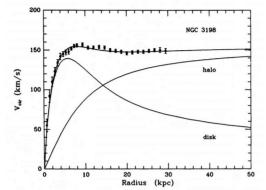
Searches for invisible new particles at Belle II

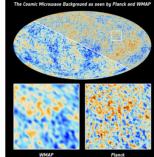
21st Lomonosov Conference on Elementary Particle Physics

Moscow State University August 24-30, 2023


Dark matter searches

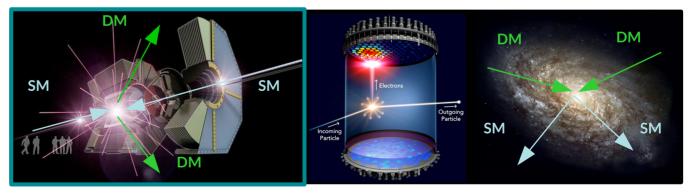
Dark Matter (DM)

- It is one of the most compelling phenomena in support for physics beyond the Standard Model (SM)
 - It exists, awaiting for discovery


How to search for DM?

- Focus on searches at collider experiment (Belle II)
 - DM weakly couples to SM particles, it can be produced in SM particle annihilations at accelerators
 - Involve light dark sector mediators too

Albada et al., Astrophysical Journal (1985)


Colliders

Direct

Indirect

Light dark sector

- No evidence of DM at electro-weak scale in experiments
- Light DM with mass of *M* ~ *O*(MeV-GeV) theoretically well motivated
- Light dark mediators involved in the interaction with SM and DM
 - Several signatures depending on the relation between the mediator mass and the DM mass
- Theoretical description through interaction "portals"
- They may solve "DM puzzle" and explain observed anomalies [1, 2, 3] like the (g – 2)_μ

[1] Abi et al., <u>Phys. Rev. Lett. 126. 141801 (2021)</u>
[2] G. Caria et al. <u>Phys. Rev. Lett.124. 161803 (2020)</u>
[3] R. Aaij et al. <u>Nature Physics 18, 277 (2022)</u>

21st Lomonosov Conference, August 24-30, 2023. Luigi Corona

light mediator heavy dark matter

> Dark Matter

→ DECAY INTO SM PARTICLES!

dark matter mass mDM

→ DECAY TO SM SUPPRES

 $\epsilon F^{\mu\nu}A'_{\mu\nu}$

 $k|H|^2|S|^2$

 $\frac{1}{c}F_{\mu\nu}\tilde{F}^{\mu\nu}a$

yHLN

Portals

Vector

Scalar

Fermion

Pseudo-

scalar

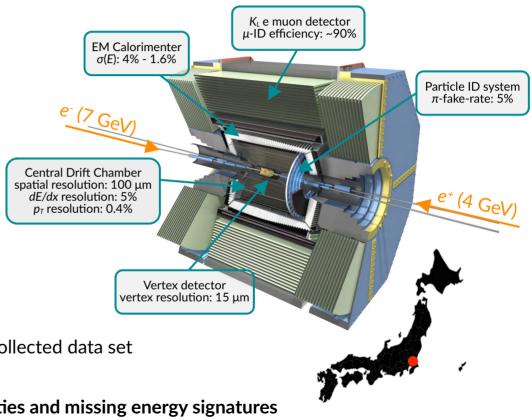
heavy mediator

light mediator

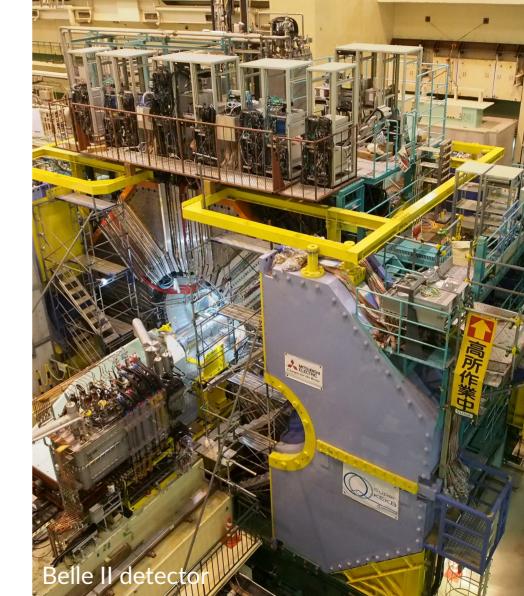
light dark matter

→ DECAY INTO DM!

 \sqrt{s}


 $2m_{e}$

mediator mass m_{A'}

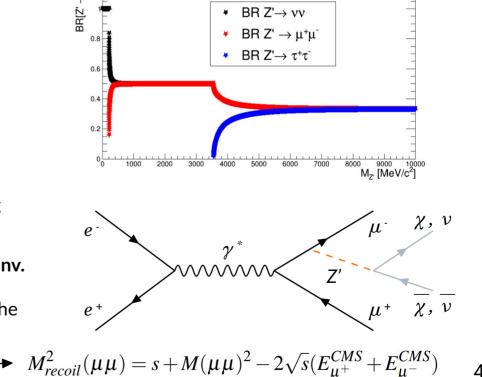

The Belle II experiment @ SuperKEKB

See Pavel Pakhlov's talk for details!

