begindocument/before

Measurement of Time-integrated WS-to-RS ratio of the "Wrong-Sign" $D^0 \longrightarrow K^+ \pi^- \pi^0$ decay at Belle II

Chanchal Sharma^{1*} and Kavita Lalwani¹ (for the Belle II Collaboration) ¹ Malaviya National Institute of Technology Jaipur, Jaipur 302017, India

Introduction

The mixing and CP violation in the charm sector is projected to be very small in the standard model, and thus, they constitute a sensitive probe for potential new physics contributions [1]. One of the most promising channels at Belle II [2] is the "Wrong-Sign" (WS) decay $D^0 \to K^+ \pi^- \pi^0$, which can be produced by two interfering processes namely direct doubly Cabibbo-suppressed decay of the D^0 meson, or through D^0 - D^0 mixing followed by a Cabibbo-favored decay of the D^0 meson. The WS decay $D^{*+} \rightarrow D^0 \pi^+$ where $D^0 \rightarrow$ $K^+\pi^-\pi^0$ is one of the best channels to study charm mixing and search for the CP violation in $D^0 - \overline{D^0}$ oscillations. Measuring the timedependent decay rate of wrong-sign decays allows us to separate the two processes and measure the mixing rate. The goal of this analysis to measure the time-integrated WS-to-RS ratio of the "wrong-sign" $D^0 \to K^+ \pi^- \pi^0$ decay in the simulation at the integrated luminosity of 1ab $^{-1}$ for the Belle II experiment. The Belle II [2] is the upgraded experimental facility at SuperKEKB [3], KEK, Japan.

Dataset and Selection Criteria

The WS signal decay $D^{*+} \rightarrow D^0(\rightarrow K^+\pi^-\pi^0)\pi^+$ are reconstructed alongside with the corresponding "Right-Sign" (RS) decay $D^{*+} \rightarrow D^0(\rightarrow K^-\pi^+\pi^0)\pi^+$, which is used as control channel in the simulation at the integrated luminosity of 1 ab⁻¹ at Belle II. The same criteria used to reconstruct the WS decays are also used for the RS decays. The candidates $D^0 \rightarrow K^{\pm}\pi^{\mp}\pi^0$ are reconstructed from charged kaon, and pion having at least one hit in Silicon Vertex Detector (SVD) [2] and 20 hits in Central Drift Chamber (CDC) [2], combined with $\pi^0 \rightarrow \gamma\gamma$, satisfying the range [0.12, 0.145] GeV/c^2 . The D^0 is thus reconstructed by combining with low momentum pions, which has at least one hit in CDC to form $D^{*+} \rightarrow D^0\pi^+$ decay. The criteria on the center of mass momentum of D^{*+} is applied to be greater than 2.5 GeV/c to remove the background contribution coming from D^0 meson from B decays.

Physics Analysis of $D^{*+} \rightarrow D^0(\rightarrow K^{\pm}\pi^{\mp}\pi^0)\pi^+$

Due to the different amplitude models for RS and WS samples, the reconstruction efficiency over the Dalitz plot [5] is required. In this analysis, we have used a 60×10^{-3} PhaSe SPace (PHSP) simulation sample, which comprises both D^{*+} and D^{*-} mesons in the generation. The efficiency is then evaluated as a function of two variables, namely invariant mass of $m(\pi,\pi^0)$ and helicity angle $\cos\theta$ (π,π^0) (angle between the π^0 and K directions in the rest frame of π and π^0). The efficiency of the Dalitz plot can be parametrized as N_{rec}/N_{gen} as shown in figure 1, where N_{rec} and N_{gen} are the reconstructed candidates over the Dalitz plot and generated candidates. To correct the efficiency variation over this plane, we reweighted the generic MC events with 1/efficiency, where the efficiency is the relative efficiency over this plane.

The background components are identified for $D^0 \to K^{\pm} \pi^{\mp} \pi^0$ candidates, and a two-

^{*}Electronic address: 2018RPY9026@mnit.ac.in

FIG. 1: Efficiency across the Dalitz plot evaluated as a function of $m(\pi,\pi^0)$ invariant mass and helicity angle $\cos\theta$ (π,π^0).

dimensional binned fit $(m(D^0), m(D^0\pi^+))$ is performed to determine the signal yield, where $m(D^0\pi^+)$ is the mass of the D^* but with no mass hypothesis on the D^0 daughters. The Probability Density Function (PDF) for signal component corresponding to $m(D^0)$ and $m(D^0\pi^+)$ are Double Gaussian and Johnson [4]. All fit parameters are fixed to the values obtained from separate fits to all signal and background components. The efficiency corrected fit results of $m(D^0)$ and $m(D^0\pi^+)$ distribution for WS sample are reported in figure 2.

Results

We have rediscovered the wrong-sign $D^0 \rightarrow K^+\pi^-\pi^0$ decay in simulation. The observed yield of WS and RS Sample are N($D^0 \rightarrow K^+\pi^-\pi^0$) = 14322 ± 262 and N($D^0 \rightarrow K^-\pi^+\pi^0$) = 6713521 ± 4030, where the uncertainties are only statistical. The ratios of WS to RS yields are measured to be,

$$\frac{N(D^0 \to K^+ \pi^- \pi^0)}{N(D^0 \to K^- \pi^+ \pi^0)} = (2.13 \pm 0.04) \times 10^{-3},$$
(1)

The results agree with the ratio in simulation 2.12×10^{-3} .

References

 R.L. Workman et al., Review of particle physics, Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

FIG. 2: Distribution of $m(D^0)$ (upper) and $m(D^0\pi^+)$ (lower) for WS $D^0 \to K^+\pi^-\pi^0$ candidates reconstructed in simulation, with fit projections overlaid.

- [2] Altmannshofer, W. et al., Belle II collaboration, The Belle II Physics Book, BELLE2-PUB-PH-2018-001.
- [3] Akai et al., SuperKEKB collider, Nucl. Instrum. Meth., 907, 188-199 (2018).
- [4] Johnson, N. L., Systems of frequency curves generated by methods of translation, Biometrika 36, 149-176 (1949).
- R. H. Dalitz, "On the analysis of -meson data and the nature of the -meson" Phil. Mag. 44, 1068 (1953).