rightarrow D^* \tau v$

- Use template PDFs • based on smoothed histograms
- Comparable • sensitivities from B^+ and B^0

B→D*ℓv

 $R_{\tau/\ell}(D^*)$ – Results

Belle II preliminary: first result on this channel $R(D^*) = 0.267 \stackrel{+0.041}{_{-0.039}}(\text{stat}) \stackrel{+0.028}{_{-0.033}}(\text{sys})$

Main sources of systematic uncertainty:

- MC statistics $\pm 7.0\%$
- E_{ECL} PDF shapes $\frac{+5.5}{-9.3}$ %

•
$$D^{**}$$
 modeling $+ \frac{4.7}{-2.7} \%$

$$R_{\tau/\ell}(X)$$

Why measure $R_{\tau/\ell}(X)$?

- Experimental uncertainties differ for $R_{\tau/\ell}(X)$ and $R_{\tau/\ell}(D^{(*)})$
- Largest contributions to $R_{\tau/\ell}(X)$ come from $B \to D^{(*)}\tau\nu$
- In SM expect $R_{\tau/\ell}(D) > R_{\tau/\ell}(D^*) > R_{\tau/\ell}(X) \cong 0.222$

 $R_{\tau/\ell}(X)$ at $\Upsilon(4S)$ – strategy

$$R_{\tau/\ell}(X) \propto \frac{N(B \to X[\tau \to \ell \bar{\nu} \nu]\nu)}{N(B \to X \ell \nu)}$$

In 1990s LEP experiments measured $\mathcal{B}(b \to q \ell \nu)$ in $Z^0 \to b\overline{b}$ decays; *not previously measured at* $\Upsilon(4S)$

- Select events with $B_{tag} + \ell$, remaining particles attributed to X
- Distinguish $\overline{B} \to X\tau^- \nu$ from $\overline{B} \to X\ell^- \nu$ and background using M_{miss}^2 and kinematics (p_{ℓ}^*) (but not E_{ECL})
- Background mostly from $b \rightarrow c \rightarrow \ell$; some continuum, fakes
- $p_e > 0.3~(0.5)$ and $p_\mu > 0.4~(0.7)$ in CMS (lab)

$R_{\tau/\ell}(X)$ – updates to modeling

- Use separate e and μ templates for each of $X\tau\nu$, $X\ell\nu$, $B\overline{B}$ bkg and continuum $q\overline{q}$ (constrained using off-peak data)
- Main challenge is to produce reliable template shapes
 - Detailed adjustments to MC (FFs, B and D BFs)
 - Detailed corrections based on comparisons of simulation with control regions: low $q^2 (X_c \ell \nu)$, low $M^2_{miss}(X_c \ell \nu)$, high M_X (background)
 - Example: adjust M_X in $p_\ell > 1.4$ GeV sideband; using these weights also improves modeling in $M_{
 m miss}^2$ (shown) and q^2

Main sources of systematic uncertainty:

•	MC stat	±5.7 %
•	Bkg shape	±5.5 %
•	M_X modeling	±7.1 %
•	$B \to X_c \ell \nu$ BFs	±7.7 %
•	$B \to X_c \ell \nu$ FFs	±7.9 %

$$R_{\tau/\ell}(X)$$
 – results

Extensive data splits performed:

 e / μ , ℓ^+ / ℓ^- , B^+ / B^0 , θ_ℓ high/low, run periods

First $R_{\tau/\ell}(X)$ result at $\Upsilon(4S)$ (Belle II preliminary) $R_{\tau/\ell}(X) = 0.228 \pm 0.016(\text{stat}) \pm 0.036 \text{ (sys)}$ $R_{\tau/e}(X) = 0.232 \pm 0.020(\text{stat}) \pm 0.037 \text{ (sys)}$ $R_{\tau/\mu}(X) = 0.222 \pm 0.027(\text{stat}) \pm 0.050 \text{ (sys)}$

Consistent with SM and related $R(D^{(*)})$ measurements (HFLAV 23)

 $R(D^*) = 0.284 \pm 0.013$ $R(D) = 0.356 \pm 0.029$

Rough SM expectation: $R_{\tau/\ell}(X) \approx 0.222$

18 Sep 2023

 $R_{e/\mu}(X)$ and $R_{e/\mu}(D^*)$

$R_{e/\mu}(X)$ – light lepton universality test

Semileptonic *B* decays to e/μ can be compared in inclusive or exclusive decays.

