CPV in D meson decays at Belle I/II

Michel Bertemes on behalf of the Belle I/II collaboration 12th International Workshop on CKM Unitarity - 09/18/23

Der Wissenschaftsfonds.

SuperKEKB and Belle II

- SuperKEKB
 - asymmetric e⁺e⁻ collider in Tsukuba, Japan
 - nano-beam interaction point
 - $\mathscr{L}=4.7 \times 10^{34} \text{cm}^{-2}\text{s}^{-1}$ (record)
 - tunable E_{cm} around $\Upsilon(4S)$ mass
- Belle II
 - 4п spectrometer
 - successor to Belle with improved vertexing, tracking, PID and calorimetry capabilities
 - currently in LS1, resume in 2024

	Belle	Belle II	
Years of operation	1999-2010	2019-	
Beam energies	8 GeV (e-) , 3.5 GeV (e+)	7 GeV (e-) , 4 GeV (e+)	
Data set	~1000fb ⁻¹	424fb ⁻¹	

Charm physics at Belle II

- "charm factory"
 - large $e^+e^- \rightarrow c\bar{c}$ cross-section provides low-background event samples
 - 1.3M events per 1fb⁻¹
 - ~100% trigger efficiency uniform across decay time and kinematics
- rich program
 - excellent reconstruction of **final states with neutrals** e.g. $D^+ \to \pi^+ \pi^0$, $D^0 \to \rho^0 \gamma, \pi^0 \pi^0, K_S^0 K_S^0, K \pi \pi^0, \pi \pi \pi^0 \dots$
 - unique access to final states with invisible particles: e.g. decay into neutrinos

A beautiful charm event

- e^+e^- + two charm hadrons + fragmentation
 - no entanglement, inaccessible strong phase

A beautiful charm event

- e^+e^- + two charm hadrons + fragmentation
 - no entanglement, inaccessible strong phase
- standard approach (since 1977): **exclusive reconstruction** of strong decay $D^{*+} \rightarrow D^0 \pi_s^+$
 - inefficient reconstruction of slow=low momentum pion
 - + loss in statistics (only ~25% of all charm quarks hadronize into D^*)

slow pion:
$$M(D^{*+}) - M(D^0) \approx 145 \text{ MeV}/c^2$$

A beautiful charm event

• e^+e^- + two charm hadrons + fragmentation

- no entanglement, inaccessible strong phase
- standard approach (since 1977): **exclusive reconstruction** of strong decay $D^{*+} \rightarrow D^0 \pi_s^+$
 - inefficient reconstruction of slow=low momentum pion
 - + loss in statistics (only ~25% of all charm quarks hadronize into D^*)
- a new more inclusive method is desirable to exploit correlation between signal flavor and charge of tagging particles

Novel method for the identification of the production flavor of neutral charmed mesons

PRD 107, 112010 (2023)

The Charm Flavor Tagger (CFT)

- reconstruct particles most collinear with signal meson
- uses **kinematic features** (ΔR , recoiling mass) and **PID** of tagging particles
- based on BDT, predicts qr (tagging decision q and dilution r)
- trained using simulation and calibrated with Belle II data

q=+1 for D^0 and -1 for \bar{D}^0 r=1 perfect prediction, r=0 random guessing

The Charm Flavor Tagger (CFT)

- reconstruct particles most collinear with signal meson
- uses **kinematic features** (ΔR , recoiling mass) and **PID** of tagging particles
- based on BDT, predicts qr (tagging decision q and dilution r)
- trained using simulation and calibrated with Belle II data

The Charm Flavor Tagger (CFT)

- **double** the sample **size** w.r.t D^{*+} -tagged events
- provide discrimination between signal and background
- CFT will increase sensitivity for many charm decays:
 - $D^0 \to \pi^0 \pi^0, K^0_S K^0_S, K \pi \pi^0, \pi \pi \pi^0 \dots$

Measurement of BR and search for CPV in $D^0 \to K^0_S K^0_S \pi^+ \pi^- \, {\rm decays}$

