Study of photon energy bias using $\pi^0 \rightarrow \gamma\gamma$ decays from $D^{*+} \rightarrow D^0(\rightarrow K^- \pi^+ \pi^0)\pi^+$ at Belle II

Chanchal Sharma
(On behalf of the Belle II Collaboration)1

1Malaviya National Institute of Technology Jaipur, India
*Address correspondence to: 2018rpy9026@mnit.ac.in

July 20, 2023

Abstract

Photon energy bias is used to compute the corrections to the reconstructed photon energy and improve data-simulation agreement in analyses having final states with photons.

In this study, we reconstruct clean samples of $\pi^0 \rightarrow \gamma\gamma$ decay from the $D^{*+} \rightarrow D^0(\rightarrow K^- \pi^+ \pi^0)\pi^+$ decay chain in both simulation and data collected by Belle II experiment. The Belle II is the upgraded experimental facility at SuperKEKB, KEK, Japan. We present the comparison of mean π^0 mass and π^0 mass resolution in data recorded at 207 fb$^{-1}$ as well as in simulation in different bins of photon energy.
1 Introduction

The Key feature of the Belle II experiment [1] is to achieve an improved performance of reconstructed photon and neutral pion compared to the previous generation B-Factory experiments. The Belle II [1] is the upgraded experimental facility at SuperKEKB [2], KEK, Japan. The High-performance photon and π⁰ reconstruction is a central component of the various analyses planned at Belle II [1]. Photon energy bias is used to compute the corrections to the reconstructed photon energy and improve data simulation agreement in analyses having final states with photons. The goal of this work is to determine the data-simulation differences resulting from biases in the measurement of photon energies using π⁰ → γγ decay from D⁺⁺ → D⁰(→ K−π⁺π⁰)π⁺ decay chain at Belle II [3].

2 Reconstruction of D⁰ → K⁻π⁺π⁰

The analysis uses D⁺⁺ → D⁰(→ K−π⁺π⁰)π⁺ candidates, which are reconstructed in both data and simulation. The two photons are ordered by polar angle, with the leading photon (γ₁) corresponding to the one with a larger polar angle, and are combined to form π⁰ → γγ decay. The two photons are required to have energies within 5%, which is defined by relative difference |[E(γ₁) − E(γ₂)]/E(γ₁)| < 0.05. This selection criteria is used to account for the shift in the π⁰ mass position to a bias in the reconstruction of the photon energy [4]. Further, candidates with π⁰ masses in the range [0.08, 0.2] GeV/c² are combined with two oppositely charged tracks to form D⁰ → K⁻π⁺π⁰ candidates. The criteria on signal region of m(D⁰) [1.84, 1.88] GeV/c² and difference between the D⁺⁺ and D⁰ masses, Δm [0.1445, 0.1465] GeV/c² are used to select the π⁰ candidates. For detailed selection criteria, one can refer [3].

3 Results

Unbinned maximum-likelihood fits to the π⁰-mass distributions in both data and simulation are used to determine the variation of the π⁰-mass peak position and width as a function of leading photon energy as shown in [Figure 1]. In each fit of π⁰-mass distributions, the signal component is described by a Gaussian distribution and the background component by an exponential distribution.

4 Summary

The ratio of data simulation for both the π⁰-mass peak and π⁰-mass width are obtained in different bins of the leading photon energy. The results are observed within the ≈ 1% from unity. This study has improved data-simulation agreement in analyses having final states with photons by correcting the reconstructed photon energy.
Figure 1: Variation of the data/simulation ratios of mean π^0 mass μ (left) and π^0-mass resolution σ (right) for $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+ \pi^0) \pi^+$ candidates as a function of leading photon energy for all candidates.

References

3. Study of photon energy bias using $\pi^0 \rightarrow \gamma\gamma$ decay. BELLE2-NOTE-PL-2022-002.
4. Tamponi U. Study of the η meson transitions from $\Upsilon(4S)$ and $\Upsilon(5S)$ with the Belle Experiment. inspirehep 2014;2014.