

FUR PHYSIK

Recent time-dependent measurements of CP violation at Belle II

Oskar Tittel, on behalf of the Belle II collaboration EPS-HEP 2023 22.08.2023

The B-Meson System CKM Triangle

CKM triangle closed in the SM
→ tensions may hint towards new physics (NP)

Precise measurements by BaBar, Belle and LHCb result in

 $\Phi_1 = (22.2 \pm 0.7)^\circ$ (HFLAV)

Check for agreement in channels which are sensitive to NP

Mixing-Induced CP-Violation

Interference of mixing and decay amplitudes lead to mixing-induced CPV

 Φ_1 contributes as the mixing phase $|V_{td}|e^{i\phi_1}$

$$\mathcal{A}_{CP}(t) = \frac{N(\overline{B}^0 \to f_{CP}) - N(B^0 \to f_{CP})}{N(\overline{B}^0 \to f_{CP}) + N(B^0 \to f_{CP})}(t) = S_{CP} \sin(\Delta m_d t) - C_{CP} \cos(\Delta m_d t)$$

 S_{CP} : mixing-induced asymmetry

C_{CP}: direct asymmetry

Time Dependent CP Measurements at Belle II

Critical for good time-dependent measurements:

- 1. Good vertex resolution (Belle II: $\Delta z \approx 130 \mu m$, Belle: $\Delta z \approx 200 \mu m$)
- 2. High tagging efficiency (Belle II: $\varepsilon_{tag} = (31.7 \pm 0.4)\%$, Belle: $\varepsilon_{tag} = (30.1 \pm 0.4)\%$)

Today: three new Belle II results using the full dataset (362 fb^{-1})

Hadronic Penguins

FCNC not allowed in SM at tree level

→ decay via loop-suppressed $\overline{b} \rightarrow \overline{s}q\overline{q}$ transition → sensitive to NP

Example: $B^0 \rightarrow \eta' K_S$

Relatively high BF wrt. other penguin mediated decays to CP-eigenstates $\sin 2\phi_1 = S_{CP} \mathcal{O}(\sim 1\%)$ (arXiv:hep-ph/0505075) $\underset{\text{EPS!}}{^{\text{New for}}} B^0 \to \eta' K_S$

Consider sub-channels $\eta' [\rightarrow \eta(\gamma \gamma) \pi^+ \pi^-]$ and $\eta' [\rightarrow \rho(\pi^+ \pi^-) \gamma]$

Challenge: high backgrounds from random combination of tracks from $q\bar{q}$ events

Train event-shape MVA to suppress this background

Signal extraction: $n_{sig} = 829 \pm 35$

$$\Delta E = E_B^* - E_{
m beam}^*$$

 $\underset{\text{EPS!}}{^{\text{New for}}} B^0 \to \eta' K_S$

Background Δt shape controlled from sideband

 S_{CP} and C_{CP} extracted from fit in signal region with background parameters fixed from first step

Fit validated with
$$B^{\pm} \rightarrow \eta' K^{\pm}$$

Unique at Belle II

$$C_{CP} = 0.19 \pm 0.08 \pm 0.03$$

 $S_{CP} = 0.67 \pm 0.10 \pm 0.04$

HFLAV:
$$C_{CP} = -0.05 \pm 0.04 S_{CP} = 0.63 \pm 0.06$$

Other Hadronic Penguin Results

HFLAV: $C_{CP} = 0.01 \pm 0.14 S_{CP} = 0.74^{+0.11}_{-0.13}$ HFLAV: $C_{CP} = -0.15 \pm 0.12 S_{CP} = -0.83 \pm 0.17$ HFLAV: $C_{CP} = 0.01 \pm 0.10 S_{CP} = 0.57 \pm 0.17$

Radiative Penguins

Polarization of photon strongly constrains flavor

- \rightarrow final state no CP eigenstate
- \rightarrow SM: S_{CP} helicity suppressed

