

Status of and prospects for e⁺e⁻ measurements

James (Jim) Libby on behalf of Belle and Belle II

Indian Institute of Technology Madras

Outline: The Way of St James

Outline: The Way of St James

18.9.2023

0) Charm inc.

1) Belle and Belle II

Will the next generation perform as well as the first?

Why *B* physics at the Y(4S)?

• The process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$ a.k.a. continuum

Why *B* physics at the Y(4S)?

- The process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$ a.k.a. continuum
- Advantages compared to proton-proton
 - Low average multiplicity neutral reconstruction
 - Constrained kinematics good missing momentum reconstruction
 - Correlated $B^0 \overline{B}{}^0$ high flavour-tagging efficiency
 - Open trigger 100% efficient for almost all *B* decays

Why *B* physics at the Y(4S)?

- The process $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ has comparable cross section to $e^+e^- \rightarrow q\overline{q}, q = u, d, s, c$ a.k.a. continuum
- Advantages compared to proton-proton
 - Low average multiplicity neutral reconstruction
 - Constrained kinematics good missing momentum reconstruction
 - Correlated $B^0 \overline{B}{}^0$ high flavour-tagging efficiency
 - Open trigger 100% efficient for almost all *B* decays
- Disadvantages compared to proton-proton
 - Cross section 150,000 times smaller
 - No B_s, B_c, or $\Lambda_{\rm b}$ produced can run at Y(5S) for B_s
 - No boost in the c.m. frame partially overcome by the asymmetric beams

Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay

Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay

• SuperKEKB + Belle II

- nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
- World record 4.7×10³⁴ cm⁻²s⁻¹
- Target 6×10³⁵ cm⁻²s⁻¹
- So far 362 fb⁻¹ at Y(4S)
- + 42 fb⁻¹ off-resonance to characterize continuum

Detectors and data samples

- Belle + BaBar collected
 0.71+0.43=1.14 ab⁻¹ Y(4S) samples
 - Many achievements: confirmation of KM mechanism, b→cτν, direct CPV in B decay
- SuperKEKB + Belle II
 - nanobeam scheme to increase instantaneous luminosity by factor 30 to collect multi-ab⁻¹ sample
 - World record 4.7×10³⁴ cm⁻²s⁻¹
 - Target 6×10³⁵ cm⁻²s⁻¹
 - So far 362 fb⁻¹ at Y(4S)
 - + 42 fb⁻¹ off-resonance to characterize continuum

B-factory analysis essentials 1 – beam constrained kinematics

From Mirco Dorigo's talk WG5

B-factory analysis essentials 2 – continuum suppression

- In the c.m. frame B mesons almost at rest when they decay
 - isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
 - jetlike distribution of particles

B-factory analysis essentials 2 – continuum suppression

CKM 2023

- In the c.m. frame B mesons almost at rest when they decay
 - isotropic distribution of particles
- In the c.m. frame continuum qq back-to-back
 - jetlike distribution of particles
- Shape variables, e.g., thrust and Fox-Wolfram moments, help distinguish topologies
- Ideal task for machine-learning
- Output oft used as a fit variable

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
 - $B \rightarrow D^{(*)0} m \pi^{\pm} n \pi^{0}$, where m ≥ 1 n ≥ 0
- Reconstruct other B as signal with missing energy

.

B-factory analysis essentials 3: hadronic tag

- Full-reconstruction of one B decay in a large number of high BF modes on one side
 - $B \rightarrow D^{(*)0} \, m \pi^{\pm} n \pi^{0}$, where m $\geq 1 n \geq 0$
- Reconstruct other B as signal with missing energy
- Machine learning algorithm used to boost efficiency as much as possible B⁺ → K⁺ T⁻
 - <u>Comput. Softw. Big Sci. 3 (2019) 1, 6</u>
- Total efficiency < 1% but a powerful tool
- Requires calibration

B-factory analysis essentials 4 – vertexing and flavour tagging

$$B^{0} \xrightarrow{f_{CP}} f_{CP} \propto |V_{td}|^{2} e^{2i\phi_{1}}$$

B-factory analysis essentials 4 – vertexing and flavour tagging

B-factory analysis essentials 4 – vertexing and flavour tagging

2) CP violation

CKM 2023 12th INTERNATIONAL WORKSHOP ON THE CKM UNITARITY TRIANGLE

SANTIAGO DE COMPOSTELA 18-22 SEPTEMBER 2023 Belle II paper in preparation

Y. Uematsu's talk - WG4

Time-dependent *CP* violation - $B^0 \rightarrow \eta' K_s^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \rightarrow c\bar{c}s$ transitions such as $B^0 \rightarrow J/\psi K_S^0$

