Search for the decay $B \to D^* \eta \pi$ in Belle II

1

2

3

4

5

6

7

8

V. S. Vismaya^{1*}, S. Sandilya¹, and K. Trabelsi²

^{1,2}On Behalf of Belle II Collaboration
 ¹Department of Physics, IIT Hyderabad, India
 ²IJCLab, Orsay, France
 *ph20resch11010@iith.ac.in

July 24, 2023

Abstract

Recent measurements of semileptonic decays show a difference between the 9 branching ratio of the sum of exclusive decay rates and the inclusive $b \to c \ell \nu$ 10 decay rate (the so-called Semi-Leptonic (SL) gap) which affects the interpre-11 tation of the CKM element |Vcb|. Large contributions from not-yet measured 12 $B \to D^* \eta \ell \nu$ decays could explain such difference. We present a study of the 13 $B \to D^* \eta \pi$ decay on the simulated data sample of the Belle II experiment. 14 This measurement will provide valuable information to predict its semileptonic 15 counterpart $B \to D^* \eta \ell \nu$. If $B \to D^* \eta \pi$ decay is found to be large, it could 16 contribute significantly to the hadronic B-tagging, and consequently enhance 17 the sensitivity for searching rare B decays with missing energy. 18

¹⁹ 1 Introduction

Approximately 25% of B decays involve semileptonic $b \to c$ transitions, with a sig-20 nificant unexplored region. Our study intends to search the decay $B \to D^* \eta \pi$ for the 21 first time, using Belle II[1] experiment data. The PYTHIA-generated branching frac-22 tion for this decay in the Belle II simulation is estimated at 0.34%. The measurement 23 of the decay $B \to D^* \eta \pi$ in Belle II data can provide insight into the Semi-Leptonic 24 (SL)[2] gap problem, impacting the interpretation of the CKM[3, 4] element |Vcb|. 25 Moreover, our measurement will offer valuable insights for predicting the semileptonic 26 counterpart $B \to D^* \eta \ell \nu$. If the decay $B \to D^* \eta \pi$ is observed with large sensitivity, 27 it could make a substantial contribution to hadronic B-tagging, thereby boosting the 28 sensitivity in the quest for rare B decays with missing energy. 29

30 2 Discussion

We have studied the decay $B \to D^* \eta \pi$ in simulations. We select a kaon and a 31 pion track to form a D-meson, and then a D^* candidate is reconstructed with the 32 D candidate and with a selected π meson. The η -meson candidate is selected in 33 a two-photon final state. Then ultimately a B-meson candidate is reconstructed 34 by combining D^* , η and a pion. The properties of the signal events are studied 35 extensively in a dedicated Monte Carlo simulations (MC) sample containing only 36 signal decays. We also studied another MC sample, containing all the possible events 37 originating from the e+ e- collisions, to understand the background. After applying 38 all the selections, the $\Delta E (E_B^* - E_{beam}^*)$ distribution in Belle II simulated sample size of 39 400 fb^{-1} is shown in Figure 1. Unbinned maximum likelihood fit is performed for the 40 distribution ΔE to extract the signal events. The definition of the integrated efficiency 41 (ϵ) involves dividing the number of reconstructed events by the total number of events 42 in the sample (10⁶). The signal efficiency obtained by fitting the ΔE distribution is 43 10%. The branching fraction in the simulated sample was found to be $(3.54 \pm 0.17) \times$ 44 10^{-3} , which is about the same value put in the simulation. 45

Figure 1: ΔE fit distribution in generic MC.

46 **3** Conclusion

⁴⁷ We have studied the decay $B \to D^* \eta \pi$ in Belle II simulations. The calculated branch-⁴⁸ ing fraction, after selection and fitting the distribution, is about the same input value ⁴⁹ in the simulation, which validates our method. We plan to perform the study by ⁵⁰ using the Belle II data sample in the near future. We anticipate that the branching ⁵¹ fraction for this decay observed in the Belle II data will resemble what we observed ⁵² in our simulation study.

53 References

- ⁵⁴ 1. Abe T. Belle II Technical Design Report. arXiv 2010.
- Florian U. Bernlochner ZL and Turczyk S. A proposal to solve some puzzles in
 semileptonic B decays. PHYSICAL REVIEW D 2012.
- ⁵⁷ 3. Cabibbo N. Unitary Symmetry and Leptonic Decays. PHYSICAL REVIEW LET ⁵⁸ TERS 1963.
- Kobayashi M and Maskawa T. CP-Violation in the Renormalizable Theory of
 Weak Interaction. Progress of Theoretical Physics 1973.