

Recent Belle II results related to flavour anomalies

Paolo Rocchetti (University of Melbourne)

on behalf of the Belle II collaboration

30th Anniversary of the Rencontres du Vietnam August 8th, 2023

The Belle II experiment

The following Belle II measurements are done at 189 fb^{-1}

• Electron-Positron (e^+e^-) collider

 $e^- (7 \text{ GeV}) \rightarrow \leftarrow (4 \text{ GeV}) e^+$

- E_{CM} at $\Upsilon(4S)$ resonance (10.58 GeV)
- *B*-factory $\Upsilon(4S) \rightarrow B\overline{B}$ (at least 96%)

The Belle II detector

Lepton Identification

BDT-based

- Particle identification (PID) identify "long-lived" particles passing through the detector by interacting with matter
- One of the most crucial part of determining the sensitivity of a measurement
- Lepton identification algorithm works based on likelihood ratio or BDT

$$\mathrm{ID}_{\mu} = \frac{\mathcal{L}_{\mu}}{\sum_{i}^{e, \, \mu, \, \pi, \, K, p, d} \mathcal{L}_{i}}$$

- New BDT-based lepton identification superior across the momentum spectrum, especially < 0.6 GeV/c
- Data/MC correction factors have associated systematics for the efficiency at the 0.5-1.5% level

Likelihood Ratio

mis-ID rate

+ ↑

4

ID efficiency,

e+

mis-ID rate

ך ל

ID efficiency, h

First $R(D^*)$ Measurement from Belle II

$\underbrace{Belle II}_{Belle II} \quad Introduction to flavour anomalies in <math>b \to c$ decays $\underbrace{He UNIVERSITY OF}_{MELBOURNE}$

- Flavour anomalies have been observed due to deviations from the Standard model in processes involving leptons
- New physics could introduce additional interactions with each lepton, affecting the predicted rate of $b \rightarrow c$ decays
- New interactions involving the $b \to c$ quark transition can probed in $R(D^{(*)})$ or $R(X_{\tau/\ell})$

$$R(D^{(*)}) = \frac{Br(B \to D^{(*)}\tau\nu)}{Br(B \to D^{(*)}\ell\nu)} \qquad \longleftarrow \qquad \ell \in \{e,\mu\} \qquad \longrightarrow \qquad R(X_{\tau/\ell}) = \frac{Br(B \to X\tau\nu)}{Br(B \to X\ell\nu)}$$

$R(D^*)$ reconstruction

Precise knowledge of B_{tag} kinematics, strong kinematic reconstruction constraints for sig. side with 3 $\nu's$

Belle II

Exclusive signal *B* **modes** Reconstruct the signal-side *B* meson through specific decay channels

- Tag one *B*-meson from *hadronic* decays and analyse remaining *B* (**signal side**)
- Reconstruction of $\Rightarrow \overline{B^0} \to D^* \tau^- \bar{\nu}_{\tau}$ $\Rightarrow \overline{B^0} \to D^* \ell^- \bar{\nu}_{\ell}, \quad \ell \in \{e, \mu\}$
- Leptonic τ decays
- Three D^* decay channels: $\Rightarrow D^{*+} \rightarrow D^0 \pi^+$ $\Rightarrow D^{*+} \rightarrow D^+ \pi^0$ $\Rightarrow D^{*0} \rightarrow D^0 \pi^0$

$R(D^*)$ extraction

 M_{miss}^2 distribution

 $\bar{B} \to D^* \tau \nu$ events larger M_{miss}^2 due to multiple ν

 E_{ECL}^{extra} distribution

 $\overline{B} \to D^* \ell \nu$ events peak ~0 due to a single ν

Multiple ν causes broad peak $\overline{B} \rightarrow D^* \tau \nu$

missing particles additional clusters

2D extended binned maximum likelihood fit to missing mass squared (M_{miss}^2) and extra ECL energy (E_{ECL}^{extra})

from \overline{B} , τ

Simultaneous fit the three D^* decays channels: $\Rightarrow D^{*+} \rightarrow D^0 \pi^+$ $\Rightarrow D^{*+} \rightarrow D^+ \pi^0$ $\Rightarrow D^{*0} \rightarrow D^0 \pi^0$ $\Rightarrow D^{*\circ} \rightarrow D^{\circ} \pi^{\circ}$ $R(D^{*}) \text{ extracted from fit using } R(D^{*}) = \frac{N_{D^{*}\tau\nu}}{(N_{D^{*}\ell\nu}/2)} \cdot \frac{\varepsilon_{D^{*}\ell\nu}}{\varepsilon_{D^{*}\tau\nu}} N_{\chi}$: no. of χ events extracted from fit ε_{χ} : reconstruction efficiency for χ events