- SuperKEKB is a new generation B-factory \rightarrow asymmetric e^{t}/e^{-} collider, mainly operated at $\sqrt{s} = 10.58$ GeV [Y(4S)]
- Belle II is the upgrade of Belle @ KEKB
 → Hermetic detector with high performances
- 424 fb⁻¹ collected, currently not in data taking
- Well known initial-state condition and clean environment (Low/no pile-up)
- Dedicated low-multiplicity triggers
 - Suppress high-cross-section QED processes without "killing" the signal
 - Precise knowledge of acceptance and efficiencies of the detector required
 - → Example: single-photon trigger available in the full collected data set
 → makes Belle II dataset unique
- Excellent reconstruction capabilities for low multiplicities and missing energy signatures

Recent dark sector results at Belle II

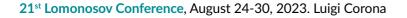
21st Lomonosov Conference, August 24-30, 2023. Luigi Corona

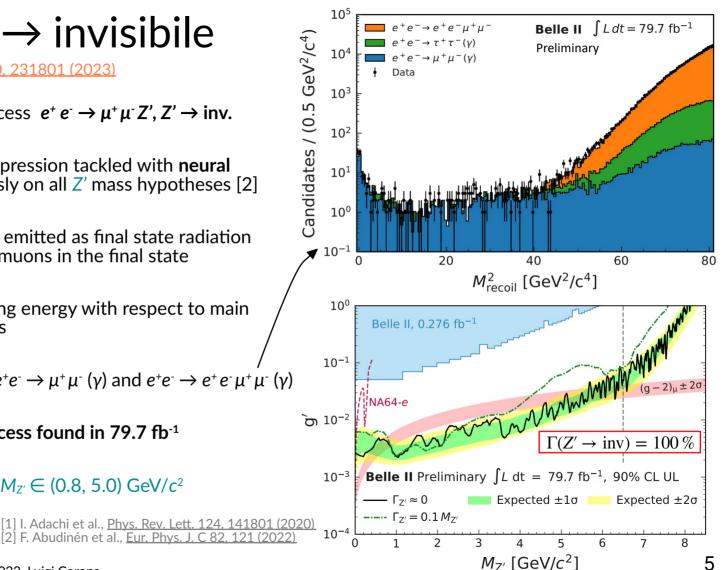

Search for an invisible Z' boson

- Massive Z' boson with a coupling g' only to leptons with μ- and τ-lepton numbers (L_μ L_τ extension of the SM) [1,2,3]
 - It may explain $(g 2)_{\mu}$ anomaly and DM abundance
- Possible decays:
 - → Z' → invisible (vv or $\chi\bar{\chi}$), Z' → $\mu\mu$, Z' → $\tau\tau$
- $Z' \rightarrow \text{invisible} (Z' \rightarrow v\overline{v}/\chi\overline{\chi})$
 - → If light DM χ kinematically accessible exists, BR(Z' → invisible) = 100%
 - Profit from the excellent Belle II capabilities for missing energy signatures
 - → Searched for through the process $e^+e^- \rightarrow \mu^+\mu^- Z'$, $Z' \rightarrow inv$.
 - Signal signature is a narrow peak in the recoil mass of the two final-state muons

 $L_{\mu} - L_{\tau}$ model Z' branching ratios in leptons

Shuve et al., Phys. Rev. D 89, 113004 (2014)


[2] D. Curtin et al., <u>JHEP 02 (2015) 157</u> [3] Altmannshofer et al., JHEP 106 (2016)



Search for $Z' \rightarrow$ invisibile

I. Adachi et al., Phys. Rev. Lett. 130, 231801 (2023)

- Searched for through the process $e^+e^- \rightarrow \mu^+\mu^- Z'$, $Z' \rightarrow inv$.
- Challenging $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ suppression tackled with neural **network** trained simultaneously on all Z' mass hypotheses [2]
 - Based on Z' property to be emitted as final state radiation → (FSR) from one of the two muons in the final state
 - Different origin of missing energy with respect to main background components
- Remaining background from $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ and $e^+e^- \rightarrow e^+e^-\mu^+\mu^-(\gamma)$
- From 2D fit, no significant excess found in 79.7 fb⁻¹
 - $(g 2)_{\mu}$ region escluded for $M_{Z'} \in (0.8, 5.0)$ GeV/ c^2 → for $\Gamma(Z' \rightarrow \text{inv.}) = 100\%$

Search for a $\mu\mu$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^$ recoil candidate **New for EPS-HEP2023** μ Four-track final state with at least three identified as muons • μ $^{\Lambda}$ → Four-track invariant mass compatible with collision \sqrt{s} μ No extra energy → Signal signature is a **narrow peak in the opposite-charge** 1800 di-muon mass $M(\mu\mu)$ **Belle II** preliminary $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$ 1600 Entries/(100 MeV/c²) $e^+e^- \rightarrow \tau^+\tau^ Ldt = 178 \text{ fb}^{-1}$ 1400 Challenging aggressive suppression of main **SM** $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ 1200 background $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^$ $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ 1000 $e^+e^- \rightarrow q\overline{q} (q=u,d,c,s)$ Based on classifiers trained exploting the features 800 → data of kinematic distributions in signal events 600 400 Presence of a resonance in both candidate and 200 recoil muon pairs 0 1.5 Data sim Signal extracted through fits to $M(\mu\mu)$

0.5

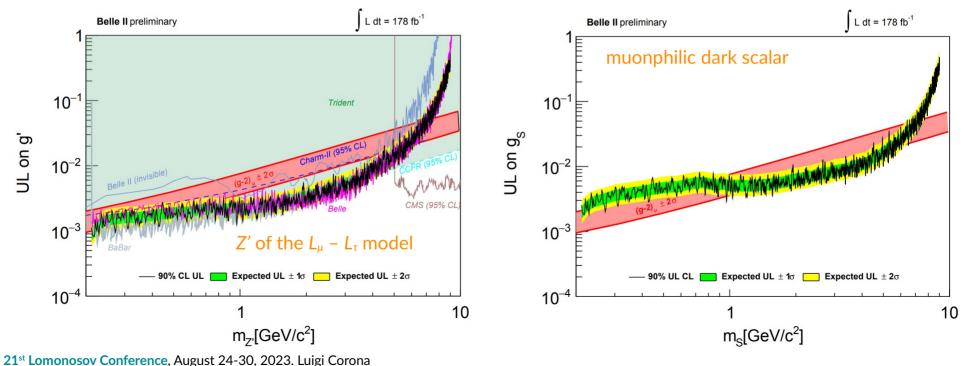
2

3

 $M(\mu\mu)$ [GeV/c²]