PRD 107, 052001 (2023)

Search for CPV in
$$D^+_{(s)} \to K^+ K^0_S h^+ h^-$$
 decays
and observation of $D^+_s \to K^+ K^- K^0_S \pi^+$

arXiv:2305.11405

Search for CPV using T-odd correlations in $D^+_{(s)} \rightarrow K^+ K^- \pi^+ \pi^0, K^+ \pi^- \pi^+ \pi^0$ and $D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$ decays

arXiv:2305.12806

$$A_{\rm raw} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}$$

- obtain asymmetry from difference in partial widths
- $A_{\rm raw}$ includes asymmetries in production and reconstruction
 - $A_{\rm FB}$: arising from γZ^0 interference
 - A_{ϵ} : reconstruction of final-state particles
 - need control channel to correct
- in charm: SCS two-body decays

- measure asymmetry in triple products $C_T = \overrightarrow{v_1} \cdot (\overrightarrow{v_2} \times \overrightarrow{v_3})$
- $A_T \neq 0$ can also arise from final-state interaction
 - isolate *T*-violation with $a_{CP}^{T-\text{odd}}$
 - $a_{CP}^{T-\text{odd}}$ is unaffected by production and reconstruction asymmetries
- in charm: four-body decays

Two approaches

$$A_{\rm raw} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

- $A_{\rm raw}$ includes asymmetries in production and reconstruction
 - $A_{\rm FB}$: arising from γZ^0 interference
 - A_{ϵ} : reconstruction of final-state particles
 - need control channel to correct
- in charm: SCS two-body decays

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)} \qquad \bar{A}_T = \frac{\Gamma(-\bar{C}_T > 0) - \Gamma(-\bar{C}_T < 0)}{\Gamma(-\bar{C}_T > 0) + \Gamma(-\bar{C}_T < 0)}$$

$$a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T)$$

- measure asymmetry in triple products $C_T = \overrightarrow{v_1} \cdot (\overrightarrow{v_2} \times \overrightarrow{v_3})$
- $A_T \neq 0$ can also arise from final-state interaction
 - isolate *T*-violation with $a_{CP}^{T-\text{odd}}$
 - $a_{CP}^{T-\text{odd}}$ is unaffected by production and reconstruction asymmetries
- in charm: four-body decays

Two approaches

$$A_{\rm raw} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

- $A_{\rm raw}$ includes asymmetries in production and reconstruction
 - $A_{\rm FB}$: arising from γZ^0 interference
 - A_{ϵ} : reconstruction of final-state particles
 - need control channel to correct
- in charm: SCS two-body decays

$A_{CP} \propto \sin(\phi) \sin(\delta)$

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)} \qquad \bar{A}_T = \frac{\Gamma(-\bar{C}_T > 0) - \Gamma(-\bar{C}_T < 0)}{\Gamma(-\bar{C}_T > 0) + \Gamma(-\bar{C}_T < 0)}$$

$$a_{CP}^{T-\text{odd}} = \frac{1}{2}(A_T - \bar{A}_T)$$

- measure asymmetry in triple products $C_T = \overrightarrow{v_1} \cdot (\overrightarrow{v_2} \times \overrightarrow{v_3})$
- $A_T \neq 0$ can also arise from final-state interaction
 - isolate *T*-violation with $a_{CP}^{T-\text{odd}}$
 - $a_{CP}^{T-\text{odd}}$ is unaffected by production and reconstruction asymmetries
- in charm: four-body decays

- focus on
 - A_{CP} in $D^0 \rightarrow K^0_S K^0_S \pi^+ \pi^- (D^*\text{-tagged})$
 - T-odd correlation in $D^+ \to K^+ K^0_S \pi^+ \pi^-$
- common features
 - based on full Belle data set collected on or near $\Upsilon(nS)$, ~1ab⁻¹
 - identification of K_S^0 candidates with NN based on kinematic features
 - further background suppression with sum of vertex fit qualities, flightlength significance

