

# Recent Belle II results on semitauonic decays and tests of lepton-flavor universality

August 23, EPS-HEP 2023 Taichiro Koga (KEK) on behalf of the Belle II collaboration

# Lepton Flavor Universality (LFU) anomaly in B decays

-SM expects lepton coupling to EW gauge bosons to be flavor-universal, but tension exists



# Test of LFU with semitauonic B decay

- -Belle II at SuperKEKB: on-threshold  $B\overline{B}$  production from  $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ , reconstructed with hermetic detector
- -Advantage to measure semileptoinc decays:
  - -clean background environment
  - -known initial beam state
  - -achieved luminosity of 4.7  $\times$  10<sup>34</sup> cm<sup>2</sup>s<sup>-1</sup>
  - -total integrated luminosity at Y(4S) energy: 363fb<sup>-1</sup>



-Four LFU tests by Bellell with  $189 \text{fb}^{-1}$  (198 × 10<sup>6</sup> BB events):

X:any decays

-
$$\tau$$
 and  $\ell$  ( $\ell$ =e or  $\mu$ ):  $R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \ell \nu_{\ell})}$   $R(X)$ 

$$R(X) = \frac{\mathcal{B}(B \to X\tau\nu_{\tau})}{\mathcal{B}(B \to X\ell\nu_{\ell})}$$

-µ and e:

Angular asymmetries 
$$\Delta A_{
m FB} = A_{
m FB}^{\mu} - A_{
m FB}^{e}$$

$$R(X_{e/\mu}) = \frac{\mathcal{B}(B \to X e \nu_e)}{\mathcal{B}(B \to X \mu \nu_\mu)}$$

# R(D\*) Measurement

-The first measurement of  $R(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \ell \nu_{\ell})}$  at Bellell, 189fb<sup>-1</sup>

-Reconstruct  $B o D^* au 
u_{ au}$  ,  $B o D^* \ell 
u_{\ell}$ 

-B<sub>tag</sub>: Fully reconstructed hadronic decay with machine learning method(hadronic tag) -B<sub>sig</sub>: Leptonic  $\tau$  decays of  $\tau \rightarrow e\bar{\nu}_e \nu_{\tau}/\mu\bar{\nu}_{\mu}\nu_{\tau}$ Three D\* decay channels  $D^{*+} \rightarrow D^0\pi^+/D^+\pi^0, D^{*0} \rightarrow D^0\pi^0$ Tagged (Full Event Interpretation)

-Rest of events: No charged tracks, No  $\pi^0$  candidates

-Challenge: Multiple neutrinos in final state
 Identification of D\*τν, D\*ℓν, D\*\*ℓν
 -Low statistics due to hadronic tag



#### -Advantage:

-Cancel many systematics by taking ratio with the same final state particles

# R(D\*) signal extraction

-Two-dimensional binned likelihood is used to extract  $N_{B \to D^* \tau \nu}$ ,  $N_{B \to D^* \ell \nu}$  $\begin{bmatrix} -E_{ECL} : \text{sum of energy in calorimeter not used for } B\overline{B} \text{ reconstruction} \\ -M_{miss}^2 \equiv \left(p_{e^+e^-} - p_{B_{tag}} - p_{D^*} - p_{\ell}\right)^2$ : missing mass of un-detected particles



## Data-driven validation at side-band

#### -Signal and background PDF are validated at side-band regions:



-Data agree with simulation at all side-band regions

#### R(D\*) Result 7 -Post fit distributions with good data/MC agreement: zoomed $D^*\tau v$ enhanced $1.5 < M_{\rm miss}^2 < 6.0 \, ({\rm GeV}/c^2)^2$ **Belle II** Preliminary $D^{*+} \rightarrow D^0 \pi^+$ --- Data Belle II Preliminary **Belle II** Preliminary $D^{*+} \rightarrow D^0 \pi^+$ --- Data -- Data 800 100 25 $D^*\tau v$ $D^*\tau v$ $D^*\tau v$ $L \, dt = 189.3 \, \text{fb}^{-1}$ $L \, dt = 189.3 \, fb^{-1}$ $L \, dt = 189.3 \, fb^{-1}$ 700 $D^*lv$ $D^*lv$ $D^*lv$ $D^{*^+} \rightarrow D^0 \pi^+$ 80 20 $D^{**l}(\tau)v$ $D^{**l}(\tau)v$ 600 $D^{**l}(\tau)v$ Hadronic B Hadronic B Hadronic B Candidates Candidates Candidates 500 Fake $D^{(*)}$ Fake $D^{(*)}$ Fake $D^{(*)}$ 60 15 400 Other BG Other BG Other BG Fit uncertainty Fit uncertainty Fit uncertainty 40 10 300 200 20 5 100 0 2 Pull Pull Pull 0 -4 0.2 1.2 1.4 0.4 0.6 0.8 1.6 1.8 $M_{\rm miss}^2 [({\rm GeV}/c^2)^2]$ $M_{\rm miss}^2 [({\rm GeV}/c^2)^2]$ E<sub>FCL</sub> [GeV] R(D\*) -The first R(D\*) results from BelleII: $\Delta \chi^2 = 1.0$ contours BaBar 0.35 Belle $R(D^*) = 0.267 \stackrel{+0.041}{_{-0.039}}(\text{stat.}) \stackrel{+0.028}{_{-0.033}}(\text{syst.})$ 3σ BelleII 0.3 Belle<sup>b</sup> LHCb Major systematics: MC statistics, E<sub>ECL</sub> PDF shape LHCb<sup>b</sup> + Belle 0.25 World Average $\begin{aligned} R(D) &= 0.357 \pm 0.029_{total} \\ R(D^*) &= 0.284 \pm 0.012_{total} \end{aligned}$ -Consistent with both SM and past 0.2 HFLAV SM Prediction $R(D) = 0.298 \pm 0.004$

measurements

R(D)