10

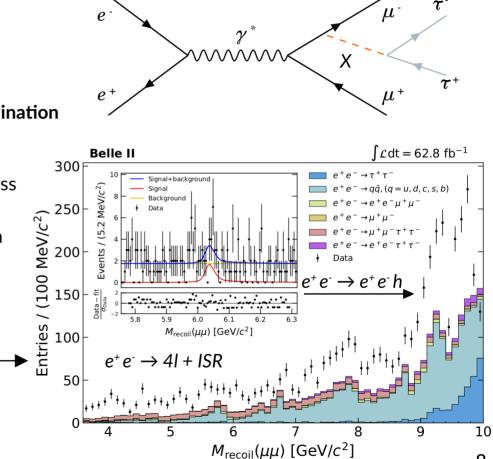
8


9

Search for a $\mu\mu$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$: results

New for <u>EPS-HEP2023</u>

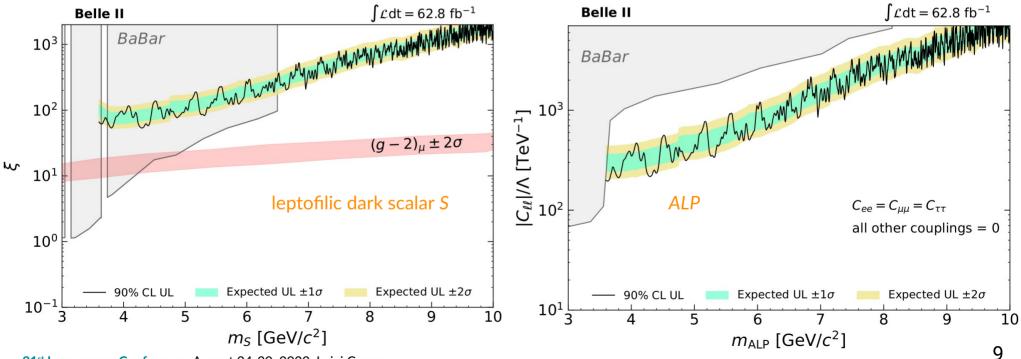
[1] P. Harris et al., <u>arxiv-2207.08990 (2022)</u>
 [2] S. Gori et al., <u>arxiv-2209.04671 (2022)</u>

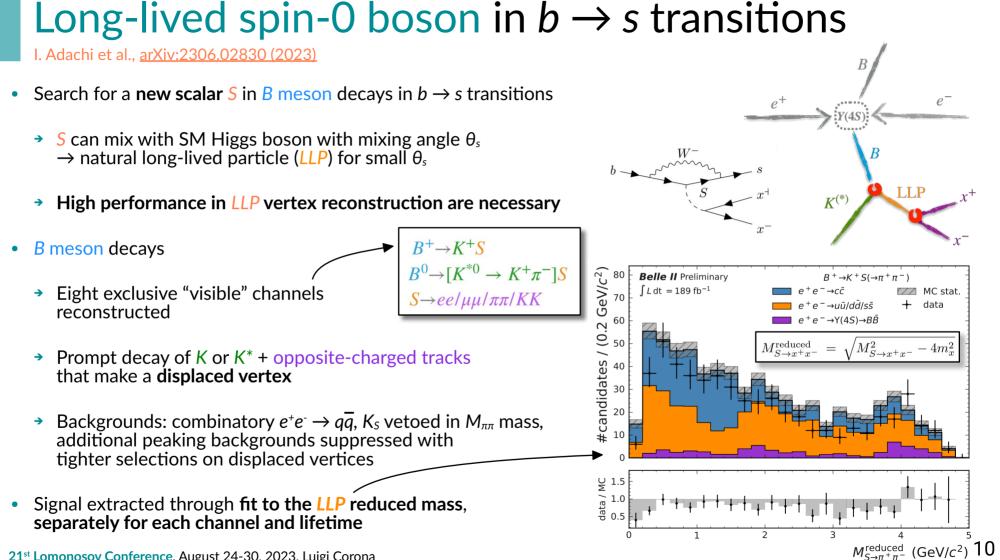

- No significant excess found in 178 fb⁻¹
 - Competitive 90% CL upper limits on the g' coupling of the $L_{\mu} L_{\tau}$ model (Z') with BaBar (> 500 fb⁻¹) and Belle (> 600 fb⁻¹) results
 - → First 90% CL upper limits for the muonphilic scalar model from a dedicated search [1, 2]

Search for a $\tau\tau$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$

I. Adachi et al., arXiv:2306.12294 (2023) - accepted by PRL

- Four-track final state: τ decay in $\tau \rightarrow lv\overline{v}$, $\tau \rightarrow hv\overline{v}$
- Signal peaks in the recoil mass of μ⁺μ⁻ M_{recoil}(μμ)
- Challenging background rejection to reduce event contamination with missing energy not associated with signal signature
 - Eight classifiers trained on different regions of recoil mass
 - Based on resonance X properties (FSR) and ττ system
- Signal extracted through fit to M_{recoil}(μμ) distribution
 - Background measured directly on data to minimize impact of not correctly simulated backgrounds
 - → Smooth background → not problematic