 $A_{CP} \operatorname{in} D^0 \to K^0_S K^0_S \pi^+ \pi^-$

$$A_{\rm raw} = \frac{N(D^0 \to f) - N(\bar{D}^0 \to \bar{f})}{N(D^0 \to f) + N(\bar{D}^0 \to \bar{f})} \qquad \longrightarrow \qquad A_{\rm raw} = A_{CP} + A_{\rm FB} + A_{\epsilon}^{\pi_s}$$

- obtain asymmetry from different D^0 and $ar{D}^0$ yields

 $A_{CP} \text{ in } D^0 \to K^0_S K^0_S \pi^+ \pi^-$

- obtain asymmetry from different D^0 and \bar{D}^0 yields
- slow pion asymmetry $A_{\epsilon}^{\pi_s}$
 - use (un)-tagged $D^0 \rightarrow K^- \pi^+$ decays
 - measured in bins of transverse momentum and polar angle

 $A_{\rm raw} = A_{CP} + A_{\rm FB} + A_{\epsilon}^{\pi_s}$

$$w_{D^0} = 1 - A_{\epsilon}^{\pi_s}(p_T, \cos \theta_{\pi_s})$$

$$w_{\bar{D}^0} = 1 + A_{\epsilon}^{\pi_s}(p_T, \cos\theta_{\pi_s})$$

correct for $A_{\epsilon}^{\pi_s}$ by separately weighting D^0 and \bar{D}^0 yields

 $A_{CP} \text{ in } D^0 \to K^0_S K^0_S \pi^+ \pi^-$

- obtain asymmetry from different D^0 and \bar{D}^0 yields
- slow pion asymmetry $A_{\epsilon}^{\pi_s}$
 - use (un)-tagged $D^0 \rightarrow K^- \pi^+$ decays
 - measured in bins of transverse momentum and polar angle
- forward-backward asymmetry $A_{\rm FB}$
 - odd function of polar angle of D* momentum

$$A_{\rm raw}^{\rm corr} = A_{CP} + A_{\rm FB}$$

obtain A_{CP} by averaging over bins of polar angle

 A_{CP} in $D^0 \to K^0_S K^0_S \pi^+ \pi^-$

- obtain asymmetry from different D^0 and \bar{D}^0 yields
- slow pion asymmetry $A_{\epsilon}^{\pi_s}$
 - use (un)-tagged $D^0 \rightarrow K^- \pi^+$ decays
 - measured in bins of transverse momentum and polar angle
- forward-backward asymmetry $A_{\rm FB}$
 - odd function of polar angle of D* momentum
- first such measurement for this decay

 $A_{\rm raw}^{\rm corr} = A$ $A_{\rm FB}$

obtain A_{CP} by averaging over bins of polar angle

$$A_{CP}(D^0 \to K_S^0 K_S^0 \pi^+ \pi^-) = (-2.51 \pm 1.44(\text{stat})^{+0.35}_{-0.52}(\text{syst}))\%$$

T-odd correlation in $D^+ \to K^+ K^0_{\mathcal{S}} \pi^+ \pi^-$

• define C_T as triple product of momenta of charged final-state particles

T-odd correlation in $D^+ \to K^+ K^0_{\varsigma} \pi^+ \pi^-$

- define C_T as triple product of momenta of charged final-state particles
- divide *D* candidates into four subsamples based on *D* flavor/ charge and sign of C_T
- obtain N_{D} , $N_{\bar{D}}$, A_T and $a_{CP}^{T-\text{odd}}$ from simultaneous fit to subsamples

$$N(C_T > 0) = \frac{N(D_{(s)}^+)}{2}(1 + A_T),$$

$$N(C_T < 0) = \frac{N(D_{(s)}^+)}{2}(1 - A_T),$$

$$N(-\overline{C}_T > 0) = \frac{N(D_{(s)}^-)}{2}(1 + A_T - 2a_{CP}^{T-\text{odd}}),$$

$$N(-\overline{C}_T < 0) = \frac{N(D_{(s)}^-)}{2}(1 - A_T + 2a_{CP}^{T-\text{odd}}).$$

