

Physics Prospects at Belle II

Akimasa Ishikawa (Tohoku University)

PASCOS 2016: 22nd International Symposium on Particles, Strings and Cosmology at Quy Nhon, Vietnam

Either cases, flavor physics is crucial for NP.

Success of B factories

- Belle@KEKB and Babar@PEPII
 - Integrated luminosity : >1ab⁻¹ by Belle and ~550fb⁻¹ by Babar

Observation of CPV in B meson system and confirmation of

CKM picture.

But still room for NP

Anomalies in B Decays

- ~3σ anomalies at Belle/Babar/LHCb
 - Ratio of B \rightarrow D(*) τv to B \rightarrow D(*)Iv
 - R_K : Ratio of B→Kμμ to B→Kee

Lepton Flavor Violation in B decays?

- Angular distribution of B→K*II : P5'
- S. L. Glashow et al. PRL 114 091801 (2015)
- |V_{ub}| from inclusive and exclusive decays
- Etc.
- The hints should be tested at new experiments

 $B \rightarrow K\mu\mu/B \rightarrow Kee$

Angular analysis

SuperKEKB and Belle II

Search for new physics with 100 billion B, charm and τ decays Super flavor factory !

New accelerator after LHC

SuperKEKB

- Upgraded from KEKB
 - Which is the world highest luminosity machine.
- Design Luminosity: 8x10³⁵ cm⁻²s⁻¹
 - 40 times larger than KEKB
 - 20 times smaller beam size
 - 2 times larger beam current
- Asymmetric energy : 7GeV(e⁻) x 4GeV(e⁺)
 - Boost factor smaller to reduce beam background

Gray: recycled, color: newly installed

Parameter		KEKB		SuperKEKB		unita
		LER	HER	LER	HER	units
beam energy	E _b	3.5	8	4	7	GeV
CM boost	β _Y	0.425		0.28		
half crossing angle	ф	11		41.5		mrad
horizontal emittance	εχ	18	24	3.2	4.6	nm
emittance ratio	К	0.88	0.66	0.37	0.40	%
beta-function at IP	β_x */ β_y *	1200/5.9		32/0.27	25/0.30	mm
beam currents	l _b	1.64	1.19	3.6	2.6	Α
beam-beam parameter	ξ _y	129	90	0.881	0.0807	
beam size at IP	σ_x^*/σ_y^*	100/2		10/0.059		μm
Luminosity	よ	2.1 x 10 ³⁴		8 x	10 ³⁵	cm ⁻² s ⁻¹

Schedule of SuperKEKB

- Phase 1 : beam commissioning
 - Successfully finished on 28th Jun 2016
- Phase 2: beam commissioning and physics run with Belle II w/o VTX
 - On Y(4S) and Y(6S)
- Phase 3: Luminosity tuning and physics run with full Belle II detector

History of Phase 1 Operation

Luminosity*

.000[/nb/sec] @03/01 10:58

Trouble of

2/1/2016 9:00 - 6/25/2016 9:00 IST

Belle II

- All sub-detectors are upgraded
 - Except for ECL crystals and a part of Barrel KLM

Belle II

- Similar or better performance than Belle even under 20 times higher backgrounds
 - − Larger VTX detector → Better Ks efficiency for TDCPV in B → Ks $\pi^0\gamma$
 - TOP and ARICH provide better K/ π separation : B $\rightarrow \pi\pi$, B \rightarrow DK, B $\rightarrow \rho^0 \gamma$

Belle II

- Almost all B decay events are saved to tape
 - Even invisible B can be searched.

Status of Belle II Detector

- 20 May 2016: TOP detector installed
- Now: mapping of magnetic field on-going
- Aug 2016 : CDC installation → ready for Phase2

20160715

Physics at Belle II

- There are so wide physics program at Belle II
 - Flavor physics
 - Including hadronic vacuum polarization for muon g-2
 - Direct searches of NP
 - Dark Photon/Higgs etc.
 - Electroweak measurements
 - Exotic hadron and hadron spectroscopy
- In this talk, focusing on NP search with flavor observables
 - $\Delta B=2$ loop process : $B^0-\overline{B^0}$ mixing
 - Δ B=1 loop processes : Penguin B decays
 - B decays involving τ
 - Charm and τ decays

$\Delta B=2$ loop process : B^0-B^0 mixing

B⁰-B⁰ Mixing

- $B^0-\overline{B^0}$ mixing is allowed at loop diagram in the SM.
 - Loop is dominated by top quark and W
- New particles, such as SUSY particles or charged Higgs, can enter in the loop
- Two approaches to search for NP with B⁰-B⁰ mixing (assuming no NP in other tree level processes)
 - Unitarity Triangle
 - NP amplitude and phase (h and σ)

$$M_{12}^{d,s} = (M_{12}^{d,s})_{SM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$$