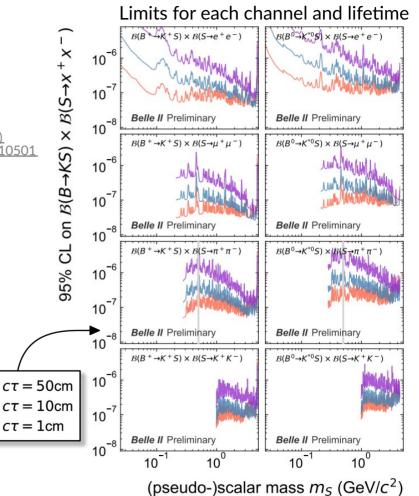


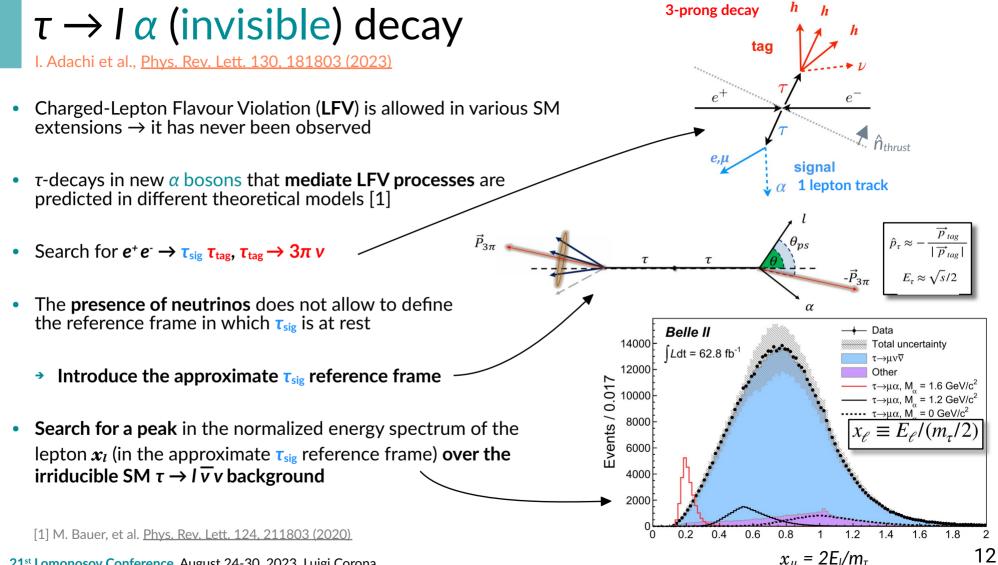

Search for a $\tau\tau$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$: results

I. Adachi et al., arXiv:2306.12294 (2023) - accepted by PRL

[1] J. P. Lees et al., <u>PhysRevLett.125.181801 (2020)</u> [2] M. Bauer et al., <u>JHEP09-056 (2022)</u>

- No significant excess found in 62.8 fb⁻¹
 - First limits at 90% CL for a leptophilic dark scalar S model with $m_s > 6.5 \text{ GeV}/c^2$ [1]
 - First direct limits at 90% CL for axion-like particle $ALP \rightarrow \tau \tau$ [2]

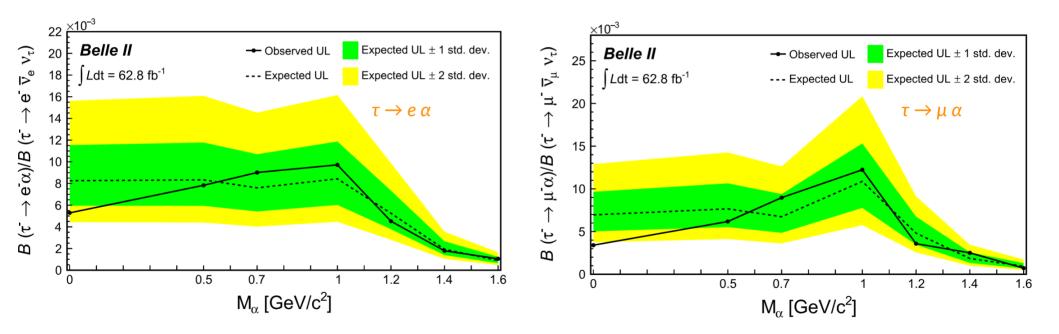




Long-lived spin-0 boson in $b \rightarrow s$ transitions: results

I. Adachi et al., arXiv:2306.02830 (2023)

- No significant excess observed in 189 fb⁻¹
 - → First model-independent limits at 95% CL on $BR(B \rightarrow K_S) \cdot BR(S \rightarrow x^+x^-)$
 - First limits on decays to hadrons
- Phys. Rev. D 101, 095006 (2020) Interpretation as dark scalar S [1, 2] . Phys. G: Nucl. Part. Phys. 47 010501 Φ mixing angle sin L3 10 **KTeV** 10⁻² Belle II 10^{-3} CHARM 10^{-4} BaBar NA62 PS191 E949 Belle II Preliminary 10^{-5} 10^{-1} 10° scalar mass $m_{\rm S}$ (GeV/ c^2)



$\tau \rightarrow I \alpha$ (invisible) decay: results

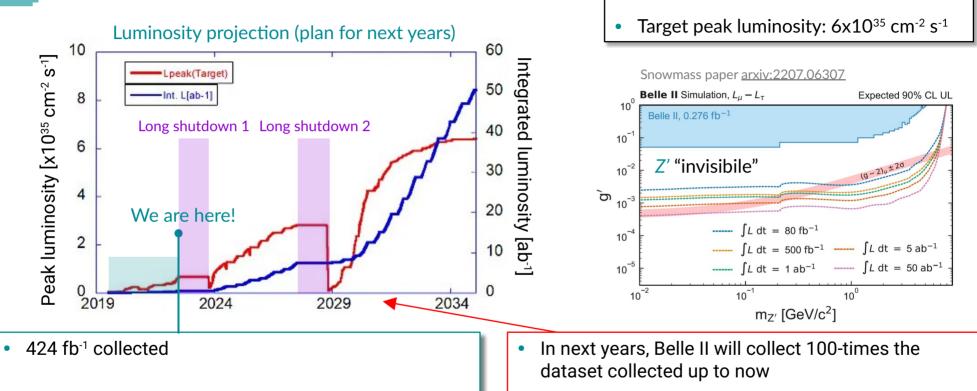
I. Adachi et al., Phys. Rev. Lett. 130, 181803 (2023)

[1] ARGUS Collaboration, Z. Phys. C 68, 25 (1995)

- No excess observed in 62.8 fb⁻¹
 - Limits from 2.2 to 14 times more stringent with respect to the previous existing limits set by ARGUS [1]