 E_{ECL}^{extra} : Sum of cluster energy not used in reco.

Sample composition evaluation

 $\bar{B} \to D^* \ell^- \bar{\nu}_\ell$ and major background contributions from $\bar{B} \to D^{**} \ell^- \bar{\nu}_\ell$ and fake D^* in three side-band regions are evaluated.

$R(D^*)$ post-fit results

- Systematic uncertainties dominated by PDF uncertainties and simulated sample size
- Result consistent with both SM prediction and HFLAV average

Light-lepton Universality test in angular asymmetries

Light-lepton flavour universality in $B \to D^* \ell^- \bar{\nu}$

٠

٠

٠

$\overline{B} \to D^* \ell^- \overline{\nu}$ reconstruction

- Tag one *B*-meson from *hadronic* decays same as $R(D^*)$
- Analyse remaining *B*-meson(signal side)
- Reconstruction of

 $\Rightarrow \overline{B^0} \to (D^{*+} \! \to D^0 \pi^+) \ell^- \bar{\nu}$

- Require momentum of lepton above 0.4 GeV
- No tracks remaining apart from the ones used in reconstruction
- Constrain mass of D^{*+} to be as close as possible to PDG value for each event

٠

Angular Asymmetries extraction

- The first universality test using a full set of angular observables as function of recoil *w*
- 1D binned maximum-likelihood fit to missing mass squared (M_{miss}^2)
- To maximise sensitivity to SM extensions, w separated into w_{low} , w_{high} , w_{inc}

Compare asymmetries between e, μ using $\Delta A_x(w) = A_x^e(w) - A_x^{\mu}(w)$

$$\chi^2 / N_{dof} = 2.0/3 \ (p = 0.57) \text{ on } A_{FB}, S_3, S_5 - w_{inc}$$

 $\chi^2 / N_{dof} = 10.2/6 \ (p = 0.13) \text{ on } A_{FB}, S_3, S_5 - w_{high,low}$

 $\int \mathcal{L} dt = 189 \, \text{fb}^{-1}$ Belle II $w_{\rm incl.}$ $w_{\rm incl.}$ $A_{\rm FB}$ $w_{\rm high}$ This $w_{\rm low}$ $w_{\rm low}$ measurement S_3 SMPhys. Rev. D 106, 096015 S_5 ///// Belle [arXiv:2301.07529] Belle II (arxiv:2301.04716) S_7 Bobeth, et al. S_9 No evidence of lepton flavour universality 0.2-0.2 -0.10.10.10.2-0.20.10.2-0.2-0.10.00.0-0.10.0 $\Delta \mathcal{A} = \mathcal{A}^{\mu} - \mathcal{A}^{e}$ $\mathcal{A}^e - \mathcal{A}^e_{\mathrm{SM}}$ ${\cal A}^{\mu} - {\cal A}^{\mu}_{
m SM}$

Light-lepton Universality test in $R(X_{e/\mu})$

- As a first step towards measuring $R(X_{\tau/\ell})$, we measure $R(X_{e/\mu})$
- Beyond the Standard Model effects in $R(X_{\tau/\ell})$ could affect the light lepton ratio in $R(X_{e/\mu})$

$$R(X_{e/\mu}) = \frac{Br(B \to Xe\nu)}{Br(B \to X\mu\nu)}$$

- *X* is the hadronic final state of semileptonic decay from $b \rightarrow c\ell \nu$, rarely $b \rightarrow u\ell \nu$
- Various leptoquark models have been presented to explain anomalies in $b \rightarrow c\ell v$

