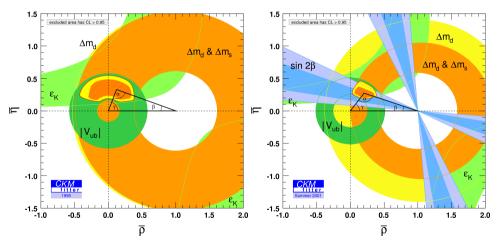
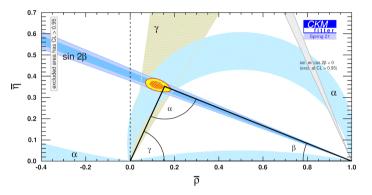
New TDCPV measurements at e^+e^- experiments

Justin Skorupa, on behalf of the Belle II collaboration

FPCP 2023, Lyon

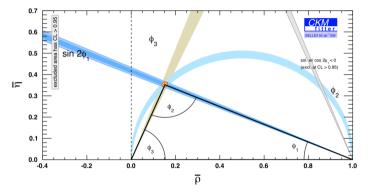

2023.06.01


The legacy of e^+e^- B factories...

In 2001, Belle and BaBar discovered CP violation in the B system and established CKM structure of the SM.

... the present status ...

Nowadays, past discoveries to precision tests of CKM triangle:

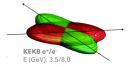


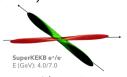
Do e^+e^- experiments still play a role?

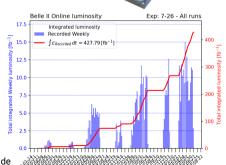
 \Rightarrow Key strength: Channels with (several) neutral particles

... and the future?

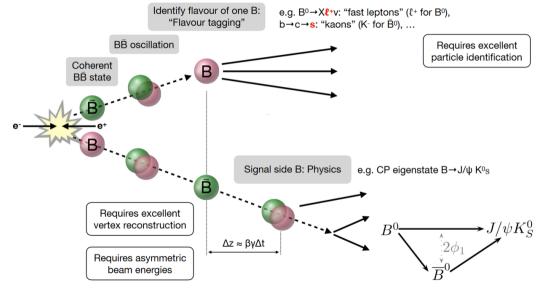
After Belle II completes data taking, the CKM triangle should (not) look like:


Today: Presenting 5 time-dependent CPV measurements related to β (ϕ_1)


SuperKEKB and Belle II

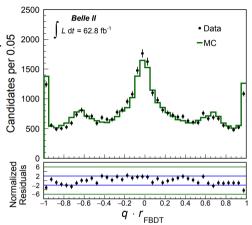

SuperKEKB: asymmetric $e^+ - e^-$ collider higher, instantaneous luminosity due to so-called nano beam scheme.

Belle II: general purpose detector situated at the interaction point of SuperKEKB.


- Currently in LS1
- ightharpoonup Recorded $\approx 424 \text{ fb}^{-1}$
- ► Achieved world record: $\mathcal{L} = 4.7 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$ (more than twice of KEKB/Belle)

Time-dependent CPV at e^+e^- experiments

Flavor tagging at e⁺e⁻


Determine B_{tag} flavor using multivariate algorithm. $\stackrel{\text{\tiny{50}}}{\circ}$

Exploit:

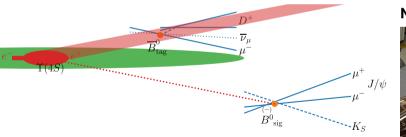
- ▶ Coherent production of $B\overline{B}$ pairs
- Clean environment

Performance:

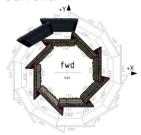
- wrong tag fraction w
- effective efficiency $\epsilon_{\rm eff} = \epsilon (1 2w)^2$

Similar effective efficiency among e^+e^- experiments:

BaBar: $(33.1 \pm 0.3)\%$ Belle: $(30.1 \pm 0.4)\%$ Belle II: $(30.0 \pm 1.3)\%$

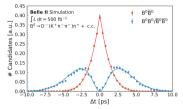

Vertex reconstruction

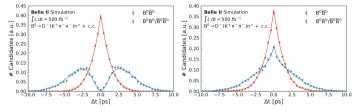
New beam scheme \rightarrow smaller beam energy asymmetry:


- ▶ Reduced boost: $\beta \gamma = 0.43 \rightarrow \beta \gamma = 0.28$
- \blacktriangleright Reduced flight length: $\Delta z = 200~\mu\text{m} \rightarrow \Delta z = 130~\mu\text{m}$