T. Goto et al, Phys.Rev. D53 (1996) 6662-6665

Unitarity Triangle

- To search for the NP in mixing, we use so called Unitarity Triangle (UT)
- From the Unitarity of CKM matrix, triangle can be drawn onto complex plain.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

 If UT drawn with tree measurements is not consistent with the one with mixing loop measurements, observation of NP in the mixing

Sensitivities of UT Observables

- Loop processes (ϕ_1, ϕ_2) are better precision than tree
 - |Vtd| from Δm_d is not shown since this is already dominated by Lattice QCD uncertainty
- Improvement of tree processes (ϕ_3 , $|V_{ub}|$) are crucial at Belle II

		Observables	Belle	В	elle II
			(2014,	$5~{\rm ab}^-$	$^{1}~50~{\rm ab^{-1}}$
UT angles	$\beta = \phi_1$	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (1.4^{\circ})$	0.7°	0.4°
	$\alpha = \phi_2$	α [°]	$85 \pm 4 \text{ (Belle+BaBar)}$	2	1
	$\gamma = \phi_3$	γ [°] $(B \to D^{(*)}K^{(*)})$	68 ± 14	6	1.5
UT sides		$ V_{cb} $ incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%	
		$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{\rm ex.} \pm 2.7\%_{\rm th.})$	1.8%	1.4%
		$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{\mathrm{ex.}} \pm 2.5\%_{\mathrm{th.}})$	3.4%	3.0%
		$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 10.8\%)$	4.7%	2.4%

UT (ϕ_3 and |Vub| only)

• $|V_{ub}|$ and ϕ_3 can be improved by factors of 3 and 8, respectively.

NP Amplitude in B⁰-B⁰ Mixing

- ϕ_1 , ϕ_2 , Δm_d , a^{SL}_d \longrightarrow $M_{12}^{d,s} = (M_{12}^{d,s})_{SM} \times (1 + h_{d,s} e^{2i\sigma_{d,s}})$
- Assuming no NP in Tree
- O(0.1) NP can be excluded or observed by Belle II

$$h \simeq 1.5 \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \frac{(4\pi)^2}{G_F \Lambda^2} \simeq \frac{|C_{ij}|^2}{|\lambda_{ij}^t|^2} \left(\frac{4.5 \,\text{TeV}}{\Lambda}\right)^2$$

 C_{ij} > 20TeV (2PeV) for tree level NP C_{ij} > 2 TeV (0.2PeV) for loop level NP assuming λ_{ij} is CKM like (unity)

20160715 $\sigma = \arg(C_{ij} \lambda_{ij}^{t*}),$

Δ B=1 loop processes : Penguin Decays

Time dependent CPV in b→sqq decays

- b→s QCD penguin
 - In the SM, the CPV parameter sin2φ₁ eff should be consistent with sin2φ₁ with B→J/ψK⁰
 - New source of CPV phases if new particles enter in the loop
 - If deviated from $\sin 2\phi_1$, observation of NP

- B → φKs
- B→η'Ks
- − B→KsKsKs
- ~2% theoretical error

• Current measurements are consistent with $B \rightarrow J/\psi K^0$ with large errors

TDCPV in $b \rightarrow sq\overline{q}$

 The error is close to theoretical uncertainty of 0.02

Mode	$5~{\rm ab^{-1}}$		50 ab^{-1}		
	$\sigma(\mathcal{S})$	$\sigma(\mathcal{A})$	$\sigma(\mathcal{S})$	$\sigma(\mathcal{A})$	
$\eta' K^0$	0.028	0.020	0.011	0.009	
ϕK_S^0	0.053	0.070	0.018	0.023	
$K_SK_SK_S$	0.101	0.064	0.033	0.021	

- Strong constraints to NP models
 - SU(5) SUSY GUT + degenerate v_R with inverted hierarchy

TDCPV in $B^0 \rightarrow K_s \pi^0 \gamma$

- Sensitive to Right handed current
- In the SM, photon is predominantly left handed
 - Almost No TDCPV

$$\left|S_{CP}\right| \approx \frac{2m_s}{m_b} \sin 2\phi_1 \sim \text{a few } \%$$

- New physics with right handed current increases the fraction of right handed photon
 - Interfere with the SM occurs and large TDCPV possible

$$\overline{B^0} \xrightarrow{S_{i,j_{2g}}} \overline{B^0} \xrightarrow{X_s^{CP}} X_s^{CP} \gamma_L \qquad \overline{B^0} \xrightarrow{S_{i,j_{2g}}} \overline{B^0} \xrightarrow{X_s^{CP}} X_s^{CP} \gamma_R$$

dotted : helicity flip

red: helicity flip + NP

TCPV in $B^0 \rightarrow K_s \pi^0 \gamma$ at Belle II

- Almost same error as theory one ~0.03
- Strong constraint on NP
 - SU(5) SUSY GUT + degenerate v_R with inverted hierychy