Belle II paper in preparation

Y. Uematsu's talk - WG4

Time-dependent *CP* violation - $B^0 \rightarrow \eta' K_S^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \to c\bar{c}s$ transitions such as $B^0 \to J/\psi K_S^0$
- Reconstructing $\eta' \rightarrow \eta(\gamma\gamma)\pi^+\pi^-$ and $\eta' \rightarrow \rho(\pi^+\pi^-)\gamma$ we select 829 ± 35 events in 362 fb⁻¹ sample
 - 3D fit to ΔE , m_{BC} and continuum suppression output

Belle II paper in preparation

Y. Uematsu's talk - WG4

Time-dependent *CP* violation - $B^0 \rightarrow \eta' K_S^0$

- Decay may also have a BSM phase as it is a gluonic penguin
 - alter the value of ϕ_1 from that measured in $b \rightarrow c\bar{c}s$ transitions such as $B^0 \rightarrow J/\psi K_S^0$
- Reconstructing $\eta' \rightarrow \eta(\gamma\gamma)\pi^+\pi^-$ and $\eta' \rightarrow \rho(\pi^+\pi^-)\gamma$ we select 829 ± 35 events in 362 fb⁻¹ sample
 - 3D fit to ΔE , m_{BC} and continuum suppression output
- sin $2\phi_1 = 0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV and that from $b \rightarrow c\bar{c}s$ result

Belle II paper in preparation and <u>arXiv:2305.07555</u> (accepted PRL)

$B \rightarrow K\pi$ isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – <u>PRD 59, 113002 (1999)</u>

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

• All inputs measured at Belle II including 'no vertex' time-dependent *CP* asymmetry for $B \rightarrow K^0{}_s\pi^0 - 362 \text{ fb}^{-1}$ sample

Belle II paper in preparation and PRL 131, 111803 (2023)

$$B \rightarrow K\pi$$
 isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – <u>PRD 59, 113002 (1999)</u>

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

• All inputs measured at Belle II including 'no vertex' time-dependent *CP* asymmetry for $B \rightarrow K^0_{\ S} \pi^0 - 362 \text{ fb}^{-1}$ sample

 $B = (14.2 \pm 0.4 \pm 0.9) \times 10^{-6}$ Large π^{0} efficiency syst.

> $A_{K^0} = -0.01 \pm 0.12 \pm 0.05$ Combination of time-dependent and time-integrated analyses

> > CKM 2023

M. Dorigo's talk – WG5

Belle II paper in preparation and <u>arXiv:2305.07555</u> (accepted PRL)

$$B \rightarrow K\pi$$
 isospin sum rule

Relates these various penguin modes to give a null test of the SM with O(1%) SM precision – <u>PRD 59, 113002 (1999)</u>

$$I_{K\pi} = (-3 \pm 13 \pm 5)\%$$

Agrees with SM. Competitive with WA: $(-13 \pm 11)\%$.

Large π^0 efficiency syst.

 $A_{K^0} = -0.01 \pm 0.12 \pm 0.05$ Combination of time-dependent and time-integrated analyses

M. Dorigo's talk – WG5

CKM 2023

New for CKM – paper in preparation

γ/ϕ_3 : power of Belle + Belle II

- Standard candle in the SM
 - Tree-level only + no theory unc.
- LHCb leads the way: γ=(63.8±3.6)°
 - LHCB-CONF-2022-003

K. Trabelsi's talk – WG5

New for CKM – paper in preparation

γ/ϕ_3 : power of Belle + Belle II

- Standard candle in the SM
 - Tree-level only + no theory unc.
- LHCb leads the way: $\gamma = (63.8 \pm 3.6)^{\circ}_{B}$
 - <u>LHCB-CONF-2022-003</u>
- Several Belle (711 fb⁻¹) + Belle II measurements (varying sample size) – total O(1 ab⁻¹)
 - $D \rightarrow K_{S}^{0} hh \underline{JHEP 02} (2022) 063$
 - $D \rightarrow K^0_{S} K\pi$ <u>accepted by JHEP</u>
 - $D \rightarrow K_{s}^{0} \pi^{0}$, KK <u>arXiv:2308.05048</u>
 - + Belle-only $D \rightarrow K\pi$ and others
- A few ab⁻¹ will give a good cross check of this SM parameter