Summary and conclusions

- Belle II has a **unique sensitivity** to light dark sector and progressively will lead its exploration at luminosity frontier
 - Complementary results to higher energy colliders and beam-dump experiments
 - World-leading results already published with partial datasets (< 424 fb⁻¹), updates and new results are coming!
 - Search for an invisible Z' in $ee \rightarrow \mu\mu Z'$ Phys. Rev. Lett. 130, 231801 (2023)
 - Search for a resonance decaying to $\mu\mu$ in $ee \rightarrow \mu\mu\mu\mu$ events New for <u>EPS-HEP2023</u>
 - Search for a resonance decaying to $\tau\tau$ in $ee \rightarrow \mu\mu\tau\tau$ events arXiv:2306.12294 (2023)
 - Search for a long-lived spin-0 boson in $b \rightarrow s$ transitions arXiv:2306.02830 (2023)
 - Search for the LFV $\tau \rightarrow l \alpha$ (invisible) decay Phys. Rev. Lett. 130, 181803 (2023)

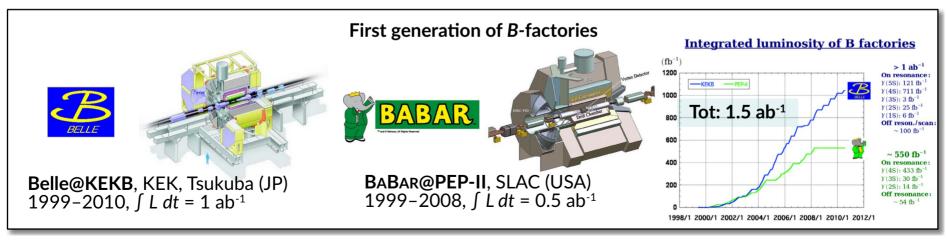

Snowmass paper arxiv:2207.06307 **Belle II** Simulation, $L_{\mu} - L_{\tau}$ Expected 90% CL UL 100 Belle II 0 276 fb⁻¹ 10^{-1} Z' "invisibile" 10⁻² 10^{-3} ----- $\int L \, dt = 80 \, fb^{-1}$ 10 $\int L \, dt = 500 \, \text{fb}^{-1}$ $\int L \, dt = 5 \, \text{ab}^{-1}$ 10^{-5} ----- $\int L \, dt = 1 \, ab^{-1}$ ----- $\int L \, dt = 50 \, ab^{-1}$ 10^{-2} 10^{-1} 10^{0} $m_{7'}$ [GeV/c²] Belle II target integrated luminosity is 50 ab⁻¹

g,

Backup slides

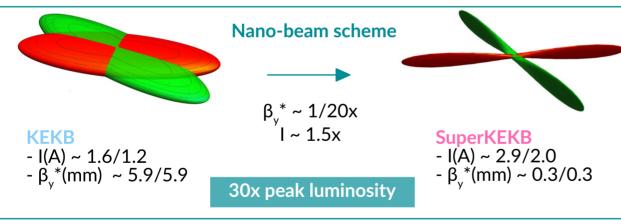
Belle II perspectives

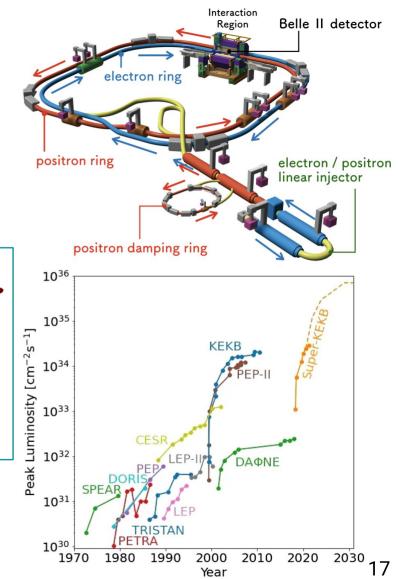
- Obtained results are strongly limited by statistics
 - World-leading results already published with early datasets (< 20% of the collected dataset of 424 fb⁻¹)


The best is yet to come!

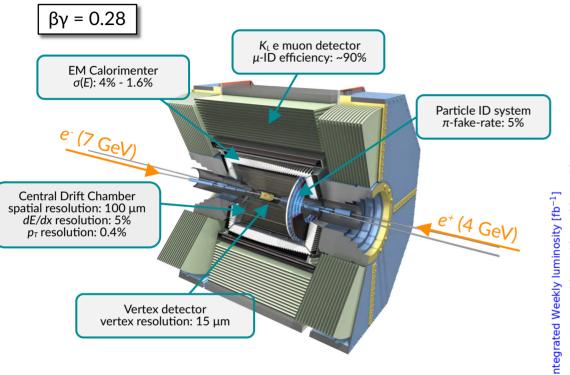
Target integrated luninosity: 50 ab⁻¹

Experiments at B-factories

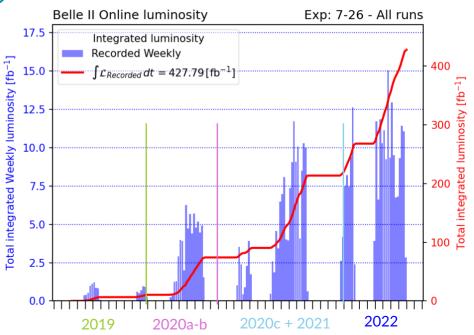

- Asymmetric e⁺e⁻ colliders optimized for the production of B meson pairs, but also D mesons, τ leptons, ...
- Collisions occur at Y(nS) resonances
 - Mainly at Y(4S): √s = 10.58 GeV just above the production threshold of BB BR(Y(4S) → BB) > 96%
- Asymmetric beam energies: boosted BB pairs, for CP-violation time-dependent measurements
- High peak luminosity L > 10³⁴ cm⁻²s⁻¹