Mode	$5~{ m ab^{-1}}$	$50~{\rm ab^{-1}}$
$K_S \pi^0 \gamma$	0.11	0.03
$ ho^0 \gamma$	0.23	0.06

Theoretical uncertainty in progress

Goto, Okada, Shindo, Tanaka PRD 77 095010 (2008) 24

Ratio of B \rightarrow K $\mu\mu$ and Kee

- B→KII proceeds via one loop diagram.
 - Lepton flavor universality holds in the SM.
- LHCb reported 2.6s deviation of ratio of BFs from unity.

$$R_K = \frac{\mathcal{B}(B \to K\mu\mu)}{\mathcal{B}(B \to Kee)}$$
$$\mathcal{R}_K = 0.745^{+0.090}_{-0.074} \pm 0.036$$

- However electron mode is not so easy at LHCb, especially for high q²
- Belle II
 - Electron and muon modes are same efficiency
 - Both Low and high q² possible
 - All K, K* and Xs modes possible

Phys. Rev. Lett. 113, 151601 (2014)

R_K , R_{K*} and R_{Xs}

LHCb 2014

$$\mathcal{R}_K = 0.745^{+0.090}_{-0.074} \pm 0.036$$

- Belle II
 - The errors reach to 0.02 for all K, K* and Xs modes
 - Still dominated by statistical error
- Test of LFV in one loop B decays

B decays involving τ

$B \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$

- $B \rightarrow \tau \nu$
 - SM: helicity suppression with m_T

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B}{8\pi} m_\ell^2 (1 - \frac{m_\ell^2}{m_B^2})^2 f_B^2 |V_{ub}|^2 \tau_B$$

Sensitive to Charged Higgs since b and t are heavy

$$\mathcal{B}(B \to \tau \nu) = \mathcal{B}(B \to \tau \nu)_{\text{SM}} \times r_H$$

- Factor r_H independent on lepton flavor
 - Charged Higgs coupling proportional to m.
 - $B \rightarrow \mu \nu$ also important
- $B \rightarrow D^{(*)} \tau \nu$
 - Sensitive to charged Higgs

$$R(D) = \frac{\mathcal{B}(B \to D\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\ell^{-}\bar{\nu}_{\ell})}$$
$$R(D^{*}) = \frac{\mathcal{B}(\bar{B} \to D^{*}\tau^{-}\bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^{*}\ell^{-}\bar{\nu}_{\ell})}$$

Projections of B $\rightarrow \tau \nu$ and B $\rightarrow D^{(*)}\tau \nu$ at Belle II

BELLE2-NOTE-PH-2015-002

	Statistical	Systematic	Total Exp
	$(r\epsilon$	educible, irreducible	•)
$\mathcal{B}(B \to au u)$ (had. tagged)			
$711 \; {\rm fb^{-1}}$	38.0	(14.2, 4.4)	40.8
5 ab^{-1}	14.4	(5.4, 4.4)	15.8
50 ab^{-1}	4.6	(1.6, 4.4)	6.4
$\mathcal{B}(B o au u)$ (semileptonic tagged)			
$711 \; { m fb^{-1}}$	24.8	$(18, {}^{+6.0}_{-9.6})$	$^{+31.2}_{-32.2}$
5 ab^{-1}	8.6	$(6.2, ^{+6.0}_{-9.6})$	$^{+12.2}_{-14.4}$
50 ab^{-1}	2.8	$(2.0, ^{+6.0}_{-9.6})$	$^{+6.8}_{-10.2}$

	Statistical	Systematic	Total Exp
		$({\it reducible},{\it irreducible})$	
R(D)			
$423 \; {\rm fb^{-1}}$	13.1	(9.1, 3.1)	16.2
$5~{ m ab^{-1}}$	3.8	(2.6, 3.1)	5.6
$50~{\rm ab^{-1}}$	1.2	(0.8, 3.1)	3.4
$R(D^*)$			
$423 \; {\rm fb^{-1}}$	7.1	(5.2, 1.9)	9.0
$5~{ m ab}^{-1}$	2.1	(1.5, 1.9)	3.2
$50~\mathrm{ab^{-1}}$	0.7	(0.5, 1.9)	2.1

Constraint on Charged Higgs in 2HDM

- $M_H \sim 700 \text{GeV}$ will be excluded for $\tan \beta = 40$.
 - From B(b \rightarrow sγ), tanβ independent exclusion will be derived, M_H ~ 600GeV assuming 4% theoretical error (current 380GeV).