22

800

5 0 _5

T-odd correlation in $D^+ \to K^+ K_S^0 \pi^+ \pi^-$

- define C_T as triple product of momenta of charged final-state particles
- divide D candidates into four subsamples based on D flavor/ charge and sign of C_T
- obtain N_D , $N_{\bar{D}}$, A_T and a_{CP}^{T-odd} from simultaneous fit to subsamples
- systematic effects related to efficiency variation of C_T

 $a_{CP}^{T-\text{odd}} = (0.34 \pm 0.87(\text{stat.}) \pm 0.32(\text{syst.}))\%$

- define C_T as triple product of momenta of charged final-state particles
- divide D candidates into four subsamples based on D flavor/ charge and sign of C_T
- obtain N_D , $N_{\bar{D}}$, A_T and a_{CP}^{T-odd} from simultaneous fit to subsamples
- systematic effects related to efficiency variation of C_T
- results are among world's most precise measurements, no evidence of CPV

made by Longke Li

Noteworthy

- additional branching fractions measurements:
 - $B(D^0 \to K_S^0 K_S^0 \pi^+ \pi^-) = (4.82 \pm 0.08(\text{stat})^{+0.10}_{+0.11}(\text{syst}) \pm 0.31(\text{norm})) \times 10^{-4}$
 - most precise measurement to date
 - norm. channel: $D^0 \to K_S^0 \pi^+ \pi^-$
 - $B(D_s^+ \to K^+ K^- K_S^0 \pi^+) = (1.29 \pm 0.14 (\text{stat}) \pm 0.04 (\text{syst}) \pm 0.11 (\text{norm})) \times 10^{-4}$
 - first observation of this decay
 - norm. channel: $D_s^+ \to K^+ K_S^0 \pi^+ \pi^-$
- measurement of $a_{CP}^{T-\text{odd}}$ in subregions of phase space:
 - largest asymmetry found in $D_s^+ \to K^{*0} \rho^+$
 - $a_{CP}^{T-\text{odd}} = (6.2 \pm 3.0(\text{stat}) \pm 0.4(\text{syst}))\%$

- Charm Flavor Tagger
 - new inclusive algorithm that exploits correlation between signal flavor and charge of tagging particles
 - significantly enlarge the available sample size
- A_{CP} and a_{CP}^{T-odd} measurements
 - two complementary approaches to measure CPV
 - use four-body charm decays, efficient reconstruction at Belle
 - world's most precise results

 $D^0 \to K^0_{\rm s} K^0_{\rm s} \pi^+ \pi^-$

TABLE I. Systematic uncertainties (fractional) for the branching fraction measurement.

Source	$K_{S}^{0} K_{S}^{0} \pi^{+} \pi^{-}$	$K_S^0 \pi^+ \pi^-$
	(%)	(%)
Fixed PDF parameters	0.14	0.09
$D^0 \rightarrow K^0_S K^0_S K^0_S$ background	0.11	_
Broken charm background	0.98	—
MC statistics	0.26	0.17
PID efficiency correction	0.80	0.74
K_S^0 reconstruction efficiency	0.83	0.36
Tracking Efficiency	0.70	
$M(\pi^+\pi^-)$ veto efficiency	$^{+0.42}_{-0.93}$	_
Fraction of mis-reconst. signal	$^{+0.02}_{-0.03}$	_
$D^0 \rightarrow K^0_S K^0_S \pi^+ \pi^-$ decay model	0.73	
$\mathcal{B}(K^0_S \! ightarrow \! \pi^+ \pi^-)$	0.07	—
$\operatorname{Total}_{K^0_S} \mathcal{B}_{K^0_S} \mathcal{B}_{K^0_S} \mathcal{B}_{\pi^+\pi^-} / \mathcal{B}_{K^0_S} \mathcal{B}_{\pi^+\pi^-}$	+2.0 -2.2)7 23

TABLE II. Systematic uncertainties (absolute) for A_{CP} .