- Deviations from 1 in $R(X_{e/\mu})$ may indicate the presence of New Physics
- Inclusive reconstruction of the charm system signal-side *B*
- $p_{\ell}^{B} > 1.3 \text{ GeV/c}$ to suppress background

2.0

2.2

2.4

2.6

2.8

 $\mathcal{B}[B \to X_c \tau \nu] \ (\%)$

3.0

3.2

3.4

3.6

Light-lepton flavour universality in $R(X_{e/\mu})$

• 1D binned maximum-likelihood fit to lepton momentum of signal *B* rest-frame

- Control channel (B^0B^0/B^+B^+) constrains background yield in signal channel $(B^0\overline{B}^0/B^+B^-)$ through simultaneous fit
- *e* and μ templates are fitted simultaneously in **10** p_{ℓ}^{B} bins each

 $R(X_{e/\mu}) = 1.007 \pm 0.009 \text{ (stat.)} \pm 0.019 \text{ (sys.)}$

- ✓ Most precise LFU test with semileptonic *B* decays to date!
- ✓ Measurement systematically limited by lepton ID-based uncertainties

Phys. Rev. Lett. 131, 051804 (2023).

Lepton Flavour Universality tests shed light on $b \rightarrow c$ decays anomalies.

Current deviations from the Standard Model expectations of > 3σ characterise these anomalies.

Belle II performed three measurements to test lepton flavour universality:

• The first $R(D^*)$ result from Belle II

 $R(D^*) = 0.267^{+0.041}_{-0.039}(\text{stat.}) {}^{+0.028}_{-0.033}(\text{syst.})$ Consistent with both SM prediction and HFLAV average

• The first universality test using angular observables as function of recoil w

Consistent with Standard Model prediction

• The most precise Lepton Flavour Universality test with semileptonic *B*-decays to date

 $R(X_{e/\mu}) = 1.007 \pm 0.009 \text{ (stat.)} \pm 0.019 \text{ (sys.)}$ Consistent with Standard Model prediction

Thank you for listening!

19

THE UNIVERSITY OF MELBOURNE

Table 8.1: Summary of systematic uncertainties on $R(D^*)$.

Source	Uncertainty	
$E_{\rm ECL}$ PDF shapes	$+5.5\% \\ -9.3\%$	
MC statistics	$+7.0\%\ -7.0\%$	
Kernel density estimation	$^{+1.0\%}_{-1.0\%}$	
$\overline{B} \to D^{**} \ell^- \overline{\nu}_{\ell}$ branching ratios	$^{+4.7\%}_{-2.7\%}$	
Reconstruction efficiency	$^{+2.0\%}_{-2.0\%}$	
Hadronic B decay branching ratios	$^{+1.6\%}_{-2.4\%}$	
$M_{ m miss}^2$ PDF shapes	$^{+0.0\%}_{-0.6\%}$	
Form factors	$^{+0.5\%}_{-0.1\%}$	
Peaking background on ΔM_{D^*}	$^{+0.4\%}_{-0.4\%}$	
$E_{\rm ECL}$ fit range	$^{+0.1\%}_{-0.1\%}$	
Total systematic uncertainty	$^{+10.4\%}_{-12.4\%}$	

Angular asymmetries backup

Obs.	w bin	Total	Stat.	MC stat.	LID	$\pi_{ m slow}$
$A^e_{ m FB}$	$w_{ m low}$	0.045	0.042	0.015	0.004	0.001
	$w_{ m high}$	0.051	0.048	0.017	0.004	0.001
	$w_{ m incl.}$	0.033	0.031	0.011	0.004	0.001
$A^{\mu}_{ m FB}$	$w_{ m low}$	0.040	0.038	0.013	0.001	0.001
	$w_{ m high}$	0.051	0.048	0.016	0.002	0.001
	$w_{ m incl.}$	0.032	0.030	0.010	0.001	0.001
$\Delta A_{ m FB}$	$w_{ m low}$	0.060	0.056	0.020	0.004	0.001
	$w_{ m high}$	0.073	0.068	0.024	0.004	0.001
2	$w_{ m incl.}$	0.046	0.043	0.015	0.004	0.001