K. Trabelsi's talk – WG5

A

3) V_{xb}

Inclusive vs. exclusive

Theory + Experiment

C. Schwanda talk – WG2

Belle paper in preparation

Angular coefficients in $B \rightarrow D^* lv$ and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
 - overall proportionality to $|V_{cb}|^2$
 - w≥1 is the hadronic recoil parameter relates to mom. transfer to the leptonic system

C. Schwanda talk – WG2

Belle paper in preparation

Angular coefficients in $B \rightarrow D^* lv$ and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
 - overall proportionality to $|V_{cb}|^2$
 - w≥1 is the hadronic recoil parameter relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time using full Belle 711 fb⁻¹ sample
 - hadronically tagged

Belle paper in preparation

Angular coefficients in $B \rightarrow D^* lv$ and V_{cb}

- Measure 4D-differential distribution in terms of decay angles and w
 - overall proportionality to $|V_{cb}|^2$
 - w≥1 is the hadronic recoil parameter relates to mom. transfer to the leptonic system
- Extract 12 angular coefficients of the distribution in bins of w for the first time using full Belle 711 fb⁻¹ sample
 - hadronically tagged
- Fit performed to coefficients in different form-factor parameterizations and with LQCD inputs to extract V_{cb} as well as parameters of the form-factor model
 - WA BF also taken externally

Commercial break

C. Schwanda (exclusive) WG2 M. Prim (inclusive) WG1+2

https://indico.belle2.org/event/9402/

4) Lepton flavour/universality violation and rare decays

Beyond CKM

Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$
 - A complementary alternative to R(D^(*))
- Hadronic-tagging method with a 189 fb⁻¹ Belle II sample

Measurement of R(X)

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$

 - A complementary alternative to $R(D^{(*)})$
- Hadronic-tagging method with a 189 fb⁻¹ Belle II sample
- Use missing-mass squared and lepton momentum to isolate signal above $B \rightarrow Xlv$ background
- Background templates calibrated to control samples and sidebands

- Inclusive ratio $R(X) = \frac{BF(B \to X\tau\nu)}{BF(B \to Xl\nu)}$
 - A unique alternative to R(D^(*))

 π^+

Systematics dominated by control sample reweighting procedures First at B factories

Agrees with SM prediction and the WA R(D^(*)) values

 Background templates calibrated to control samples and sidebands

B. Kowalski WG2

Hadronic Tag

e+

····Υ(4S)·····>

Signal Side

 B^0

יקיכ

Belle search for $B^+ \to K^+ \tau^\pm l^\mp$

- Lower bounds on branching fractions in U(1) leptoquark models at O(10⁻⁷)
 - PRD 104, 055017 (2021)

G. Mohanty WG3

Belle search for $B^+ \to K^+ \tau^\pm l^\mp$

- Lower bounds on branching fractions in U(1) leptoquark models at O(10⁻⁷)
 - PRD 104, 055017 (2021)
- Belle 711 fb⁻¹ data sample
- Hadronic tagging then use tag, kaon and lepton four momentum to workout recoil mass

G. Mohanty WG3

Belle search for $B^+ \to K^+ \tau^\pm l^\mp$

World

leading

- Lower bounds on branching fractions in U(1) leptoquark models at O(10⁻⁷)
 - PRD 104, 055017 (2021)
- Belle 711 fb⁻¹ data sample
- Hadronic tagging then use tag, kaon and lepton four momentum to workout recoil mass

$$\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-) < 0.59 \times 10^{-5}$$

$$\mathcal{B}(B^+ \to K^+ \tau^+ e^-) < 1.51 \times 10^{-5}$$

$$\mathcal{B}(B^+ \to K^+ \tau^- \mu^+) < 2.45 \times 10^{-5}$$

$$\mathcal{B}(B^+ \to K^+ \tau^- e^+) < 1.53 \times 10^{-5}$$

 $B^+ \rightarrow K^+ \tau \mu^+$ Data 12 Signal (90% UL) Background 10 All components Events/(47 MeV/c²) 8 1.2 1.6 1.8 2.2 1.4 2 2.4 M_{recoil} (GeV/c²) 46 CKM 2023

18.9.2023

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Motivation

- Well known in SM but very sensitive to BSM enhancements
 - $B(B \rightarrow K^+ vv) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$

$B^+ \to K^+ \nu \overline{\nu}$: Motivation

- Well known in SM but very sensitive to BSM enhancements
 - $B(B \rightarrow K^+ vv) = (5.6 \pm 0.4) \times 10^{-6} [arXiv:2207.13371]$
- Challenging experimentally
 - Low branching fraction with large background
 - No peak two neutrinos leads to no good kinematic constraint

