Hadronic B Decays at Belle II

Frank Meier on behalf of the Belle II collaboration

21st Lomonosov Conference Moscow State University 28 August 2023

The Belle II experiment

- $\blacktriangleright\,$ asymmetric collision of e^+e^-
- center-of-mass energy mostly at $\Upsilon(4S)$ resonance
- ▶ $\Upsilon(4S) \rightarrow B^+B^-$ (~51.5%), $\Upsilon(4S) \rightarrow B^0\overline{B}^0$ (~48.5%)

Hadronic B Decays at Belle II

Status

- from 2019 to 2022 collected 424 fb^{-1} of data
 - 363 fb^{-1} at the $\Upsilon(4S)$ resonance $\Rightarrow 387 \text{ M } B\overline{B}$ pairs
 - 61 fb⁻¹ below and above the $\Upsilon(4S)$ resonance
- several analyses combine the Belle and Belle II data

 \Rightarrow adding 711 $\rm fb^{-1}$ on resonance data

 hadronic B decays used to measure CP asymmetries and branching fraction (ratios)

CP violation in the SM guark sector

- mass eigenstates \neq eigenstates of weak interaction
- superposition described via complex CKM matrix
- guark transition proportional to matrix elements
- unitarity of CKM matrix:

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \mathbf{V}_{\mathsf{CKM}} \begin{pmatrix} d\\s\\b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Measurements of the CKM angle ϕ_3

Frank Meier (Duke University)

Hadronic B Decays at Belle II

28.08.2023

5/24

Concept of tree-level ϕ_3 measurements

- interference between $b \rightarrow u$ and $b \rightarrow c$ transitions
- δ_B : strong phase difference, r_B : ratio between favored and suppressed amplitudes $\Rightarrow \sigma_{\phi_3} \propto \frac{1}{r_B}$
- r_D and δ_D may require external charm input
- GLW: D decay to CP eigenstates, like $D \rightarrow K^+K^-$ or $D \rightarrow \pi^+\pi^-$ PLB 265 (1991) 172, PLB 253 (1991) 483
- ► GLS: singly Cabibbo-suppressed *D* decays PRD 67 (2003) 071301

► Belle + Belle II result (arXiv:2306.02940) in backup Frank Meier (Duke University) Hadronic B Decays at Belle II

28.08.2023

GLW measurement of ϕ_3 using $B^\pm\!\to D_{C\!P\pm}K^\pm$ decays <code>arXiv:2308.05048</code>

- using full Belle data (711 fb⁻¹) and first half of Belle II data (189 fb⁻¹)
- ▶ reconstructed D final states: $K^-\pi^+$ (flavor-specific), $K^0_S\pi^0$ (CP-odd), and K^+K^- (CP-even)
- ▶ measured *CP* asymmetries

$$\mathcal{A}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)} \qquad \mathcal{R}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{(\mathcal{B}(B^- \to D_{flav}K^-) + \mathcal{B}(B^+ \to \overline{D}_{flav}K^+))/2}$$

- K- π separation based on PID likelihood
- continuum suppression via BDT
- extraction of signal yields
 - ▶ 2D fit of ΔE and transformed BDT output C'
 - simultaneous fit in 12 subsets split by B charge, D final state, bachelor hadron
- ▶ found peaking $B \rightarrow KK^+K^-$ background using D mass sideband
 - ▶ fix shape from MC and yield from data

Frank Meier (Duke University)

Hadronic B Decays at Belle II

GLW measurement of ϕ_3 using $B^{\pm} \rightarrow D_{CP\pm}K^{\pm}$ decays arXiv:2308.05048

- $\begin{aligned} \mathcal{R}_{CP+} &= 1.164 \pm 0.081 \pm 0.036 \\ \mathcal{R}_{CP-} &= 1.151 \pm 0.074 \pm 0.019 \\ \mathcal{A}_{CP+} &= (+12.5 \pm 5.8 \pm 1.4)\% \\ \mathcal{A}_{CP-} &= (-16.7 \pm 5.7 \pm 0.6)\% \end{aligned}$
- ▶ significance for *CP* violation: 2.0σ (2.8σ) in *CP*-even (*CP*-odd) mode
- 3.5σ evidence for $\mathcal{A}_{CP+} \neq \mathcal{A}_{CP-}$
- $\mathcal{R}_{CP+} 2.2 \sigma$ larger than world average
- good agreement for \mathcal{R}_{CP-} with world average
- convert $C\!P$ asymmetries to angle ϕ_3 via

$$\mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2 r_B \cos \delta_B \cos \phi_3 \qquad \mathcal{A}_{CP\pm} = \pm 2 r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP\pm}$$

