Measurements of the ratio of partial widths: $\Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$
Latika Aggarwal ${ }^{1^{*}}$, Sunil Bansal ${ }^{1}$, and Vishal Bhardwaj ${ }^{2}$
1 Department of Applied Sciences, UIET, Panjab University
2 Department of Physics, IISER Mohali
* Address correspondence to: latikaphy@pu.ac.in

Abstract

We demonstrate the feasibility studies to measure the ratio of partial widths $\Gamma\left(D_{s}^{*+} \rightarrow\right.$ $\left.D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$ with the Belle II detector.

1 Introduction

The exited strange charmed meson, $D_{s}^{*+}(c \bar{s})$, decays dominantly through its radiative decay process $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$ and kinematically through $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ decay mode which violates isospin symmetry. Many theoretical models predicted the decay width of $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$ and $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$, but precise experimental measurements of these decay widths are very important to explore QCD and constraint the parameters of theoretical models. Previously, branching fraction of $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ with respect to $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$ have been measured by CLEO [1], BABAR [2] and BESIII [3] experiments.

Belle II detector [4], situated at KEK laboratories, Japan is a hybrid detector designed for the SuperKEKB [5] accelerator to perform precision measurements and to look for new physics. Good vertex resolution, improved $K \pi$ separation, better performance with neutral particles and higher statistics in Belle II provides us an opportunity to precisely measure these branching fractions and improve the existing results.

2 Results with Monte Carlo samples

For this study, we use two decay modes of $D_{s}^{+}: D_{s}^{+} \rightarrow \phi \pi^{+}$and $D_{s}^{+} \rightarrow \overline{K^{* 0}} K^{+}$. $\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right) / \mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$ is calculated as

$$
\frac{\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right)}{\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)}=\frac{N\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right)}{N\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)} \times \frac{\epsilon\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)}{\epsilon\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right)}
$$

Figure 1: Simultaneous fitting of ΔM distributions. Upper plots shows ΔM distributions for (a) $D_{s}^{*+} \rightarrow D_{s}^{+}\left(\phi \pi^{+}\right) \pi^{0}$ and (b) $D_{s}^{*+} \rightarrow D_{s}^{+}\left(K^{+} \overline{K^{* 0}}\right) \pi^{0}$ decay channels. Lower plots shows ΔM distributions for (c) $D_{s}^{*+} \rightarrow D_{s}^{+}\left(\phi \pi^{+}\right) \gamma$ and (d) $D_{s}^{*+} \rightarrow D_{s}^{+}\left(K^{+} \overline{K^{* 0}}\right) \gamma$ decay channels

Signal yields, for $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$ and $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$, are extracted by simultaneous fitting of ΔM distributions for two decay modes D_{s}^{+}as shown in Figure 1. Signal selection efficiencies are calculated using signal events.

From simulations,

$$
\frac{\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}\right)}{\mathcal{B}\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)}=0.063 \pm 0.003
$$

Results obtained from the simultaneous fitting of simulations are consistent with the expectation from Monte Carlo and there is about a 40% reduction in statistical uncertainty as compared with previous measurements. This feasibility study gives confidence in the Belle II simulations and reconstruction methodology. Stay tuned for the measurement of the partial width ratio with Belle II data.

References

1. Gronberg et al. (CLEO Collaboration) J. Observation of the Isospin-Violating Decay $D_{s}^{*+} \rightarrow D_{s}^{+} \pi^{0}$. Phys. Rev. Lett. 18 1995;75:3232-6.
2. Aubert et al. (BABAR Collaboration) B. Measurement of the branching ratios $\Gamma\left(D_{s}^{*+} \rightarrow\right.$ $\left.D_{s}^{+} \pi^{0}\right) / \Gamma\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma\right)$ and $\Gamma\left(D^{* 0} \rightarrow D^{0} \pi^{0}\right) / \Gamma\left(D^{* 0} \rightarrow D^{0} \gamma\right)$. Phys. Rev. D 9 2005;72:091101.
3. ABLIKIM et al.(BESIII Collaboration) M. Measurement of branching fraction of $D_{s}^{*+} \rightarrow$ $D_{s}^{+} \pi^{0}$ relative to $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$. Phys. Rev. D 2023;107.
4. Abe T et al. Belle II Technical Design Report. 2010.
5. Akai K, Furukawa K, and Koiso H. SuperKEKB Collider. Nucl. Instrum. Meth. A 2018;907:188-99.