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Analysis strategy

- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag

$B^+ ightarrow K^+ u \overline{ u}$: Analysis strategy

- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag
- Use event variables to suppress background
 - Inclusive:
 - 1. preselect events where missing momentum and signal kaon well reconstructed
 - 2. First boosted decision tree (BDT1): 12 variables
 - 3. Second BDT2: 35 variables 3 times sensitivity

$B^+ ightarrow K^+ u \overline{ u}$: Analysis strategy

- Two methods: an inclusive tag (8% efficiency) and conventional hadronic tag (0.4% efficiency)
 - many common features except tag
- Use event variables to suppress background
 - Inclusive:
 - 1. preselect events where missing momentum and signal kaon well reconstructed
 - 2. First boosted decision tree (BDT1): 12 variables
 - 3. Second BDT2: 35 variables 3 times sensitivity
 - 4. BDT2 fit extraction variable in bins of $\nu \bar{\nu}$ mass-squared q²
 - Hadronic tag: single BDT for fit
 - key variable any additional calorimeter energy other than K+tag

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Inclusive signal extraction

- 1 signal and 7 background templates from simulation
 - corrected using control samples
- Profile maximum likelihood fit inc. systematic uncertainties
- Continuum template constrained by offresonance

(3 bins in $q_{\rm rec}^2$) x (4 bins in μ (BDT₂))

S. Stefkova WG3 Belle II paper in preparation $B^+ \rightarrow K^+ \nu \overline{\nu}$: Inclusive signal extraction

(3 bins in q_{rec}^2) x (4 bins in $\mu(BDT_2)$)

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Efficiency validation

$B^+ \rightarrow K^+ \nu \overline{\nu}$: Efficiency validation

Ratio between selection on data and simulation for the control sample 1 with 3% uncertainty

- An example of a difficult background is charmless $B^+ \rightarrow K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal

- An example of a difficult background is charmless $B^+ \rightarrow K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal
- Dedicated studies $B^+ \rightarrow K^+ K^0_S K^0_S$ show good modelling
 - generous systematics assigned

- An example of a difficult background is charmless $B^+ \rightarrow K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal
- Dedicated studies $B^+ \rightarrow K^+ K^0_S K^0_S$ show good modelling
 - generous systematics assigned
- Similar studies for $B^+ \rightarrow K^+ n \bar{n}, B^+ \rightarrow K^+ K_L^0 K_S^0$, pion-enriched sideband, and so on

- An example of a difficult background is charmless $B^+ \rightarrow K^+ K_L^0 K_L^0$, where K_L^0 mesons escape detection
 - has an order of magnitude larger BF than signal
- Dedicated studies $B^+ \rightarrow K^+ K^0_S K^0_S$ show good modelling
 - generous systematics assigned
- Similar studies for $B^+ \rightarrow K^+ n \bar{n}, B^+ \rightarrow K^+ K_L^0 K_S^0$, pion-enriched sideband, and so on

Just a snapshot:

Team sheet

- 13 parallel talks Belle/Belle II
- 1. WG1: Charmed meson lifetimes and prospects for future determinations of V_{cs} , V_{cd} at Belle / Belle II: Alan Schwarz
- 2. WG1+WG2: Recent measurements of inclusive⁹. WG4: Measurement of sin2 ϕ_1 and sin2 ϕ_1 SL decays at the beauty and charm factories (including BESIII): Markus Prim
- 3. WG2: Exclusive SL B-decays at Belle/Belle II: Christoph Schwanda
- 4. WG2: LFU tests at Belle / Belle II: Bob Kowalewski
- 5. WG2+WG3: Recent results on leptonic/rare decays at Belle/Belle II: Justine Serrano
- 6. WG3: $b \rightarrow s/d \gamma$ at Belle/Belle II : Rahul Tiwary

7. WG3: B \rightarrow K + invisible at Belle/Belle II: Slavomira Stefkova

Belle II 37 new results since CKM 2021 targeting journals

Belle: approximately 50 papers submitted since CKM 2021

- 8. WG3: LFV B decays (inc. LHCb): Gagan Mohanty
- effective at Belle/Belle IIYuma Uematsu 10.WG4+WG5: New results of the CKM angle γ/ϕ_3 at Belle/Belle II: Karim Trabelsi
- 11. WG5: Measurement of branching ratios in hadronic B to charm decays at Belle/Belle II: Vidya Sagar Vobbilisetti
- 12.WG5: Direct CP violation measurements with charmless B decays at Belle/Belle II: Mirco Dorigo
- **13.WG7: CPV in D meson decays at Belle/Belle II: Michel Bertemes**