- large $\mathcal{R}_{CP+} \rightarrow$ large r_B \Rightarrow low uncertainty on ϕ_3
- ▶ at 68.3% CL three intervals for ϕ_3
 - $\begin{bmatrix} 8.5^{\circ}, 16.5^{\circ} \end{bmatrix} \cup \begin{bmatrix} 84.5^{\circ}, 95.5^{\circ} \end{bmatrix} \cup \\ \begin{bmatrix} 163.3^{\circ}, 171.5^{\circ} \end{bmatrix}$

Frank Meier (Duke University)

Time-dependent *CP* violation measurements

Frank Meier (Duke University)

Hadronic B Decays at Belle II

28.08.2023

9/24

Basics of time-dependent CP violation measurements

- ► *CP* violation in the interference between
 - direct decay
 - decay after mixing

$$\mathcal{A}(\Delta t) \equiv \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}) - \Gamma(B^{0}(\Delta t) \to f_{CP})}{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}) + \Gamma(B^{0}(\Delta t) \to f_{CP})} = S_{f} \sin(\Delta m \,\Delta t) - C_{f} \cos(\Delta m \,\Delta t)$$

- initial flavor \rightarrow flavor tagging
 - \blacktriangleright introduces diluting mistag fraction ω
- proper-time difference \rightarrow reconstruction of distance between B_{sig} and B_{tag} vertices
 - requires description of proper-time resolution, often via per-event uncertainties $\sigma_{\Delta t}$
- CP observables \rightarrow parameters of interest
 - $S_{J/\psi K_c^0} = \sin 2\phi_1$ in SM if no direct *CP* violation
- mixing parameters \rightarrow from external measurements

Frank Meier (Duke University)

Measurement of $C\!P$ asymmetries in $B^0\!\to\eta' K^0_{\rm S}$ decays

- ▶ $B^0 \rightarrow \eta' K^0_{\rm S}$ is $b \rightarrow sq \overline{q}$ transition that proceeds via loop amplitudes
- comparison of CP observables with sin $2\phi_1$ probes beyond standard model contributions
- $\blacktriangleright \ \text{reconstruct} \ \eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^- \ \text{and} \ \eta' \to \rho^0 (\to \pi^+ \pi^-) \gamma$
- \blacktriangleright perform B vertex fit and remove multiple candidates via best fit probability
- continuum suppression with BDT (validated on off-resonance data)
- four components in maximum-likelihood fit: signal, self-cross-feed, $q\overline{q}$ background, and $B\overline{B}$ background
- ▶ perform maximum likelihood fit to beam-constrained mass $M_{\rm bc}$, energy difference ΔE , BDT output CS_{BDT}

Measurement of $C\!P$ asymmetries in $B^0\!\to\eta' K^0_{\rm S}$ decays

- add proper-time difference as fourth fit observable
- flavor tag and proper-time uncertainty conditional observables
- resolution function determined with $B^0 \rightarrow D^{(*)-}\pi^+$ decays
- ► 358 ± 20 signal in $\eta' \rightarrow \eta (\rightarrow \gamma \gamma) \pi^+ \pi^-$ channel at 79% purity
- ▶ 346 ± 21 signal in $\eta' \rightarrow \rho^0 (\rightarrow \pi^+ \pi^-) \gamma$ channel at 24% purity
- largest systematic uncertainties from
 - fixing shape parameters
 - Δt resolution model
 - motion of *B*-meson in $\Upsilon(4S)$ frame
- results of CP observables in agreement with current world averages
- sensitivity approaching that of Belle and BaBar

• correlation(
$$S, C$$
): 3.4%

13/24

Measurement of $C\!P$ asymmetries in $B^0\!\to\phi K^0_{\rm S}$ decays with Belle II arXiv:2307.02802

- ▶ $B^0 \rightarrow \phi K^0_{\rm S}$ proceeds via penguin diagram \Rightarrow sensitive to physics beyond the SM
- \blacktriangleright reconstruct $\phi \! \rightarrow K^+ \! K^-$ and $K^0_{\rm S} \! \rightarrow \pi^+ \pi^-$
- \blacktriangleright restrict sample to narrow region around ϕ mass \Rightarrow quasi-two-body analysis
- continuum suppression via BDT
- unbinned extended maximum-likelihood fit to four dimensions:
 - ▶ beam-constrained mass $M_{\rm bc}$ and transformed BDT output $\mathcal{O}_{\rm CS}'$ to separate signal from continuum
 - ▶ helicity angle $\cos \theta_H$ to distinguish non-resonant $B^0 \rightarrow K^+ K^- K_{\rm S}^0$
 - proper-time difference Δt to extract CP observables