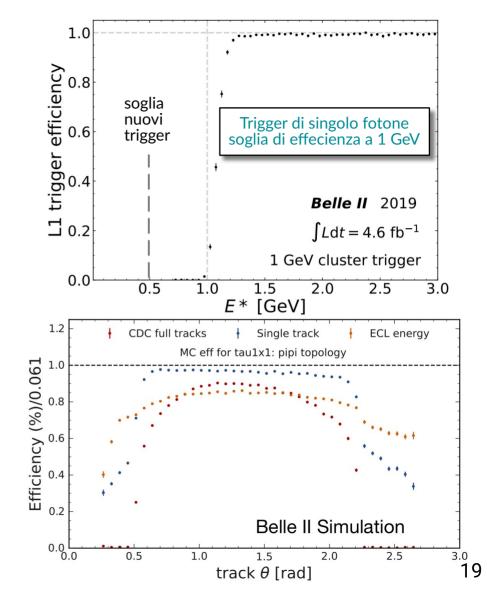
SuperKEKB


- New generation of B-factory that provides luminosity to the Belle II experiment
 - Asymmetric beam energies: e⁻ (7 GeV) / e⁺ (4 GeV)
 Operating mainly at Y(4S), but foreseen runs from Y(2S) to Y(6S)
 - Designed to reach the world highest peak luminosity with the nanobeam scheme

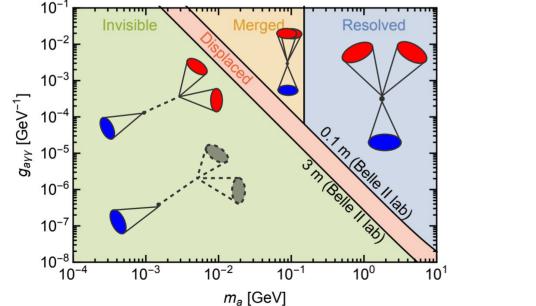
- World record luminosity on December 2021: **3.8 x 10**³⁴ cm⁻²s⁻¹
- I(e^{-}/e^{+}) = 820/1034 mA and β_{y}^{*} = 1 mm
- Target peak luminosity: 6.5 10³⁵ cm⁻²s⁻¹

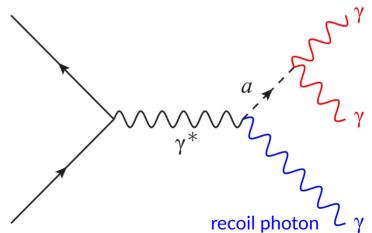


Belle II at SuperKEKB


- Major upgrade of Belle@KEKB → better resolution, particle identification (PID) and capability to cope with higher background
- Covers more than 90% of the total solid angle

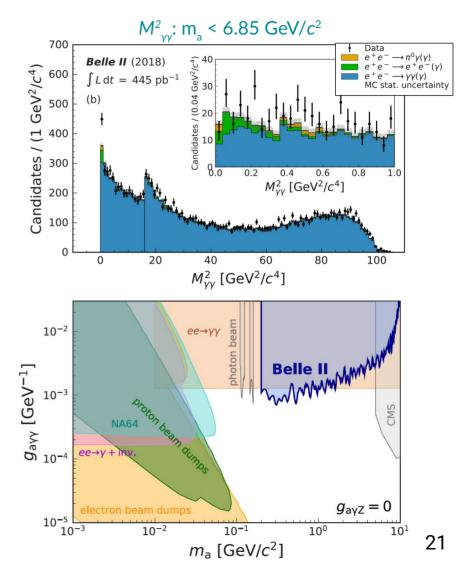
- First collisions during commissioning run on April 26th 2018
 - → 0.5 fb⁻¹ collected in 2018
- First collisions with the full detector on March 2019
 - → ~ 430 fb⁻¹ collected in 3 years of data taking
- Target integrated luminosity of the Belle II experiment: 50 ab⁻¹ (x30 Belle + BaBar)


Low-multiplicity triggers


- Two-level trigger
 - Hardware-based Level 1 Trigger (L1): < 30 kHz
 - Software-based High Level Trigger (HLT): < 10 kHz
- Devised specific low-multiplicity trigger lines
 - Suppress high-cross-section QED processes without "killing" the signal
 - Precise knowledge of acceptance and efficiencies of the detector required
- Examples
 - Single-photon trigger
 - Single-muon trigger
 - Single-track trigger

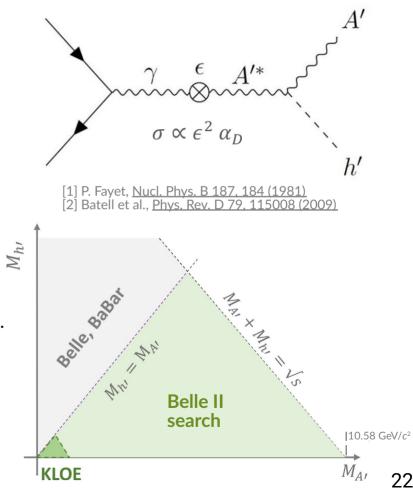
Axion-like particles (ALPs)

- GeV-scale ALPs: pseudo-scalar portal mediator between dark sector and Standard Model
- If ALP-photon coupling $(g_{a\gamma\gamma})$ dominates, than $BR(a \rightarrow \gamma\gamma) \sim 100\%$
- Focus on mass region where ALP decay is prompt and photons can be well resolved by Belle II



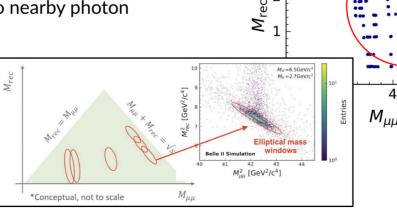
Search for an ALP at Belle II

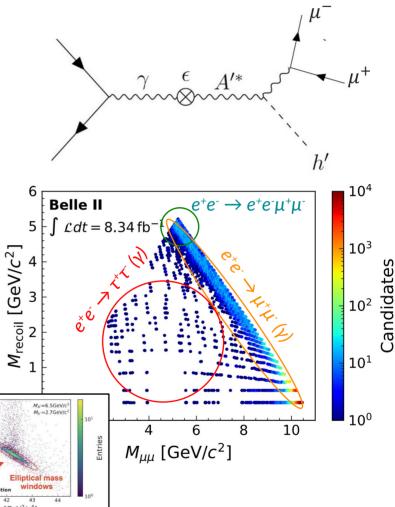
F. Abudinén et al., Phys. Rev. Lett. 125, 161806 (2020)