Not discussed in this summary

Just a snapshot:

Team sheet

- 13 parallel talks Belle/Belle II
- 1. WG1: Charmed meson lifetimes and prospects for future determinations of V_{cs} , V_{cd} at Belle / Belle II: Alan Schwarz
- 2. WG1+WG2: Recent measurements of inclusive⁹. WG4: Measurement of sin2 ϕ_1 and sin2 ϕ_1 SL decays at the beauty and charm factories (including BESIII): Markus Prim
- 3. WG2: Exclusive SL B-decays at Belle/Belle II: Christoph Schwanda
- 4. WG2: LFU tests at Belle / Belle II: Bob Kowalewski
- 5. WG2+WG3: Recent results on leptonic/rare decays at Belle/Belle II: Justine Serrano
- 6. WG3: $b \rightarrow s/d \gamma$ at Belle/Belle II : Rahul Tiwary

+2 plenary = 15!

7. WG3: B \rightarrow K + invisible at Belle/Belle II: Slavomira Stefkova

Belle II 37 new results since CKM 2021 targeting journals

Belle: approximately 50 papers submitted since CKM 2021

- 8. WG3: LFV B decays (inc. LHCb): Gagan Mohanty
- effective at Belle/Belle IIYuma Uematsu 10.WG4+WG5: New results of the CKM angle γ/ϕ_3 at Belle/Belle II: Karim Trabelsi
- 11. WG5: Measurement of branching ratios in hadronic B to charm decays at Belle/Belle II: Vidya Sagar Vobbilisetti
- 12.WG5: Direct CP violation measurements with charmless B decays at Belle/Belle II: Mirco Dorigo
- **13.WG7: CPV in D meson decays at Belle/Belle II: Michel Bertemes**

Not discussed in this summary

5) Prospects and conclusion

Belle II: after current shutdown

- We have not collected the sample size planned to date
 - Beam conditions
- Since summer 2022 shutdown for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
 - two-layer pixel detector installed
- On target to restart SuperKEKB in December
- Path to 2×10^{35} cm $^{-2}$ s $^{-1}$ but new final focus to go beyond
- Proposed upgrade from 2027
 - J. Baudot FPCP 2023

CKM 2023

Far future: FCC-ee

Far future: FCC-ee

Far future: FCC-ee

	Y(4S)	рр
All hadron species		\checkmark
High boost		\checkmark
Enormous production x-sec		\checkmark
Negligible trigger losses	~	
Low background environment	✓	
Initial energy constraint	✓	

Ζ

(✓)

Eur. Phys. J. Plus 136 (2021) 837

Far future: FCC-ee

	1(45) pp
All hadron species	~
High boost	\checkmark
Enormous production x-sec	\checkmark
Negligible trigger losses	\checkmark
Low background environment	\checkmark
Initial energy constraint	\checkmark

VIAC

Ζ

(✓)

18.9.2023

Another use of ML in HEP

CKM 2045-if I'm lucky

Conclusion

- e⁺e⁻ has an important role to play and a bright future
 - Belle legacy continues
 - Even while Belle II is catching up, we are producing competitive and exciting results
 - Sometimes world leading with less data
 - Time-dependent CP violation in $B \rightarrow K^0 \pi^0 \gamma Y$. Uematsu WG4
 - A lot more to come once we enter the "10³⁵ era"
- Upgrade plans for reaching the 10s of ab⁻¹
Backup

Belle II upgrade

- Many plans and possibilities
- Work on a Conceptual Design Report begun to be delivered in 2023
- Followed by a Technical Design Report in 2024
- Shutdown end of 2027 for installation
- Accumulate 10s of ab⁻¹ into the 2030s

0	Lingrada ideas scope and tashnology	Timo coolo
	opgrade ideas scope and technology	nime scale
OMAPS	Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS developed for ATLAS ITK.	LS2
OI-DUTIP	Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI	LS2
hin Strips	Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and potentially the inner part of the CDC	LS2
CDC	Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk	< LS2
ОР	Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option	LS2 and later
CL	Crystal replacement with pure CsI and APD; pre-shower; replace PIN-diodes with APD photosensors.	> LS2
(LM	Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF	LS2 and later
rigger	Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives	< LS2 and later
TOPGAP	Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger	> LS2
РС	TPC option under study for longer term upgrade	> LS2

Belle III + ChiralSuperKEKB > 2030+

J. Baudot FPCP 2023

s and

CKM 2023