Measurement of $C\!P$ asymmetries in $B^0\!\to\phi K^0_{\rm S}$ decays with Belle II arXiv:2307.02802

- found 162 ± 17 signal candidates $S_{\phi K_{\mathbb{S}}^{0}} = 0.54 \pm 0.26^{+0.06}_{-0.08}$ $C_{\phi K_{\mathbb{S}}^{0}} = -0.31 \pm 0.20 \pm 0.05$
- largest systematic uncertainties arise from
 - fit bias
 - neglecting $B\overline{B}$ backgrounds

and for \boldsymbol{C} also

- treatment of multiple candidates
- non-resonant background
- results compatible with previous measurements
- no significant shift wrt sin $2\phi_1$ observed

15/24

Measurement of CP asymmetries in $B^0 \rightarrow K^0_s \pi^0 \gamma$ decays

- weak interaction couples to left-handed fermions \Rightarrow for \overline{B}^0 decay photon predominantly left-handed
- \blacktriangleright interference between B^0 and \overline{B}^0 highly suppressed
- select highest energetic photon and reject potential π^0 and η combinations with BDT
- define two mass regions, around K^{*0} and everywhere else
- \blacktriangleright separate signal from background with fit to $M_{\rm bc}$ and ΔE
- \blacktriangleright extract CP observables from simultaneous fit to Δt and time-integrated rate
- most precise results to date
- E and p scale as well as $B\overline{B}$ background asymmetries dominant systematics

Frank Meier (Duke University)

 $\begin{array}{l} S_{K^0_{\rm S}\pi^0\gamma} = 0.04^{+0.45}_{-0.44} \pm 0.10 \\ C_{K^0_{\rm S}\pi^0\gamma} = -0.06 \pm 0.25 \pm 0.07 \end{array}$
$$\begin{split} S_{K^{*0}\gamma} &= 0.00^{+0.27+0.03}_{-0.26-0.04} \\ C_{K^{*0}\gamma} &= 0.10 \pm 0.13 \pm 0.03 \end{split}$$
28.08.2023 Hadronic B Decays at Belle II

Improvements of flavor tagging

▶ so far used BDT-based two-stage approach of categories that are then combined

Categories	Targets for $\overline{B}{}^0$	
Electron	e^-	
Intermediate Electron	e^+	
Muon	μ^-	
Intermediate Muon	μ^+	
Kinetic Lepton	ℓ^-	
Intermediate Kinetic Lepton	ℓ^+	
Kaon	K^{-}	
Kaon-Pion	K^- , π^+	
Slow Pion	π^+	
Maximum p^*	ℓ^- , π^-	
Fast-Slow-Correlated (FSC)	ℓ^- , π^+	
Fast Hadron	π^- , K^-	
Lambda	Λ	

- effective tagging efficiency: $\varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} (1 - 2\omega)^2 = (31.68 \pm 0.45)\%$
- only kept best candidate per category so lost potential tagging power

Frank Meier (Duke University)

Hadronic B Decays at Belle II

Improvements of flavor tagging

- ▶ feed up to 16 tracks into graph neural network
- ▶ input features of tracks: output of 13 former categories + momentum components + PID variables
- ▶ coordinates: initially point-of-closest approach to IP, then position in feature space

• effective tagging efficiency increases to $\varepsilon_{\text{eff}} = (37.40 \pm 0.43 \pm 0.34)\%$

Frank Meier (Duke University)

Hadronic B Decays at Belle II

Validation of new flavor tagging algorithm

- \blacktriangleright perform $C\!P$ violation measurement in golden channel $B^0 \! \to J \! / \! \psi \, K^0_{\rm S}$
- ▶ reconstruct $J/\psi \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow e^+e^-$ and $K^0_{\rm S} \rightarrow \pi^+\pi^-$
- fit energy difference ΔE and calculate signal weights
- fit weighted Δt distribution \Rightarrow only signal parameterization needed

 $\begin{array}{ll} S_{J\!/\psi\,K^0_{\rm S}} = & 0.724 \pm 0.035 \pm 0.014 \\ C_{J\!/\psi\,K^0_{\rm S}} = -0.035 \pm 0.026 \pm 0.012 \end{array}$