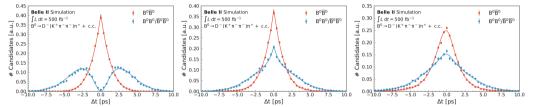
Recover precision:

- New pixel detector
- Stronger constraint in vertex fit due to smaller beam spot

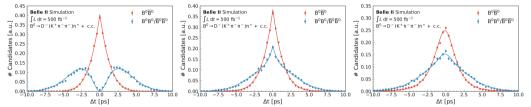

Current:


New:

When measuring the time-dependent CP asymmetry, have to take into account two experimental effects:



When measuring the time-dependent CP asymmetry, have to take into account two experimental effects:


▶ asymmetry is diluted by the wrong-tag-fraction w

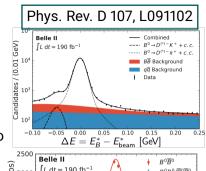
When measuring the time-dependent CP asymmetry, have to take into account two experimental effects:

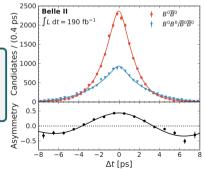
- asymmetry is diluted by the wrong-tag-fraction w
- $ightharpoonup \Delta t$ distribution smeared out by resolution function \mathcal{R}

When measuring the time-dependent CP asymmetry, have to take into account two experimental effects:

- asymmetry is diluted by the wrong-tag-fraction w
- $ightharpoonup \Delta t$ distribution smeared out by resolution function \mathcal{R}

Perform time-dependent measurement of the mixing probability of flavor specific $B^0 \to D^- h^+$ decays to control w and some \mathcal{R} parameter

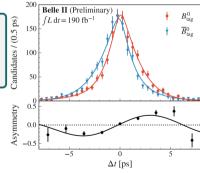

Lifetime and mixing measurement


Use 33k hadronic $B^0 \rightarrow D^{(*)}-h^+$ events:

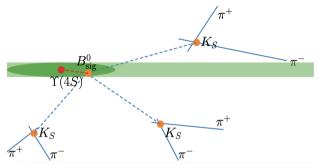
- Fit ΔE and output of classifier trained to suppress background from lighter quark pairs $(q\overline{q}$ background) to extract signal
- ightharpoonup Subtract backgrounds from sidebands (sWeights) to obtain background-free Δt distribution
- ▶ fit Δt distribution to extract Δm_d and τ_{B^0}

$$au_{B^0} =$$
 1.499 \pm 0.013 (stat.) \pm 0.008 (syst.) ps $\Delta m_d = 0.516 \pm 0.008$ (stat.) \pm 0.005 (syst.) ps $^{-1}$

⇒ Validation of machinery for TD measurements

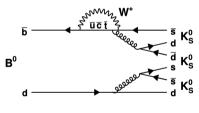

Apply validated machinery to $J/\psi K_S^0$ sample (3k events):

- ightharpoonup Fit ΔE distribution and subtract background
- ightharpoonup sWeights Δt distribution
- ► Fit Δt distribution to extract $\sin(2\beta)$ and A_{CP} , w and some \mathcal{R} parameter from $B^0 \to D^{(*)-}h^+$


$$\sin(2\beta) = 0.720 \pm 0.062 \text{ (stat.)} \pm 0.016 \text{ (syst.)}$$
 $A_{\text{CP}} = 0.094 \pm 0.044 \text{ (stat.)}^{+0.042}_{-0.017} \text{ (syst.)}$

Belle: $\sin(2\beta)=0.667\pm0.023$ (stat.) \pm 0.012 (syst.) BaBar: $\sin(2\beta)=0.687\pm0.028$ (stat.) \pm 0.012 (syst.) \Rightarrow **Tools ready for** β **determination**

Measurement of $B^0 o K^0_S K^0_S K^0_S$

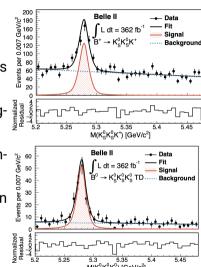


Challenging reconstruction: K_S^0 flies 10 cm on average

- ▶ No track coming from signal B
- A (or several) K_S⁰ might decay after first detector layers

Penguin process suppressed in the SM

Sensitive to new physics

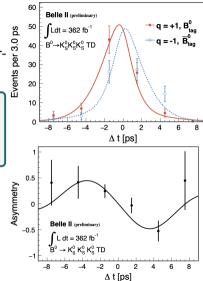


Reconstruct $B^+ \to K^0_S K^0_S K^+$ as control channel, \approx twice as abundant as signal, remove vertex information from K^+