Sources	(%)
Fixed PDF parameters	± 0.01
$D^0 \!\rightarrow\! K^0_S K^0_S K^0_S$ background	$^{+0.02}_{-0.03}$
Broken charm background	$^{+0.09}_{-0.07}$
Binning in $\cos \theta^*$	$^{+0.33}_{-0.51}$
Reconstruction asymmetry $A_{\epsilon}^{\pi_s}$	± 0.01
Fixed background fractions	± 0.04
Total	$^{+0.35}_{-0.52}$

0.6 0.8 1 Michel Bertemes - BNL

10⁻²

0.6

0.8

TABLE III. Systematic uncertainties (absolute) for the a_{CP}^T measurement.

Source	(%)
Fixed PDF parameters	0.010
$D^0 \rightarrow K^0_S K^0_S K^0_S$ background	$^{+0.000}_{-0.013}$
Broken charm background	$^{+0.014}_{-0.040}$
Efficiency variation with C_T, \overline{C}_T	$^{+0.14}_{-0.11}$
Total	$+0.14 \\ -0.12$

decays and observation of $D_s^+ \rightarrow K^+ K^- K_S^0 \pi^+$

Contributions to the absolute systematic uncertainty for $a_{CP}^{T\text{-odd}}$ in units of % for each mode.

Sources	$D^+(CS)$	$D_s^+(\mathrm{CF})$	$D^+(CF)$
Fit model	0.01	0.02	0.12
Detector bias	0.32	0.32	0.32
Efficiency variation with C_T , \overline{C}_T	0.03	0.20	0.06
Total	0.32	0.38	0.35

TABLE III. Systematic uncertainties for $a_{CP}^{T\text{-odd}}$ in % for five $D_{(s)}^+$ decay channels: (a) $D^+ \to K^- K^+ \pi^+ \pi^0$; (b) $D^+ \to K^+ \pi^- \pi^+ \pi^0$; (c) $D^+ \to K^- \pi^+ \pi^+ \pi^0$; (d) $D_s^+ \to K^+ \pi^- \pi^+ \pi^0$; and (e) $D_s^+ \to K^- K^+ \pi^+ \pi^0$.

Decay channel	(a)	(b)	(c)	(d)	(e)
C_T -dependent efficiency	0.13	0.02	0.08	0.02	0.41
C_T resolution	0.01	0.06	0.01	0.07	0.02
PDF parameters	0.01	0.07	0.01	0.07	0.04
Mass resolution	0.03	0.01		0.02	0.11
Fit bias	0.01	0.07	0.00	0.06	0.02
Total syst.	0.13	0.12	0.08	0.12	0.43

- K_s^0 momentum in lab frame.
- Distance along the z axis between two track helices at their closest approach.
- Flight length in x-y plane.
- Angle between K_s^0 momentum and the vector joining IP to K_s^0 decay vertex.
- Angle between π momentum and laboratory frame direction in K_s^0 rest frame.
- Distance of closest approach in the x-y plane between the IP and the two pion helices.
- Total number of hits in SVD (silicon vertex detector) and CDC (central drift chamber) for two pion tracks.

 $A_{\varepsilon}^{\pi_s}$ weights for A_{CP} :

$$A_{\varepsilon}^{\pi_{s}} = \frac{\varepsilon_{f}^{+} - \varepsilon_{f}^{-}}{\varepsilon_{f}^{+} + \varepsilon_{f}^{-}}$$

 ε_f^{\pm} : reconstruction efficiency for π_{slow}^{\pm}

$$w_{D^0} = 1 + A_{\varepsilon}^{\pi_s} = \frac{2\varepsilon_f^+}{\varepsilon_f^+ + \varepsilon_f^-}$$

 $w_{\overline{D}^0} = 1 - A_{\varepsilon}^{\pi_s} = \frac{2\varepsilon_f^-}{\varepsilon_f^+ + \varepsilon_f^-}$

Efficiency for D^0 and \overline{D}^0 become same after applying these weights

Michel Bertemes - BNL