- Event selection:
 - electromagnetic calorimeter trigger (efficiency ~100%)
 - → three-γ invariant mass compatible with collision \sqrt{s}
- Signal signature is a **narrow peak in M^2_{\gamma\gamma} or M^2_{recoil}** (depending on best resolution of signal peak)
- Largest background from $e^+e^- \rightarrow \gamma \gamma(\gamma)$
- Segnal extracted through fit
 - No excess observed in 0.445 fb⁻¹
 - Upper limits at 95% CL on g_{ayy}
 - World-leading limits for $m_a \sim 0.5 \text{ GeV}/c^2$

Search for a dark Higgs (and dark photon)

- Dark photon A'
 - kinetic mixing with SM photon with strength ε [1]
 - mass produced by the Higgs mechanism involving a dark Higgs boson [2]
- Dark higgs h'
 - couples to A' with α_D
 - does not mix with SM Higgs
- Both A' and h' can be produced at e⁺e⁻ colliders through the dark higgsstrahlung process
 - → $e^+e^- \rightarrow A'^* \rightarrow A'h'$
- Different signatures depending on h' mass
 - → $M_{h'} > M_{A'}$: prompt decay $h' \rightarrow A'A'$, up to 6 tracks in the final state. Investigated by <u>BaBar(2012)</u> and <u>Belle(2015)</u>
 - → M_{h'} < M_{A'}: h' is long-lived, thus invisible. Investigated by <u>KLOE(2015)</u>
- Belle II focuses on the invisible h'





Dark higgsstrahlung at Belle II

F. Abudinén et al., Phys. Rev. Lett. 130, 071804 (2023)

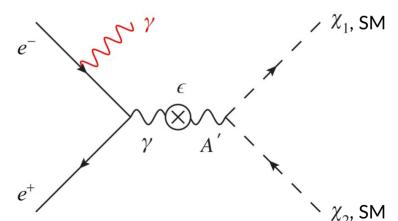
- $e^+e^- \rightarrow A'h', A' \rightarrow \mu\mu, h' \rightarrow \text{ invisible}$
- Same final state as for the invisible Z', similar backgrounds: $e^+e^- \rightarrow \tau^+\tau^-(\gamma), e^+e^- \rightarrow \mu^+\mu^-(\gamma), e^+e^- \rightarrow e^+e^-\mu^+\mu^-$
- Signal signature is a 2D peak in the recoil mass vs the dimuon mass
- Event selection
 - Two reconstructed muons, $p_T^{\mu} > 0.1 \text{ GeV/c}$
 - Recoil momentum in the ECL barrel, no nearby photon
 - → Cut on dimuon helicity angle
 → efficiently suppress background
- Signal extraction through 2D fit in M_{recoil} vs $M_{\mu\mu}$ plane in elliptical windows

Dark higgsstrahlung at Belle II: results F. Abudinén et al., Phys. Rev. Lett. 130, 071804 (2023) 10^{-3} **Belle II** $\int \mathcal{L} dt = 8.34 \, \text{fb}^{-1}$ $M_{h'} = 1 \, \mathrm{GeV}/c^2$ 90% CL UL $M_{h'} = 2 \,\mathrm{GeV}/c^2$ 10^{-4 |} No significant excess in 8.34 fb⁻¹ $M_{h'} = 3 \,\mathrm{GeV}/c^2$ $M_{h'} = 4 \,\mathrm{GeV}/c^2$ $\overset{\Box}{v}$ 10⁻⁵ → 90% CL upper limits and world leading limits for × $1.65 < M_{A'} < 10.51 \, \text{GeV}/c^2$ ~ິພ 10^{−6} 6 **Belle II** 90% CL UL 10-7 10³ 5 $\mathcal{L}dt = 8.34 \, \text{fb}^{-1}$ [fb] 10^{-8} 2 8 10 0 Δ 6 M_{h'} [GeV/c²] $M_{A'}$ [GeV/ c^2] ction 10² 10^{-3} **Belle II** $\int \mathcal{L} dt = 8.34 \, \text{fb}^{-1}$ $M_{A'} = 2 \,\mathrm{GeV}/c^2$ 90% CL UL $M_{A'} = 4 \, \text{GeV}/c^2$ 10-4 Se $- M_{A'} = 6 \, \text{GeV}/c^2$ Cross $--- M_{A'} = 8 \, \text{GeV}/c^2$ $\overset{\Box}{\it v}$ 10⁻⁵ 10¹ × ~ ω 10^{−6} 0 10^{-7} 10⁰ 2 8 10 0 6 10^{-8} 0 1 2 3 4 5 $M_{A'}$ [GeV/ c^2] $M_{h'}$ [GeV/ c^2]

Search for dark photon A'

- U(1) extension of the SM
- New massive vector gauge boson, A', with a coupling to the Standard Model photon through the kinetic mixing mechanism, with strength ε [1,2]

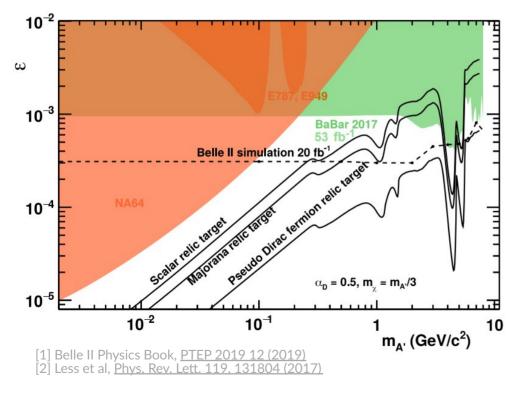
$$\mathcal{L}_{int} = e \varepsilon A'_{\mu} J^{\mu}_{em}$$