NP processes could contribute to a significant mixing-induced CP violation

Example: $B^0 \rightarrow K_S \pi^0 \gamma$ Theory: $S_{CP} = -0.035 \pm 0.017$ (arXiv:hep-ph/0406055)

Candidates with poor vertex reconstruction are used to measure C_{CP} in a time-integrated way

High multiplicity coming from fake beam background π^0 \rightarrow select single one using MVA methods $\underset{\text{EPS!}}{\overset{\text{New for}}{\overset{\text{BO}}{\overset{\text{New for}}{\overset{\text{BO}}{\overset{\text{New for}}{\overset{\text{BO}}{\overset{\text{New for}}{\overset{\text{BO}}{\overset{\text{New for}}{\overset{\text{New for}}{\overset{New for$

Consider exclusive decay to $K^{*0}(\rightarrow K_S \pi^0) \gamma$ and inclusive decay to $K_S \pi^0 \gamma$ separately

Channel	<i>K</i> * ⁰ γ	$K_S \pi^0 \gamma$
$M_{K_S\pi^0}$ -region $[\frac{GeV}{c^2}]$]0.8, 1.0[[0.6, 0.8]or [1.0, 1.8]
Signal yield	385 <u>+</u> 24	171 <u>+</u> 23

HFLAV:

 $K^{*0}\gamma: \quad C_{CP} = -0.04 \pm 0.14 \ S_{CP} = -0.16 \pm 0.22 \\ K_S \pi^0 \gamma: \ C_{CP} = -0.07 \pm 0.12 \ S_{CP} = -0.15 \pm 0.20 \\ \text{*The HFLAV} \ K_S \pi^0 \gamma \text{ values include } K^{*0} \gamma$

New for EPS! GNN Flavor Tagger (GFlaT)

New flavor tagger (GFIaT) based on graph neural network (GNN), which uses interrelational information between particles, developed in Belle II

Conv. FT:
$$\epsilon_{tag} = (31.68 \pm 0.45 \pm 0.41) \%$$

GFIaT: $\epsilon_{tag} = (37.40 \pm 0.43 \pm 0.34) \%$

 \rightarrow ~18% more effective data due to increase in tagging efficiency compared to conventional flavor tagger!

New for EPS! $B^0 \to J/\psi K_S$

SM measurement with large BF and experimentally clean signature Validate FT performance

~8 % reduction in statistical uncertainty due to GFIaT

 $C_{CP} = -0.035 \pm 0.026 \pm 0.012$ $S_{CP} = 0.724 \pm 0.035 \pm 0.014$

HFLAV: $C_{CP} = 0.000 \pm 0.020 S_{CP} = 0.695 \pm 0.019$

Conclusion

Presented 6 TD results from 2023 including 3 new results:

- 1. Several results already on par with best measurement or world leading
- 2. Many channels unique to Belle II

Prospects:

- 1. More data: restart data taking this winter
- 2. Better control: software (GFIaT) and hardware (new pixel vertex detector) improvements ready for new run

Backup

B-Meson Mixing

Moriond 23: *K_SK_SK_S*

No contributions from opposite-CP backgrounds

Main challenge: no prompt tracks \rightarrow vertex reconstruction from K_S trajectories

Unique at Belle II

$$C_{CP} = -0.07 \pm 0.20 \pm 0.05$$

$$S_{CP} = -1.37^{+0.35}_{-0.45} \pm 0.03$$

HFLAV: $C_{CP} = -0.15 \pm 0.12 S_{CP} = -0.83 \pm 0.17$

Moriond 23: φK_S

Clean experimental signature due to two prompt tracks from $\varphi \rightarrow K^+K^-$

Main challenge: non-resonant backgrounds with opposite-CP

Results competitive with best measurements

$$C_{CP} = -0.31 \pm 0.20 \pm 0.05$$

$$S_{CP} = 0.54 \pm 0.26^{+0.06}_{-0.08}$$

HFLAV: $C_{CP} = 0.01 \pm 0.14 S_{CP} = 0.74^{+0.11}_{-0.13}$

CB FT Perfomance

