

Charm lifetimes and prospects for semileptonic decays at Belle II

Alan Schwartz

University of Cincinnati, USA (on behalf of Belle/Belle II) **12th International Workshop** on the CKM Unitarity Triangle Santiago de Compostela, Spain 19 September 2023

why measure charm lifetimes?
measurements mesons: D⁰, D⁺, D_s⁺ baryons: Λ_c⁺, Ω_c⁰
comparison with theory
why measure leptonic/semileptonic decays?
prospects for Belle II

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II **CKM 2023**

2

Lenz. IJMP A30 (2015)

Lenz et al., JHEP 12 (2020) 199

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

CKM 2023

Charm lifetimes: measurement @ Belle II Relle T

A. J. Schwartz

Charm lifetimes, semileptonic decays at Belle II

CKM 2023

Ы

D_{s}^{+} lifetime (207 fb⁻¹)

Select $D_s^+ \rightarrow \phi \pi^+ (\phi \rightarrow K^+ K^-)$ (low 1.0 MeV/*c*² 16000E Data Belle II background) 14000 $L dt = 207 \text{ fb}^{-1}$ - Total fit 12000 $p_{CM}(D_s^+) > 2.5 \text{ GeV/c to eliminate } B \rightarrow D_s^+X$ 10000 ····· Background Candidates per decays (preserves 2/3 of $e^+e^- \rightarrow cc$ events) 8000 6000 4000 require $M(\phi \pi^{+}) \in [1.960, 1.976]$ GeV/c²: 2000 unbinned ML fit give 116k signal, 92% purity. Background from random combinations of ϕ 1.96 1.97 1.98 1.99 1.93 1.94 1.95 2.01 2 2 02 $M(\phi \pi^+)$ [GeV/ c^2] and π^+ Pull 4 2 -2 -4 lifetime determined from unbinned ML fit to t. Likelihood function for event i: (to avoid bias: Punzi. $\mathcal{L}(au|t^i,\sigma^i_t) \;=\; f_{ ext{sig}} \, oldsymbol{P}_{ ext{sig}}(t^i| au,\sigma^i_t) \, oldsymbol{P}_{ ext{sig}}(\sigma^i_t) \;+\; (1-f_{ ext{sig}}) \, oldsymbol{P}_{ ext{bkg}}(t^i| au,\sigma^i_t) \, oldsymbol{P}_{ ext{bkg}}(\sigma^i_t)$ arXiv:physics/0401045) Data Belle II .25 fs Belle II — Total fit Data $dt = 207 \text{ fb}^{-}$ dt = 207.2 fb Candidates per 11.2 0 10 1 0 1 1.2 Background Total fit Background

4. J. Schwartz. Charm lifetimes, semileptonic decays at Belle II CKM 2023

D_{s}^{+} lifetime (207 fb⁻¹)

• PDF for signal D_s^+ decays:

$$P_{\mathrm{sig}}(t^i| au,\sigma^i_t) \;=\; rac{1}{ au}\int e^{-t'/ au}\,R(t^i-t';\mu,s,\sigma^i_t)\,dt'$$

- resolution function *R* is a single Gaussian with mean μ and per-candidate standard deviation $s \times \sigma_t^i$; μ and scaling parameter *s* are floated
- PDF for background is taken from fitting M(φπ⁺) upper sideband [1.990,2.020] GeV/c²
- Result:

 $au_{D_s^+} = (499.5 \pm 1.7 \pm 0.9) \text{ fs}$

arXiv:2306.00365, to appear in PRL

• Systematic uncertainties:

Source	Uncertainty (fs)
Resolution function	± 0.42
Background (t, σ_t) distribution	± 0.40
Binning of $\boldsymbol{\sigma_t}$ histogram PDF	± 0.10
Imperfect detector alignment	± 0.56
Sample purity	± 0.09
Momentum scale factor	± 0.28
D_s^+ mass	± 0.02
Total	± 0.87

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

D^0 and D^+ lifetimes (72 fb⁻¹)

Abudinen et al., PRL 127, 211801 (2021) [arXiv:2108.03216]

