Recent Dark Sector results at Belle II

Martina Laurenza (she/her) for the Belle II experiment

Uppsala Universitet

martina.laurenza@physics.uu.se

EPS-HEP 2023

Hamburg, 21-25 August 2023

Light Dark Matter at B-factories

Dark Sector Candidates, Anomalies, and Search Techniques

- **Dark Matter** is one of the most compelling reasons for **New Physics**
- B-factories at e⁺e⁻ collider can access the mass range favored by **light dark** sector
 - → Possible sub-GeV scenario: DM weakly coupled to SM through a **light mediator X**:
 - 1. Vector portal Dark Photons, Z' bosons
 - 2. Pseudo-scalar portal Axion Like Particles (ALPs)
 - 3. Scalar portal Dark higgs/Scalars
 - 4. Neutrino portal Sterile Neutrinos

Dark Sector @ Belle II

- Signature-based
- Advantages from the low particle multiplicty at lepton colliders + hermetic detector:
 - → Belle II at SuperKEKB asymmetric e⁺e⁻ collider
 - running at 10.58 GeV, well-known initial condition
 - efficient reconstruction of **neutrals**
 - specific low-multiplicity triggers (not present at Belle)
 - excellent particle identification system

Unprecedented luminosity 4.7 x 10³⁴ cm⁻² s⁻¹

- Shutdown since 2022 to install two-layer pixel detector
- 424 fb⁻¹ collected to date

Search for a long-lived (pseudo-)scalar particle in $b \rightarrow s$

- Search for dark scalar particles S from B decays in rare b→s transitions
 - S could mix with SM Higgs with mixing angle θ_s (naturally long-lived for $\theta_s \ll 1$)
 - $-M_S < M_B$, decays of S into dark matter particles must be kinematically forbidden to provide the correct relic density
- Look for S decays into SM final states in 8 exclusive channels:

$$- B+→K+S$$

$$- B0 →K*0 (→ K+Π)S$$
► S → ee/μμ/ππ/KK

- B-meson candidates are reconstructed from prompt and displaced charged tracks
- S candidates are reconstructed from displaced oppositely-charged tracks pairs
- B-meson kinematics to reject combinatorial background
- Signature: bump hunt with extended max likelihood unbinned fits to the (*)reduced mass spectrum, separately for each channel and lifetime

UNIVERSITET

Search for a long-lived (pseudo-)scalar particle in $b \rightarrow s$

- No significant excess found in 189 fb⁻¹
 - first model-independent 95% CL upper limits on BF(B→KS)×BF(S→x⁺x⁻)
 - translate into model independent limits on $\sin \theta_{\varsigma}$ vs. m_{ς}

First limits on decay to hadrons

Results are also available for the pseudo-scalar (ALP) model

Search for an invisible Z'

- New gauge boson Z' coupling only to the 2^{nd} and 3^{rd} generation of leptons $(L_u-L_\tau)^{[1]}$ may explain:
 - long-standing $(g-2)_{\mu}$ anomaly
 - dark matter abundance

- Search for the process: e⁺e⁻→ μ⁺μ⁻Z'
 → Two possible interpretation:
- 1) Vanilla, BF($Z' \rightarrow vv$) ~ 33-100%
- 2) Full invisible, BF(Z'→ xx) ~ 100%

Search for an invisible Z'

- Look for a narrow peak in the recoil mass against a $\mu^+\mu^-$ pair in events where nothing else is detected
- Dominant background radiative QED processes:
 - 1) $e^+e^- \rightarrow e^+e^- \mu^+\mu^-$
 - 2) $e^+e^- \rightarrow \tau^+ \tau^-(\gamma)$ (especially with both $\tau \rightarrow \mu$)
 - 3) $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
- Final State Radiation properties of the emitted Z' fed in a neural network trained for all Z' masses simultaneously

- No excess found in 79.7 fb⁻¹
 - → 90% CL upper limits on $\sigma(e^+e^-\to \mu^+\mu^-Z', Z'\to inv.)$ and on g'
 - \rightarrow (g-2)_µ favored region excluded for 0.8 < M(Z') < 5 GeV/c²

Search for a $\tau\tau$ resonance in ee $\rightarrow \mu\mu\tau\tau$

- Search for a **di-tau resonance in e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-** as a peak in the recoil against two muons
- Reconstruct **T** decays to one-charged particle (+nh₀)
 - → select **four-track events** with at least two tracks identified as muons
 - \rightarrow M(4track) < 9.5 GeV/c² to suppress the four-lepton backgrounds that peak at the c.m. energy
- Background suppression exploits features of kinematic variables in the signal (X arising from a final state radiation, system recoiling against the 2 muons is a tau pair)

[2] B. Batell, N. Lange, D. McKeen, M. Pospelov, and A. Ritz, Phys. Rev. D 95, 075003 (2017) [3] M. Bauer, M. Neubert, and A. Thamm, J. High Energy Phys. 2017, 44 (2017); M. Bauer,

[3] M. Bauer, M. Neubert, and A. Thamm, J. High Energy Phys. 2017, 44 (2017); M. Bauer, M. Neubert, S. Renner, M. Schnubel, and A. Thamm, J. High Energy Phys. 2022, 1 (2022) [4] W. Altmannshofer et. al. JHEP 12 (2016) 106