- results in agreement with previous measurements
- statistical precision 7.9% / 7.1% better than with old flavor tagging algorithm
- largest systematic uncertainty from tag-side interference

Measurements of the CKM angle ϕ_2

Frank Meier (Duke University)

Hadronic B Decays at Belle II

28.08.2023

19/24

Measurement of the branching fraction and $C\!P$ asymmetry of $B^0 \! \to \pi^0 \pi^0$ PRD 107, 112009 (2023)

- ϕ_2 least known CKM angle
- ▶ if only tree-level $b \rightarrow u$ processes $B^0 \rightarrow \pi^+\pi^-$ would allow extraction of ϕ_2
- ▶ however significant loop contributions present so combine multiple charmless $B^0 \rightarrow hh$ modes
- challenging reconstruction since final state are just 4 photons
- signal photon selection via BDT
- another BDT to suppress continuum background
- signal yield extraction with 3D fit to beam-constrained mass $M_{\rm bc}$, energy difference ΔE , and transformed BDT output

 $\mathcal{B}(B^0 \to \pi^0 \pi^0) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$ $\mathcal{A}_{CP}(B^0 \to \pi^0 \pi^0) = 0.14 \pm 0.46 \pm 0.07$

- ▶ same precision on branching fraction as Belle with only 1/3 of data
- further new $B \rightarrow \pi \pi$ results in backup
- First results on $B^0 \rightarrow \rho \rho$ in arXiv:2206.12362 and arXiv:2208.03554 Frank Meier (Duke University) Hadronic B Decays at Belle II

$K\pi$ puzzle

Frank Meier (Duke University)

Hadronic B Decays at Belle II

28.08.2023

21/24

Isospin sum rule

- ▶ significant difference between direct *CP*-violating asymmetries in $B^0 \rightarrow K^+ \pi^-$ and $B^+ \rightarrow K^+ \pi^0$
- large hadronic uncertainties
- ▶ isospin sum rule for $B \rightarrow K\pi$ decays

$$I_{K\pi} = \mathcal{A}_{K^{+}\pi^{-}} + \mathcal{A}_{K^{0}\pi^{+}} \frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{+}\pi^{0}} \frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{K^{0}\pi^{0}} \frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}$$

- null test of SM ($I_{K\pi} = 0$) in the limit of isospin symmetry and no electroweak penguin contributions
- ▶ Belle II with unique access to all $K\pi$ modes

Results on $K\pi$ puzzle

$$\begin{split} \mathcal{B}(B^0 \to K^+\pi^-) &= (20.67 \pm 0.37 \pm 0.62) \times 10^{-6} \\ \mathcal{A}_{CP}(B^0 \to K^+\pi^-) &= -0.072 \pm 0.019 \pm 0.007 \end{split}$$

 $\begin{aligned} \mathcal{B}(B^+ \to K_{\rm S}^0 \pi^+) &= (24.37 \pm 0.71 \pm 0.86) \times 10^{-6} \\ \mathcal{A}_{CP}(B^+ \to K_{\rm S}^0 \pi^+) &= 0.046 \pm 0.029 \pm 0.007 \end{aligned}$

- results agree with current world averages
- precision comparable to the current best results
- ► combine $B^0 \rightarrow K_s^0 \pi^0$ with previous time-dependent Belle II measurement (~50% overlap of candidates) arXiv:2206.07453

 $\mathcal{A}_{CP}(B^0 \to K^0_{\rm S} \pi^0) = -0.01 \pm 0.12 \pm 0.05$

most precise measurement of single experiment to date

- inserting results into isospin sum rule
- competitive with world average of $I_{K\pi} = 0.13 \pm 0.11$

$$\begin{split} \mathcal{B}(B^+ \to K^+ \pi^0) &= (13.93 \pm 0.38 \pm 0.71) \times 10^{-6} \\ \mathcal{A}_{CP}(B^+ \to K^+ \pi^0) &= 0.013 \pm 0.027 \pm 0.005 \end{split}$$

$$\begin{split} \mathcal{B}(B^0 &\to K^0_{\rm S} \pi^0) = (10.40 \pm 0.66 \pm 0.60) \times 10^{-6} \\ \mathcal{A}_{CP}(B^0 &\to K^0_{\rm S} \pi^0) = -0.06 \pm 0.15 \pm 0.05 \end{split}$$