Charm and τ Decays

$D^0-\overline{D}^0$ Mixing

Mass eigenstates are superposition of flavor eigenstates

$$D_{\frac{1}{2}} = pD^0 \pm q\bar{D}^0$$

$$x \equiv (m_1 - m_2)/\Gamma \qquad y \equiv (\Gamma_1 - \Gamma_2)/(2\Gamma)$$

$$\Gamma \equiv (\Gamma_1 + \Gamma_2)/2 \qquad \phi = \operatorname{Arg}(q/p)$$

- Larger mixing parameter x observed by Belle/Babar/CDF/LHCb than theoretical expectation might suggest NP in the loop.
 - Smallness of x in the SM could be a good probe of NP.

CPV in D⁰-D 0 Mixing

- CPV in charm is not established yet.
 - In the SM, the CPV is tiny. If found, new physics!
- Belle II can exploit CPV in mixing together with LHCb

Belle II : Ksπ⁺π⁻, Klν

- LHCb : $\pi^+\pi^-$, K^+K^- , $K^+\pi^-$ (DCSD)

Complimentary

Expected uncertainties (M. Staric, KEK FFW14)

Analysis	Observable	Uncertainty (%)		
		Now (~1 ab ⁻¹)	$\mathcal{L} = 50 \text{ ab}^{-1}$	
$K_S^0 \pi^+\pi^-$	\boldsymbol{x}	0.21	0.08	
	y	0.17	0.05	
	q/p	18	6	
	φ	0.21 rad	0.07 rad	
$\pi^{+}\pi^{-}, K^{+}K^{-}$	y_{CP}	0.25	0.04	
	A_{Γ}	0.22	0.03	
$K^+\pi^-$	x'2	0.025	0.003	
	y'	0.45	0.04	
	q/p	0.6	0.06	
	φ	0.44	0.04 rad	

Direct CPV in Charm

- Major Belle II contribution is in channels with neutrals
 - Most measurement will be systematic dominant
 - LHCb dominates all charged final states

$$A_{CP}^{f} = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to \overline{f})}$$

mode	\mathcal{L} (fb ⁻¹)	A _{CP} (%)	Belle II at 50 ab ⁻¹
$D^0 \rightarrow K^+K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03
$D^0 \rightarrow \pi^+\pi^-$	976	$+0.55\pm0.36\pm0.09$	±0.05
$D^0 \rightarrow \pi^0 \pi^0$	976	~ ±0.60	±0.08
$D^0 \rightarrow K_s^0 \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	±0.03
$D^0 \rightarrow K^0 \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	±0.07
$D^0 \rightarrow K_s^0 \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	±0.09
$D^0 \rightarrow \pi^+\pi^-\pi^0$	532	$+0.43 \pm 1.30$	±0.13
$D^0 \rightarrow K^+\pi^-\pi^0$	281	-0.60 ± 5.30	±0.40
$D^0 \to K^+\pi^-\pi^+\pi^-$	281	-1.80 ± 4.40	±0.33
$D^+ \rightarrow \phi \pi^+$	955	$+0.51\pm0.28\pm0.05$	±0.04
$D^+ \rightarrow \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	±0.14
$D^+ \rightarrow \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	±0.14
$D^+ \rightarrow K_s^0 \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	±0.03
$D^+ \rightarrow K_s^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	±0.05
$D_*^+ \rightarrow K_*^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D_s^+ \rightarrow K_s^0 K^+$	673	$+0.12\pm0.36\pm0.22$	±0.05
160715		(to	able by Marko Starte)

Lepton Flavor Violating τ Decays

- Highly Suppressed in the SM with neutrino mixing
 - − BF(τ → $\mu\gamma$) < 10⁻⁵⁴
- If observed, clear NP signal.
- Unique at Belle II
 - At Hadron Collider, $\tau \rightarrow 3\mu$ was only performed
 - But to reach the same sensitivity as Belle II, need to trigger low pT μ from B $\rightarrow \tau X$ and Ds $\rightarrow \tau V$ decays, and suppress Ds $\rightarrow \phi(\mu\mu)\mu\nu$ or $\eta(\mu\mu)\mu\nu$ backgrounds

		reference	τ→μγ	τ→μμμ
	SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10-10
	Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10-8
	SUSY SO(10)	PRD 68(2003)033012	10-8	10-10
	mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹
2016071	SUSY Higgs	PLB 566(2003)217	10-10	10-7

Lepton Flavor Violating τ Decays at Belle II

- LFV process with mesonic and Barionic (BNV) final states also can be searched for.
- Upper limits reach below 10⁻⁹

Summary

- Belle II is the super flavor factory experiment at SuperKEKB
- Rich program to search for NP with flavor observables.
- SuperKEKB commissioning is on-going.
- First physics results will come out in 2017 (phase2)
- Full detector running starts in 2018 (phase3)