- Select $D^{*+} \rightarrow D^0 \pi_s^+ (D^0 \rightarrow K^- \pi^+)$ decays (~no background)
- $p_{CM}(D^{*+}) > 2.5 \text{ GeV/c to eliminate } B \rightarrow D^{*+}X$ decays
- require M(K⁻π⁺) ∈ [1.851,1.878] GeV/c² and M(K⁻π⁺π_s⁺) – M(K⁻π⁺) ∈ [144.94,145.90] MeV/c²; binned χ² fit give 171k signal, 99.8% purity
- Select $D^{*+} \rightarrow D^+ \pi^0$ ($D^+ \rightarrow K^- \pi^+ \pi^+$) decays (low background), where $\pi^0 \rightarrow \gamma \gamma$ and $m(\gamma \gamma) \in [120, 145]$ MeV/c²
- $p_{CM}(D^{*+}) > 2.6$ GeV/c to eliminate $B \rightarrow D^{*+}X$ decays
- require M(K⁻π⁺) ∈ [1.855, 1.883] GeV/c² and ΔM ∈ [138, 143] MeV/c²; binned χ² fit give 59k signal, 91% purity

171k $D^0 \rightarrow K^-\pi^+$

59k $D^+ \rightarrow K^- \pi^+ \pi^+$

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

CKM 2023 7

D^0 and D^+ lifetimes (72 fb⁻¹)

Abudinen et al., PRL 127, 211801 (2021) [arXiv:2108.03216]

- lifetime determined from unbinned ML fit to (t, σ_t)
- resolution function *R* is a double Gaussian for *D*⁰ (single Gaussian for *D*⁺) with mean μ and per-candidate standard deviation s $\times \sigma_t^i$; μ and scaling parameter s are floated
- PDF for D⁺ background is taken from fitting M(K⁻π⁺π⁺) sidebands [1.758,1.814] and [1.936,1.992] GeV/c². D⁰ background is neglected, with a systematic included
- Results:

 $\begin{array}{ll} \tau_{D^0} &=& (410.5\pm1.1\,\pm0.8) \; {\rm fs} \\ \tau_{D^+} &=& (1030.4\pm4.7\,\pm3.1) \; {\rm fs} \end{array}$

• Systematic uncertainties:

Source	$ au(D^0)$	$ au(D^+)$
	(fs)	(fs)
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

A_{c}^{+} lifetime (207 fb⁻¹)

Abudinen et al., PRL 130, 071802 (2023) [arXiv:2206.15227]

- problematic background from $\Xi_c^0 \to \Lambda_c^+ \pi^-$, $\Xi_c^+ \to \Lambda_c^+ \pi^0$ decays: $\tau(\Xi_c^0) = 153$ fs, $\tau(\Xi_c^+) = 456$ fs.
 - Ξ contamination in Λ_c^+ sample is estimated by fitting distribution of Λ_c^+ vertex displacement in plane transverse to the beam. Result: 374 events (0.003% of Λ_c^+ candidates).
 - To reduce, impose vetos: $M(pK^{-}\pi^{+}\pi^{-}) - M(pK^{-}\pi^{+}) \notin [183.4, 186.4] \text{ MeV/c}^{2}$ $M(pK^{-}\pi^{+}\pi^{0}) - M(pK^{-}\pi^{+}) \notin [175.3, 187.3] \text{ MeV/c}^{2}$ This reduces Ξ decays by 40%.
 - Effect of remaining decays is estimated via MC simulation; bias of 0.34 fs is subtracted from fitted $\tau(\Lambda_c^+)$
- Result:

$$au_{\Lambda_c^+}~=~(203.20\pm 0.89~\pm 0.77)~{
m fs}$$

• Systematic uncertainties:

Source	Uncertainty [fs]
$\boldsymbol{\Xi_c}$ contamination	0.34
Resolution model	0.46
Non- Ξ_c backgrounds	0.20
Detector alignment	0.46
Momentum scale	0.09
Total	0.77

Abudinen et al., PRD 107, L031103 (2023) [arXiv:2208.08573]

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

CKM 2023

Quantity	Belle II	King et al. JHEP 08 (2022) 241 (Table 15)	Gratrex et al. JHEP 07 (2022) 058 (Tables 10, 14, MSR)
$ au(D^0)$	410.5 ± 1.1 ± 0.8	629 ⁺²⁹⁶ ₋₁₆₇	595 ⁺³⁴⁴ ₋₁₆₆
$ au(D^+)$	1030.4 ± 4.7 ± 3.1	> 897 (90% CL)	> 1260 (90% CL)
$ au(D^+{}_s)$	499.5 ± 1.7 ± 0.9	637 ⁺³⁸¹ ₋₁₉₀	599 ⁺⁴⁵⁹ ₋₁₈₀
$ au(D^+)/ au(D^0)$	2.510	2.80 ± 0.90	2.89 ± 0.82
$ au(D^+{}_s)^*/ au(D^0)$	1.215	1.01 ± 0.15	1.00 ± 0.22
$\tau(\Lambda_c^{+})$	$203.20 \pm 0.89 \pm 0.77$		312 ⁺¹²⁸ _96
$ au(arOmega_c^{0})$	243 ± 48 ± 11		237 ⁺¹¹¹ ₋₇₅
$ au(arOmega_c^0)/ au(arA_c^+)$	1.20 ± 0.24		0.83 +0.30 -0.18