UNIVERSITET

Accepted by PRL: arXiv:2306.12294

- No significant excess observed in 62.8 fb⁻¹
 - → 90% CL upper limits on the process cross-section $\sigma(e^+e^- \to (X \to \tau^+\tau^-) \mu^+\mu^-) = \sigma(e^+e^- \to X \mu^+\mu^-)B(X \to \tau^+\tau^-)$, with X = S, ALP, Z'
- Exclusion limits on the couplings for three different models (leptophilic scalar $S^{[2]}$, $ALP^{[3]}$ and $Z'^{[4]}$) are derived:

Search for a dark leptophilic scalar in τ decays at Belle

- Search for a narrow peak in m_n distribution
- Mass range probed in this analysis: $40 \text{ MeV} < m(\Phi_l) < 6.5 \text{ GeV}$
 - $-\Phi_{\downarrow} \rightarrow e^{+}e^{-}$ for m(Φ_{\downarrow}) < 2m(μ) \rightarrow low mass region
 - $-\Phi_{l} \rightarrow \mu^{+}\mu^{-}$ for m(Φ_{l}) > 2m(μ) \rightarrow high mass region
- Strategy:
 - $\rightarrow e^+e^- \rightarrow \tau^+\tau^-\Phi_1$ require 1-prong decay
 - \rightarrow 4 tracks with 0 net charge
- **Background:** $e^+e^- \rightarrow \tau^+\tau^-$, $e^+e^-/\mu^+\mu^-$, qq, $B\overline{B}$
 - → Define five BDT score to suppress backgrounds
- Maximum Likelihood fit to m_" distribution
 - → Evaluate sensitivities to each mass point

Search for a dark leptophilic scalar in τ decays at Belle

No significant excess observed in 626 fb⁻¹ in all mass region

\circ 90 % CL UL on ξ vs m(Φ_i)

- → Comparable or more stringent limits than BaBar (Phys. Rev. Lett. 125, 181801)
- → Exclude a wide range of parameter space of the model favored by (g-2)_µ

UPPSALA

UNIVERSITET

Search for a µµ resonance in ee → µµµµ

- Search for the process e⁺e⁻ → μ⁺μ⁻X, with X → μ⁺μ⁻(X = Z', S)
 → Look for a peak in the opposite charge di-muon mass distribution in e⁺e⁻ → μ⁺μ⁻μ⁺μ⁻ events
- $(L_{\mu}-L_{\tau})$ model used as benchmark and then performances are checked for the scalar case
- Events selected have 4 charged particles
 - At least three identified as muons
 - M(4-track) $\sim \sqrt{s}/c^2$
 - No extra energy
- Dominant background: SM $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$
 - Suppression achieved by exploiting the features of kinematic distributions in signal events (presence of a resonance in both candidate and recoil muon pairs)

Search for a µµ resonance in ee → µµµµ

- No significant excess observed in 178 fb⁻¹
 - \rightarrow 90% CL upper limits on the process cross-section $\sigma(e^+e^- \rightarrow X \mu^+\mu^-) \times B(X \rightarrow \mu^+\mu^-)$, with X = S, Z'
 - \rightarrow Cross section limits are translated into upper limits on the g' coupling constant for the $L_{\mu} L_{\tau}$ model and on the g_s coupling constant for the muonphilic dark scalar $S^{[5]}$

Conclusion

- Belle II/SuperKEKB is a unique environment to search for light dark matter or mediators
- Excellent sensitivity for dark sector searches
- World's leading results are obtained with a subset of the full available data
- 424 fb⁻¹ recorded to date, more results with higher statistics and improved analyses will be produced

Backup

Light Dark Matter possible signatures

- Once produced, the mediator can have three different types of decays:
 - 1. Invisible decays
 - 2. Leptonic decays
 - 3. Hadronic decays

SuperKEKB

Search for a μμ resonance in ee → μμμμ: J/Ψ

Search for a µµ resonance in ee → µµµµ

Search for a μμ resonance in ee → μμμμ: muonphilic dark-scalar

We extended the Z' search to the case of a muophilic dark scalar, S

- Scalar particle coupling through Yukawa-like interaction, only
- Mainly proposed as a way to solve the muon (g-2)_µ anomaly

o If $m_s > 2m_\mu$ the only tree-level decay channel is $S \to \mu\mu$ ($S \to vv$, $\gamma\gamma$ also are possible at one loop level, but highly suppressed)

We reinterpreted our result in terms of the dark scalar *S*, keeping all the steps of the analysis <u>completely</u> unaltered

- 1) P. Harris, P. Schuster, J.Zupan, Snowmass White Paper: New flavors and rich structures in dark sectors
- 2) S. Gori, M. Williams, et al., Dark Sector Physics at High-Intensity Experiments
- 3) D. Forbes, C. HerwigNew Searches for Muonphilic Particles at Proton Beam Dump Spectrometers
- 4) R. Capdevilla, D. Curtin et al., Systematically testing singlet models for (g 2) μ

Search for a μμ resonance in ee → μμμμ: muonphilic dark-scalar

Difference: Z' is softly produced at low masses, S have a hard momentum spectrum also in the low mass region.

In $e^+e^- \rightarrow \mu^+\mu^-X$ interactions X can be:

- → A vector: production occurs through a s-wave process
- → A scalar: production occurs through a p-wave process

At low S masses the p-wave suppression makes the scalar process grow slowly with the energy, while there is no suppression for vector processes.

Search for a µµ resonance in ee → µµµµ: muonphilic dark-scalar