3D fit (invariant mass, CS output, and $M_{\rm bc}$) to extract signal yields

Signal and control channel fitted simultaneously to constrain background shape parameter

 $B^+ \to K^0_S K^0_S K^+$ also included in Δt to calibrate resolution function $\mathcal R$



Reconstruct 220 signal events, 158 $^{+14}_{-13}$ with vertex information, 62 \pm 9 only used for A_{CP}

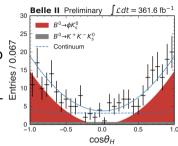
$$\sin(2eta)^{
m eff}=1.36^{+0.35}_{-0.45}~{
m (stat.)}\pm0.03~{
m (syst.)}$$
 $A_{
m CP}=0.07^{+0.15}_{-0.20}~{
m (stat.)}\pm0.02~{
m (syst.)}$

Belle: $\sin(2\beta)^{\rm eff}=0.71\pm0.23~{\rm (stat.)}\pm0.05~{\rm (syst.)}$ BaBar: $\sin(2\beta)^{\rm eff}=0.94^{+0.24}_{-0.21}~{\rm (stat.)}\pm0.06~{\rm (syst.)}$

⇒ Channel unique to e⁺e[−] experiments

Measurement of $B^0 o \phi K_S^0$

Rare process similar to $B^0 o K^0_S K^0_S K^0_S$.

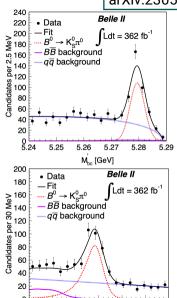

Clean experimental signature, Δt resolution similar to $B \to J/\psi K_S^0$, \mathcal{R} calibration from $B^0 \to D^{(*)-}h^+$

Background from non-resonant $B^0 \to K^+ K^- K^0_S$ disentangled by fitting helicity angle distribution.

$$N(\mathrm{sig}) = 162 \pm 17$$

$$\sin(2eta)^{
m eff} = 0.54 \pm 0.26~{
m (stat.)}^{+0.06}_{-0.08}~{
m (syst.)}$$
 $A_{
m CP} = 0.31 \pm 0.20~{
m (stat.)}^{+0.05}_{-0.06}~{
m (syst.)}$

Belle: $\sin(2\beta)^{\rm eff} = 0.66 \pm 0.17$ (stat.) ± 0.07 (syst.) BaBar: $\sin(2\beta)^{\rm eff} = 0.50 \pm 0.21$ (stat.) ± 0.06 (syst.)


14

Rare, sensitive to new physics.

Challenging vertex reconstruction, only K_S^0 contributes.

Use $B^0 o J/\psi(o \mu\mu) K^0_S$ to calibrate ${\cal R}$, w/o J/ψ vertex information

4D fit ($M_{\rm bc}$, ΔE , CS output, and Δt) to extract signal yields and physics parameter

ΔE [GeV]

Justin Skorupa jskorupa@mpp.mpg.de

0.2 0.3 15

 $N(\text{sig}) = 415^{+26}_{-25}$, $\approx 40\%$ only contribute to A_{CP} due to missing vertex information

$$\sin(2\beta)^{\rm eff} = 0.75 \pm^{+0.20}_{-0.23} \; ({\rm stat.}) \pm 0.04 \; ({\rm syst.})$$
 $A_{\rm CP} = 0.04 \pm 0.15 \; ({\rm stat.}) \pm 0.05 \; ({\rm syst.})$

Belle: $\sin(2\beta)^{\text{eff}} = 0.67 \pm 0.31 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$ BaBar: $\sin(2\beta)^{\rm eff} = 0.55 \pm 0.20$ (stat.) ± 0.03 (syst.)

⇒ Competitive with previous measurments

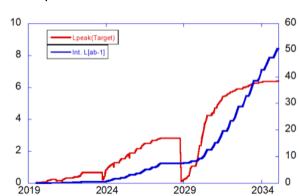
arXiv:2305.07555 • B_{tag}^{0} (q=+1) Belle II (preliminary) Candidates per 2 ps 0 0 0 0 0 0 0 0 0 0 0 $\int Ldt = 362 \text{ fb}^{-1}$

 Δt [ps]

 $I_{K\pi}$ test with TI analysis: $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$ world average: 0.13 ± 0.11 . see Angelos talk

Conclusion

Belle II continues the path of previous e^+e^- experiments.


Toolkit ready for precise time-dependent CPV studies:

Precision already on par with previous experiments

Peak Luminosity [x10³⁵cm₂s⁻¹

More to come:

- Current data set still < 1% of target
- Further refinement of analysis tools

Justin Skorupa jskorupa@mpp.mpg.de 17