(*subtracting $B(D_s^+ \rightarrow \tau^+ v) = 5.32\%$)

- Experimental precision is much greater than theory precision (large theory uncertainties)
- Even with large theory uncertainties, a few predictions differ from experiment by > 1 σ (but less than 2σ). In the future when theory errors are reduced, such differences could become interesting stay tuned.

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II CKM 2023 11

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

$$egin{aligned} \mathcal{B}(D^+_{(s)} &
ightarrow \ell^+
u) &= & rac{G_F^2}{8\pi} f_{D_{(s)}}^2 |V_{cs,cd}|^2 \, au_D \, m_D \, m_\ell^2 \left(1 - rac{m_\ell^2}{m_D^2}
ight)^2 \, . \end{aligned}$$

Measure \mathcal{B} , calculate f_D on lattice, extract $|V_{cs,cd}|$ (compare to unitarity) 1) 2) Measure \mathcal{B} , take $|V_{cs\,cd}|$ from other measurements + unitarity, extract f_D (compare to lattice)

Using recent LQCD results (FLAG 2022, arXiv:2111.09849):

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

⇒

Method: use energy/momentum conservation to search for rare $D^+ \rightarrow \ell^+ v$, $D^+ \rightarrow vv$, etc.

2

$e^+e^- \rightarrow D_{\text{tag}} X_{\text{frag}} D_{\text{signal}}$
X K (anti-p)

	Tag side:	D^0	D^+	Λ_c^+
1	Decay mode:	$K^{-}\pi^{+}$	$K^-\pi^+\pi^+$	$pK^{-}\pi^{+}$
		$K^-\pi^+\pi^0$	$K^-\pi^+\pi^+\pi^0$	$pK^{-}\pi^{+}\pi^{0}$
		$K^-\pi^+\pi^+\pi^-$	$K^0_S \pi^+$	pK_S^0
		$K^-\pi^+\pi^+\pi^-\pi^0$	$K_{S}^{0} \pi^{+} \pi^{0}$	$\Lambda \pi^+$
		$K^0_S \pi^+ \pi^-$	$K^{0}_{S} \pi^{+} \pi^{+} \pi^{-}$	$\Lambda \pi^+ \pi^0$
		$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	$\tilde{K}^+ K^- \pi^+$	$\Lambda\pi^+\pi^+\pi^-$
3	$X_{ m frag}:$	$K_S^0 \pi^+$	K_S^0	
		$K^0_S \pi^+ \pi^0$	$K^0_S \pi^0$	
		$K^{0}_{S}\pi^{+}\pi^{+}\pi^{-}$	$K_{S}^{0} \pi^{+} \pi^{-}$	same as for
		$\sim K^+$	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	D^+ tag
		$K^+ \pi^0$	$K^+ \pi^-$	$+ \bar{p}$
		$K^+ \pi^+ \pi^-$	$K^+ \pi^- \pi^0$	Ĩ
		$K^+ \pi^+ \pi^- \pi^0$	$K^+ \pi^- \pi^+ \pi^-$	

For D_{signal} require 1 lepton track $(D_s^+ \rightarrow \ell^+ \nu)$

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

 $\Rightarrow \delta |V_{cs}| = 0.56\%$ (stat), not far from the LQCD error on f_{Ds} of 0.20% (FLAG 2022, arXiv:2111.09849)

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

 $D \rightarrow (K, \pi) \ell^+ \nu$:

$$egin{array}{rcl} rac{d\Gamma}{dq^2} \;=\; rac{G_F^2\,p_h^3}{24\pi^3} \left|V_{cs,cd}
ight|^2 \left|f_+(q^2)
ight|^2 \end{array}$$