 $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$

Conclusion

- \blacktriangleright various measurements of CP asymmetries in hadronic B decays
- ▶ time-dependent *CP* violation measurements using $B^0 \rightarrow \eta' K^0_S$, $B^0 \rightarrow \phi K^0_S$, and $B^0 \rightarrow J/\psi K^0_S$
- \blacktriangleright branching fraction and $C\!P$ asymmetry measurement of $B^0\!\to\pi^0\pi^0$ towards ϕ_2
- ϕ_3 measured with GLS and GLW methods
- ▶ analyses still statistically limited (362 fb⁻¹) but thanks to better resolution and improved analysis techniques precision already better than expected
 - new flavor tagging algorithm based on graph neural network increases effective tagging efficiency by 18%
- ▶ restart of data-taking planned for January \Rightarrow more data coming
- ▶ in the meantime combined measurements with Belle data

Backup

Frank Meier (Duke University)

Hadronic B Decays at Belle II

28.08.2023

1/4

Duke

GLS measurement of ϕ_3 arXiv:2306.02940

- ▶ $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ with $D \rightarrow K^0_{\rm S}K^{\pm}\pi^{\mp}$ using Belle and Belle II data
- ▶ split into same-sign (SS), i.e., charge of B same as charge of K in $D \to K_s^0 K^{\pm} \pi^{\mp}$, and opposite-sign (OS)
- ▶ seven observables: four *CP* asymmetries and three branching-fraction ratios

$$\mathcal{A}_{m}^{Dh} \equiv \frac{N_{m}^{Dh^{-}} - N_{m}^{Dh^{+}}}{N_{m}^{Dh^{-}} + N_{m}^{Dh^{+}}} \quad \mathcal{R}_{m}^{DK/D\pi} \equiv \frac{N_{m}^{DK^{-}} + N_{m}^{DK^{+}}}{N_{m}^{D\pi^{-}} + N_{m}^{D\pi^{+}}} \quad \mathcal{R}_{SS/OS}^{D\pi} \equiv \frac{N_{D\pi^{-}}^{SS} + N_{D\pi^{+}}^{SS}}{N_{D\pi^{-}}^{OS} + N_{D\pi^{+}}^{OS}}$$

- $K-\pi$ separation based on PID likelihood
- continuum suppression via BDT
- extraction of signal yields
 - ▶ 2D fit of ΔE and transformed BDT output C'
 - simultaneous fit in 16 subsets split by *B* charge, OS/SS, *DK/Dπ*, Belle/Belle II
- two configurations:
 - ▶ full *D* phase space
 - $\blacktriangleright \quad D \to K^{*\mp} K^{\pm} \text{ with } K^{*\pm} \to K^0_{\rm S} \pi^{\pm}$

Frank Meier (Duke University)

Hadronic B Decays at Belle II

GLS measurement of ϕ_3 arXiv:2306.02940

full D phase space	SS	OS	$K^{*\pm}$ region	SS	OS
\mathcal{A}^{DK}	$-0.089 \pm 0.091 \pm 0.011$	$0.109 \pm 0.133 \pm 0.013$	\mathcal{A}^{DK}	$0.055 \pm 0.119 \pm 0.020$	$0.231\pm0.184\pm0.014$
$\mathcal{A}^{D\pi}$	$0.018\pm0.026\pm0.009$	$-0.028\pm0.031\pm0.009$	$\mathcal{A}^{D\pi}$	$0.046 \pm 0.029 \pm 0.016$	$0.009\pm0.046\pm0.009$
$\mathcal{R}^{DK/D\pi}$	$0.122\pm0.012\pm0.004$	$0.093\pm0.013\pm0.003$	$\mathcal{R}^{DK/D\pi}$	$0.093 \pm 0.012 \pm 0.005$	$0.103\pm0.020\pm0.006$
$\mathcal{R}^{D\pi}_{SS/OS}$	$1.428 \pm 0.057 \pm 0.002$		$\mathcal{R}^{D\pi}_{\mathrm{SS/OS}}$	$2.412 \pm 0.132 \pm 0.019$	

- values consistent with LHCb's results
- measurement statistically limited
- on their own results do not allow unambiguous determination of ϕ_3 but help in global fits
- largest systematic uncertainties
 - ► fixing shape parameters from MC
 - ▶ assumption that efficiencies of $D \to K^0_S K^- \pi^+$ and $D \to K^0_S K^+ \pi^-$ are equal

Frank Meier (Duke University)