- Inclusive measurement from Belle II (189 fb⁻¹) : $R_{e/\mu}(X) = 1.007 \pm 0.009 \pm 0.019$ PRL 131, 051804
- Exclusive measurement in $B \rightarrow D^* \ell \nu$ from Belle (711 fb⁻¹):

 $R_{e/\mu}(D^*) = 0.993 \pm 0.023 \pm 0.023$ prd 108, 012002

Leading uncertainty comes from e/μ identification

LFU tests in $B \rightarrow D^* \ell \nu$ angular asymmetries

Motivated by reanalysis of Belle data (*Bobeth et al.*, EPJC **81**, 984 (2021)) Now extended to use fully differential measurement input

LFU tests in $B \rightarrow D^* \ell \nu$ angular asymmetries – strategy

rate

Measure angular asymmetries separately for D^*ev and $D^*\mu v$ final states; their differences are sensitive to LFU violation

Belle measures A_{FB} and the longitudinal polarization fraction $F_{L}^{D^*}$

Belle II measures A_{FB} , S_3 , S_5 , S_7 , S_9 (defined in PRD 107, 015011) as a function of $(w = v \cdot v)$:

$$A_{x}(w) \equiv \left(\frac{d\Gamma}{dw}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] dx \frac{d^{2}\Gamma}{dwdx}; \quad A^{\text{meas}} = \frac{N_{F} - N_{B}}{N_{F} + N_{B}}$$

With $x = \cos \theta_{\ell}$, $A_x(w) = A_{FB}(w)$; other x choices give $S_3 - S_9$

The differences $\Delta A_x \equiv A_x^{\mu} - A_x^e$ are expected to be small in SM, e.g. $\Delta A_{FB} = -0.0057(1), \ \Delta F_L^{D^*} = 0.00012(1)$ arXiv:2206.1128

LFU tests in $B \rightarrow D^* \ell \nu$ angular asymmetries – results

Belle II (189 fb⁻¹) measurements (arXiv:2308.02023) of A_{FB} , S_3 , S_5 , S_7 , S_9 and ΔA_x at high/low w are consistent with zero

Belle (711 fb⁻¹) measures (PRD 108.012002) A_{FB} and $F_L^{D^*}$ separately for e and μ and for B^+ and B^0

	$\Delta {F_L^D}^{*}$		$\Delta A_{ m FB}$
$\bar{B}^0 \rightarrow D^{*+} \ell \bar{\nu}_{\ell} 0.033$	$3 \pm 0.033 \pm 0.010$	$ar{B}^0 o D^{*+} \ell^{\prime} ar{ u}_{\ell^{\prime}}$	$0.063 \pm 0.044 \pm 0.012$
$B^- \rightarrow D^{*0} \ell \bar{\nu}_{\ell}$ 0.017	$7 \pm 0.037 \pm 0.009$	$B^- \to D^{*0} \ell \bar{\nu}_\ell$	$0.008 \pm 0.037 \pm 0.009$
$B \to D^* \ell \bar{\nu}_\ell 0.030$	$0 \pm 0.025 \pm 0.007$	$B\to D^* \mathcal{C} \bar{\nu}_{\mathcal{C}}$	$0.028 \pm 0.028 \pm 0.008$

All asymmetry measurements are statistics limited

Consistent with SM expectations, which are close to zero in all cases

New - angular asymmetries from Belle (preliminary)

- Measure 12 angular coefficients J_i in bins of w
- Look for LFU violation using $\Delta J_i \equiv J_i^{\mu} J_i^e$
- Normalized \hat{J}_i are proportional to S_i

Summary of recent LFU tests at Belle and Belle II

New tests of LFU in measured ratios of decay rates at Belle II (189 fb^{-1}):

$$\begin{pmatrix} R_{\tau/\ell}(D^*) = 0.267 \stackrel{+}{_{-}} \stackrel{0.041}{_{0.039}} \stackrel{+}{_{-}} \stackrel{0.028}{_{-}} \\ R_{\tau/\ell}(X) = 0.228 \stackrel{+}{_{-}} 0.016 \stackrel{+}{_{-}} 0.036 \end{pmatrix} Preliminary \\ R_{e/\mu}(X) = 1.007 \stackrel{+}{_{-}} 0.009 \stackrel{+}{_{-}} 0.019$$

All measurements presented here are consistent with SM and with previous measurements where available

and **Belle (711** fb^{-1}):

 $R_{e/\mu}(D^*) = 0.993 \pm 0.023 \pm 0.023$

Angular asymmetry differences $\Delta A_x \equiv A_x^{\mu} - A_x^e$ and $\Delta \hat{J}_i$ also measured; statistics limited

Belle II has collected twice the data sample analyzed here; more data to come, with improved pixel detector

Backup slides