• Take $f_+(q^2)$ form factor from theory, determine $|V_{cs}|$ or $|V_{cd}|$

Simple pole:
$$f_+(q^2) = \frac{f_+(0)}{(1-q^2/m_{
m pole}^2)}$$

$$\label{eq:model} \textit{Modified pole model:} \qquad f_+(q^2) \;\; = \;\; \frac{f_+(0)}{(1-q^2/m_{\rm pole}^2)(1-\alpha_p q^2/m_{\rm pole}^2)}$$

$$\begin{array}{lll} z \text{ expansion:} & t_{\pm} = (m_D \pm m_P)^2 & t_0 = t_+ (1 - \sqrt{1 - t_-/t_+}) \\ & z(q^2, t_0) & = & \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \\ & f_+(q^2) & = & \frac{1}{P(q^2)\phi(q^2, t_0)} \sum_{k=0}^{\infty} a_k z^k \\ & a_1/a_0 \equiv r_1 & a_2/a_0 \equiv r_2 \end{array}$$

A. J. SchwartzCharm lifetimes, semileptonic decays at Belle IICKM 202316

 $D \rightarrow (K, \pi) \ell^+ \nu$:

$$rac{d\Gamma}{dq^2} \;=\; rac{G_F^2 \, p_h^3}{24 \pi^3} \left| V_{cs,cd}
ight|^2 \left| f_+(q^2)
ight|^2$$

• Take $f_{+}(q^2)$ form factor from theory, determine $|V_{cs}|$ or $|V_{cd}|$

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

СКМ 2023 17

Semileptonic Decays (Belle II MC)

Tag side:

Final

state:

 X_{frag} :

 D^0

 $K^-\pi^+$

 $K^-\pi^+\pi^0$

 $K^{-}\pi^{+}\pi^{+}\pi^{-}$

 $K^-\pi^+\pi^+\pi^-\pi^0$

 $K_{S}^{0} \pi^{+} \pi^{-}$

 $K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$

 π^+

 $\pi^+\pi^0$

 $\pi^+\pi^+\pi^-$

 D^+

 $K^-\pi^+\pi^+$

 $K^{-}\pi^{+}\pi^{+}\pi^{0}$

 $K_{S}^{0}\pi^{+}$

 $K_{S}^{0}\pi^{+}\pi^{0}$

 $K^{0}_{S}\pi^{+}\pi^{+}\pi^{-}$

 $K^+K^-\pi^+$

none

 π^0

 $\pi^+\pi^-$

 $\pi^+\pi^-\pi^0$

"The Belle II Physics Book" PTEP 2019, 123C01 (2019) [arXiv:1808.10567]

$D \rightarrow (K, \pi) \ell^+ \nu$:

Events / 6 (MeV/ c^2)²

- $\frac{2}{5}$ usly reconstruct a D^+ , $D^{\text{totabh}}_{\text{signal}}$ tag side
- $Define P_{D^*} = P_{e^+} + P_{e^-} Background P_X$
- $\underbrace{\overset{b}{D}}_{20}^{20} = (M_{D^*})^2 = (M_{D^*})^2$
- Identify (K or π) and (μ or e)
- calculate $M_{miss}^2 = P_{r_{biss}^2}^2 = (P_{D^*} P_{\pi slow} P_{(K,\pi)} P_{(\mu,e)})^2$

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

CKM 2023 18

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II

- With a very small data set, Belle II has made the world's most precise measurements of the D^0 , D^+ , D_s^+ , and Λ_c lifetimes. Belle has made a relevant measurement of the Ω_c lifetime.
- With 20 ab⁻¹ of data, Belle II should have competitive samples of D_s^+ leptonic and D^0 semileptonic decays. These should yield among the world's most precise measurements of V_{cd} and V_{cs} .
- Belle II is behind in accumulating data. However, as compared to Belle/Babar there are substantial improvements to the detector and reconstruction software. The SuperKEKB accelerator has set world records for instantaneous luminosity and daily/weekly integrated luminosity, and during LS1 there have been substantial improvements to the accelerator. Thus, despite the modest data sample so far, the experiment is expected to have a large physics impact and significant discovery potential.

Extra

A. J. SchwartzCharm lifetimes, semileptonic decays at Belle IICKM 202321

$\underbrace{\mathcal{A}}_{\text{Belle II}} Major accelerator upgrade (KEKB \rightarrow SuperKEKB)$

 e^+e^- collider running at the Upsilon(4S) [and Upsilon (5S)] resonances with 7 GeV (e^-) on 4 GeV(e^+) beams. New e^+ damping ring, new e^+ storage ring, new IR optics, Superconducting FF, new RF

A. J. Schwartz Charm lifetimes, semileptonic decays at Belle II