The new Belle II charm-flavor tagger

Marko Starič

Belle II collaboration

Jožef Stefan Institute, Ljubljana

CHARM 2023

M. Starič (IJS)

The new Belle II charm-flavor tagger

Siegen, July 17-21, 2023 1/15

- Flavor tagging is an essential ingredient of any CPV/mixing measurement
- Standard approach
 - exclusive reconstruction of $D^{*+} \to D^0 \pi^+$
 - only about 25% of D^0 can be tagged

PRD 107, 112010 (2023)

- New charm flavor tagger (CFT)*
 - exploits also information from other charmed hadron produced in $e^+e^-\to c\,\overline{c}$
 - by using charged particles not associated with the signal decay
 - these are part of the rest of the event (ROE)
 - include both, opposite-side and same-side particles
 - \rightarrow conventional D^{*+} tagging is thus incorporated

inspired by B-flavor tagging algorithms

- Other ROE particles whose charge is likely to be correlated with D⁰ flavor are also used in CFT (opposite side slow pions, protons and pions)
- Not shown are particles emerging directly from fragmentation

M. Starič (IJS)

The new Belle II charm-flavor tagger

3/15

🚰 Tagging algorithm

- Tagging decision provided with a binary classifier
 - histogram-based gradient-boosting decision tree (scikit-learn lib)
- ROE particles classified into two groups depending on their charge and ranked according to opening angle w.r.t D^0 momentum (in e^+e^- center-of-mass frame)
 - more collinear than those emerging purely from fragmentation
- The three top-ranked positive and the three top-ranked negative particles are selected for classification
 - 3 + 3 found optimal
 - if event contains less, the missing ones are labeled as missing values

🚰 Classifier input

- Classifier input variables:
 - opening angles
 - differences between pion and kaon particle ID (likelihoods)
 - recoil masses of the highest-ranked positive and negative particle

$$m_{\rm recoil} = \sqrt{(\mathbf{p}_{e^+e^-} - \mathbf{p}_{ROE})^2}$$

 \rightarrow 14 inputs in total

🚰 Classifier training

- Trained using simulated $D^0 \rightarrow \nu \overline{\nu}$ events
 - to minimize possible correlations with the signal decay
 - every reconstructed particle belongs to ROE
- Trained with 1.35M decays
- $\bullet\,$ Tested then with independent sample of 450k $D^0 \to \nu \overline{\nu}$ events

 \rightarrow correct flavor predicted in ${\sim}83\%$ of decays

M. Starič (IJS)

The new Belle II charm-flavor tagger

🚰 Standard metrics of tagging performance

classifier output = $q \times r$

M. Starič (IJS)

The new Belle II charm-flavor tagger

🚰 Performance evaluation

- Evaluated on 362 fb^{-1} of Belle II data
- Performance studied with the following self-tagged signal decays
 - $D^0 \to K^- \pi^+$, $D^0 \to K^- \pi^+ \pi^- \pi^+$, $D^0 \to K^- \pi^+ \pi^0$

•
$$D^+ o K^0_S \pi^+$$
, $D^+ o K^- \pi^+ \pi^+$

- $\Lambda_c^+ \rightarrow p K^- \pi^+$
- Inclusion of charged hadrons provides insight into contributions from various tagging categories (i.e. no same-side slow pion)
- Decay reconstruction involves selection of well fitted tracks from IR, our standard K_S^0 and π^0 reconstruction, particle ID and vertex fits