0.55

 $\rho = -0.37$ 

0.45

0.5

 $R(D^*) = 0.254 \pm 0.005$ 

0.25

0.3

0.35

0.4

0.2

# Inclusive measurement of R(X)



-The first measurement of  $R(X) = \frac{\mathcal{B}(B \to X \tau \nu_{\tau})}{\mathcal{B}(B \to X \ell \nu_{\ell})}$  at B factory, 189fb<sup>-1</sup>

-inclusive: complementary to exclusive analyses of R(D\*)
 -one of unique and high-profile goals of Bellell



-Challenge: contamination and modeling of many decay channels -correct understanding of PDF shapes and background yields: PDF shapes are calibrated in side-band by using X mass distribution

# R(X) signal extraction

-Two-dimensional binned likelihood is used to extract  $N_{B \rightarrow X \tau \nu}$ ,  $N_{B \rightarrow X \ell \nu}$ 

- $p^{B}_{\ell}$  : lepton momentum in B rest frame
- $-M_{miss}^2$ : missing mass of un-detected particles

#### -Templates for fitting

-Χτν, Χθν

-Continuum with off-resonant data constraint

-Background from fake and secondaries leptons

-Post fit distributions show good data/MC agreement, including BG dominant bin:





# R(X) Result



-The first results of  $R(X) = \frac{\mathcal{B}(B \to X \tau \nu_{\tau})}{\mathcal{B}(B \to X \ell \nu_{\ell})}$  at B factory:

$$\begin{aligned} \mathsf{R}(\mathsf{X}_{\tau/\ell}) &= 0.228 \pm 0.016(\text{stat.}) \pm 0.036(\text{syst.}) \\ &-\text{e only: } \mathsf{R}(\mathsf{X}_{\tau/\mu}) = 0.232 \pm 0.020(\text{stat.}) \pm 0.037(\text{syst.}) \\ &-\mu \text{ only: } \mathsf{R}(\mathsf{X}_{\tau/e}) = 0.228 \pm 0.027(\text{stat.}) \pm 0.050(\text{syst.}) \end{aligned}$$

Major systematics: MC statistics, PDF shape, BR of  $B \rightarrow D^{**} \ell v$ 

-Consistent with SM prediction



[PhysRevLett.131.051804]

-The first measurement of  $R(X_{e/\mu}) = \frac{\mathcal{B}(B \to X e \nu_e)}{\mathcal{B}(B \to X \mu \nu_{\mu})}$  at Bellell -test LFU of light leptons, e and  $\mu$ 

-unique measurement at Bellell with inclusive analysis



 $R(X_{e/\mu})$ 

-Result:

$$R(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{syst})$$

major systematics: lepton identification

-Most precise measurement in the world, in agreement w/SM.

# $B \rightarrow D^* \ell v$ angular asymmetries

-Measurement of angular asymmetries of  $B \rightarrow D^* ev$  and  $B \rightarrow D^* \mu v$ [-independent LFU test of light leptons, e and mu -tension was reported by [Eur. Phys. J. C 81, 984 (2021)]

-Forward-backward asymmetry:

 $A_{FB} = \frac{N_F - N_B}{N_F + N_B} \quad N_F = \text{number of events with } \cos(\theta) > 0$  $N_F + N_B \quad N_B = \text{number of events with } \cos(\theta) < 0$ 

$$\Delta A_{\rm FB} = A^{\mu}_{\rm FB} - A^{e}_{\rm FB}$$

-Measure asymmetries with several angles at the first time by BelleII:

A<sub>FB</sub>: cosθ<sub>e</sub> S<sub>3</sub>: cos2χ S<sub>5</sub>: cosχcosθ<sub>le</sub> S<sub>7</sub>: cosχcosθ<sub>v</sub> S<sub>9</sub>: sinχ cosθ<sub>v</sub>

-Challenge: precise lepton identification





#### $B \rightarrow D^* \ell v$ angular asymmetries: Result

 $-B \rightarrow D^* \ell v$  reconstructed with hadronic tag

-N<sub>F</sub>, N<sub>B</sub> are extracted from missing mass of un-detected particles in each angular and energy transfer regions





statistical errors are dominant

-Most precise measurements in agreement with SM.

## Summary

-Tests of LFU are important to search for new physics

-BelleII performed unique LFU tests of semileptonic B decays with clean environment and known initial beam energy of e<sup>+</sup>e<sup>-</sup> collision

-LFU of τ and ℓ [-R(D\*): first result at BelleII -R(X): first result at B factory

-LFU of  $\mu$  and e

[-R( $X_{e/\mu}$ ): most precise result in the world -Angular asymmetries of B $\rightarrow$ D\* $\ell$ v: most precise results in the world

# backup

## Reconstruction of semileptonic B decays

-The kinematics of a B decay with neutrinos can be known through the full reconstruction of partner B (B<sub>tag</sub>) with initial beam energy

-Machine learning based algorithm (FEI) is developed for the tagging [-~30 kind of hadronic decays (hadronic tag)

-~0.45%(0.30%) B<sup>0</sup>(B<sup>+</sup>) efficiency: ~twice higher than Belle's method (FR)



( Comput Softw Big Sci **3**, 6 (2019) ) 16