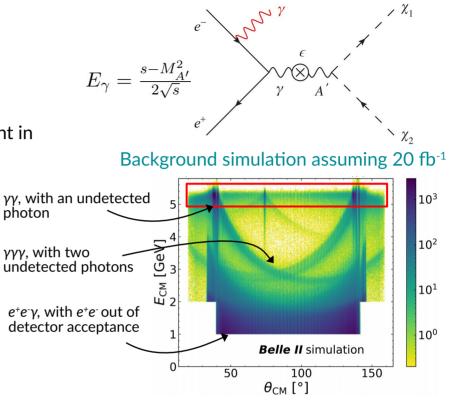

Interation strenght

Electromagnetic current

- This gauge boson can be produced at e^+e^- colliders through different processes:
 - direct production: $e^+e^- \rightarrow \gamma_{_{ISR}}A'$
 - meson decays: $\pi^0 \rightarrow A' \gamma$
 - dark higgsstrahlung: $e^+e^- \rightarrow A'^* \rightarrow A'h'$
- Direct production with ISR particularly interesting: $e^+e^- \rightarrow \gamma_{ISR}A'$
- Two basic scenarios depending on dark photon mass:
 - → $M_{A'}$ > $2m_{\chi}$: invisible decay $A' \rightarrow \chi \overline{\chi}$
 - → $M_{A'} < 2m_{\chi}$: visible decay in Standard Model particles

21st Lomonosov Conference, August 24-30, 2023. Luigi Corona

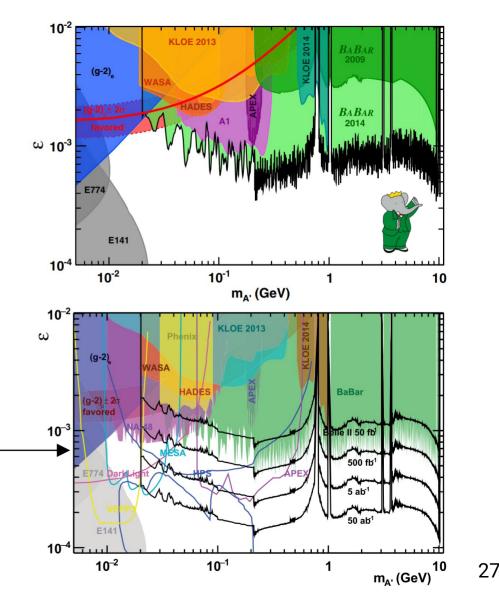

[1] P. Fayet, <u>Phys. Lett. B 95, 285 (1980)</u> [2] P. Fayet, <u>Nucl. Phys. B 187, 184 (1981</u>)



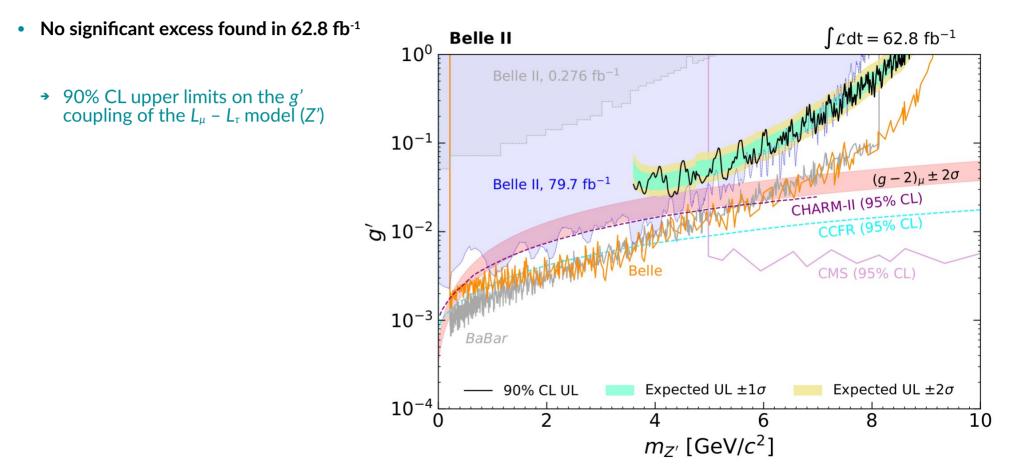
 $e^+e^- \rightarrow \gamma_{\mu\nu}A' (A' \rightarrow \chi \overline{\chi}, SM)$

Invisible dark photon

- $e^+e^- \rightarrow \gamma_{ISR}A' (A' \rightarrow inv.)$
 - Single photon search: single photon trigger needed, present in the full Belle II dataset



- Belle II expected to perform better than BABAR [2]:
 - smaller boost: larger acceptance
 - **muon detector veto**: reject events with a photon undetected in the calorimeter (efficiency currently under study)
 - better calorimeter hermeticity


Visible dark photon

- BABAR [1]
 - Full dataset of 514 fb⁻¹
 - → Dark photon visible decay in e^+e^- and $\mu^+\mu^-$ final states
 - Signal signature, bump in the dilepton invariant mass
 - → Background: QED processes $e^+e^- \rightarrow e^+e^-(\gamma)$, $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ and resonant backgrounds from J/ψ , ψ (2S) etc. (vetoed)
 - Upper limits at 90% CL kinetic mixing strength ε at level of O(10⁻³):
- LHCb [2]
 - Best limits in the mass range 200 -700 MeV
- Belle II is expected to achieve the leading sensitivity [3]
 - Search in preparation

[1] J.P. Lees et al, <u>Phys. Rev. Lett. 113, 201801 (2014)</u>
[2] R. Aaij et al, <u>PhysRevLett.124,041801 (2020)</u>
[3] E. Kou et al, <u>Prog Theor Exp Phys (2019)</u>

Search for a $\tau\tau$ -resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$: Z'