Background subtraction performed by sPlot technique

M. Starič (IJS)

The new Belle II charm-flavor tagger

Siegen, July 17-21, 2023 8 / 15

Signal decay	ε_{tag} (%)	$\Delta \varepsilon_{\text{tag}}$ (%)	ω (%)	$\Delta \omega$ (%)	$\varepsilon_{\text{tag}}^{\text{eff}}(\%)$
$D^0 \rightarrow K^- \pi^+$	99.974 ± 0.004	-0.002 ± 0.007	19.09 ± 0.08	0.36 ± 0.17	38.22 ± 0.20
$D^0 \to K^- \pi^+ \pi^- \pi^+$	99.794 ± 0.020	0.042 ± 0.039	19.13 ± 0.16	0.40 ± 0.32	38.05 ± 0.38
$D^0 \rightarrow K^- \pi^+ \pi^0$	99.967 ± 0.006	-0.006 ± 0.012	19.34 ± 0.13	-0.22 ± 0.26	37.58 ± 0.32
$D^+ \rightarrow K^- \pi^+ \pi^+$	99.843 ± 0.007	-0.026 ± 0.014	27.86 ± 0.08	0.80 ± 0.16	19.57 ± 0.14
$D^+ \rightarrow K_{\rm s}^0 \pi^+$	99.846 ± 0.019	0.037 ± 0.038	27.92 ± 0.23	1.83 ± 0.46	19.47 ± 0.41
$\Lambda_c^+ \to p K^- \pi^+$	99.832 ± 0.008	-0.022 ± 0.016	32.44 ± 0.09	0.52 ± 0.18	12.31 ± 0.13

 $\Delta\epsilon_{\rm tag}$ and $\Delta\omega$ measure the difference between charm and anti-charm hadron contributions from wrong-sign D^0 decays are accounted for

• Tagging efficiency almost 100% (single ROE particle is sufficient)

- independent of charmed hadron and its decay mode
- Mistag fraction independent of decay mode, but depends on the charmed hadron
 - absence of same-side slow pion in D^+ and Λ_c^+ flavor tagging
 - presence of proton tag in Λ_c^+ flavor tagging
- Mistag difference $\Delta \omega$
 - consistent with zero for D^0
 - significant deviations from zero for D^+ and Λ_c^+ due to charge detection asymmetry (ROE is not neutral)

M. Starič (IJS)

The new Belle II charm-flavor tagger

9/15

🚰 Calibration of CFT output

- Deviations from linear found when compared CFT output with true dilution
- CFT output corrected by calibration curve obtained from fit to $D^0 \to K^-\pi^+$

- Measured with $D^0
 ightarrow {\cal K}^- \pi^+$ on 362 fb $^{-1}$
- With calibrated CFT output:

$$\epsilon_{
m tag}^{
m eff} = (47.91 \pm 0.07 ({
m stat}) \pm 0.51 ({
m syst}))\%$$

- Systematic uncertainty dominated by background subtraction
 - should scale according to integrated luminosity

- Effective increase in sample size estimated with $D^0 \to K^- \pi^+$
- Split into two disjoint subsets
 - D^{*+} tagged events
 - events that are not D^{*+} tagged

54.4 fb⁻¹ of Belle II data

subset	signal yield	tagging power	tagged yield
D^{*+} tagged	126k	${\sim}100\%$	126k
the rest	388k	32.7%	127k

- \rightarrow effectively doubling the tagged sample size
- ightarrow but increasing also background, hence increase in precision $<\sqrt{2}$

12/15

Impact on physics

- CFT provides also some discrimination between signal and background
- can be used to suppress bkg. in analyses not requiring flavor tagging
 - as part of event selection
 - as additional variable in multi-dimensional fit

- Novel charm-flavor tagging algorithm developed for Belle II.
 - Explores correlations between production flavor and electric charges of particles in ROE.
 - Uses boosted decision trees trained on simulated data.
- Response calibrated and evaluated on data with several self-tagged D^0 decays. The effective tagging efficiency is around 48% and independent of the D^0 decay mode.
- It can roughly double the effective sample size for charm CPV/mixing measurements.
- It can be used also to suppress background for the measurements where flavor tagging is not required.

ヘロト 不得下 イヨト イヨト 二日

Backup: Classifier response to different tagging categories

M. Starič (IJS)

The new Belle II charm-flavor tagger

Siegen, July 17-21, 2023 15 / 15