Time-dependent CPV measurements at Belle II

Sagar Hazra (On behalf of the Belle II Collaboration)

Tata Institute of Fundamental Research

July 3, 2023

Motivation

- Flavor physics: Measurements of CKM angles (ϕ_1, ϕ_2, ϕ_3) to test SM
- Flavor changing neutral current
 b → s penguin transitions
 With the consistion to non SM
 - \rightarrow Highly sensitive to non-SM particles
 - ightarrow Probing the effective value of $\sin(2\phi_1\equiv 2eta)$
- Exp. challenges: low ℬ(10⁻⁵), flavor tagging, poor decay time resolution (K⁰_S, π⁰)

Today's focus

- Lifetime and mixing benchmark in $B
 ightarrow D^* \pi$
- $sin(2\phi_1)$ measurement

 \rightarrow in Cabibbo favoured $(J/\psi K_S^0)$ and suppressed $(K_S^0 \pi^0, 3K_S^0, \phi K_S^0)$

SuperKEKB and Belle II detector

- Asymmetric collider: e[−] of 7 GeV with e⁺ of 4 GeV → clean experimental environment
- \bullet World-record peak luminosity: $4.7\times 10^{34} cm^{-2} s^{-1}$
- New tracking system and improved vertexing
- Improved particle identification

Current status:

- 362 ${
 m fb}^{-1}$ $\Upsilon(4S)$ resonance data are collected so far
- LS1 upgrade ongoing and Run 2 will begin in Dec 2023

Signal extraction

Suppress $10^5 \times$ larger $q\bar{q}$ (continuum) background

- Combine several topological variables in multivariate techniques
- $q\bar{q}$ background rejection: $\approx 93 - 99\%$ signal retention: $\approx 80 - 90\%$

Going for time-dependent analysis

• $B^0 \overline{B^0}$ coherent state

- Belle: $(\beta \gamma = 0.43, \Delta z \approx 200 \mu m)$ \rightarrow Belle II: $(\beta \gamma = 0.29, \Delta z \approx 130 \mu m)$
- Pixel detector installed to compensate reduced boost
- Improved Δt resolution using precise beam-spot profile of nano-beam scheme

Flavor tagging

- Category-based FT uses input: kinematic, track hit and PID information
- q = +1 for B^0 tag and q = -1 for $\overline{B^0}$ tag
- Wrong tagging probability $w = \frac{1-r}{2}$
- Tagging efficiency = $(30.0 \pm 1.3)\%$
- New powerful Graph Neural Network based FT is close to release

Mixing and lifetime measurement

- 33 k $B^0 \rightarrow D^{*+}h^-$ events used
- Fit ΔE and continuum background discriminator output (C_{out}) to determine signal events
- Background subtracted Δt fitted to determine Δm_d and au_{B^0}

 $au_{B^0} = 1.499 \pm 0.013(stat) \pm 0.008(syst) \mathrm{ps}, \Delta m_d = 0.516 \pm 0.008(stat) \pm 0.005(syst) \mathrm{ps}^{-1}$

Benchmark for time-dependent measurements

Measurement of sin $2\phi_1$ in $B^0 \rightarrow J/\psi K_S^0$

- Utilize validated framework to $J/\psi K_S^0$ sample (3k events)
- Fit ΔE to determine signal events
- Background subtracted Δt fitted to measure CP parameters
- Flavor tagger and some resolution function parameters are taken from $B^0 \to D^{*-} \, h^+$

arXiv:2302.12898

 $A_{CP} = 0.094 \pm 0.044(stat)^{+0.042}_{-0.017}(syst), S_{CP} = 0.720 \pm 0.062(stat) \pm 0.016(syst)$

Measurement in $B^0 \rightarrow \phi K_S^0$

- Clean experimental access to probe $\Delta S_{CP} \equiv S_{CP}^{b \to sq\bar{q}} \sin 2\phi_1$, with similar Δt resolution function as $J/\psi K_S^0$
- Fit signal-extraction variables Δt , M_{bc} , C_{out} and $\cos \theta_H$
- Nonresonant background coming from $B^0 \to K^+ K^- K^0_S$ separated using $\cos \theta_H$

 $A_{CP} = 0.31 \pm 0.20(stat) \pm 0.05(syst), S_{CP} = 0.54 \pm 0.26(stat)^{+0.06}_{-0.08}(syst)$ Similar uncertainty on A_{CP} despite using smaller dataset wrt Belle/BaBar (S.Hazra)

Measurement in $B^0 \rightarrow K^0_S \pi^0$

- Challenge: No primary charged particles to vertex, poor decay time resolution, need good performance with neutrals
- Fit signal-extraction variables ΔE , M_{bc} , Δt , and C_{out} in bins of flavor-identification quality
- Poor Δt resolution events also used to increase the precision on A_{CP}
- Validate on $B^0
 ightarrow J/\psi K^0_S$ with K^0_S only vertex

Measurement in $B^0 o K^0_S \pi^0$

arXiv:2305.07555

Signal yield =415 \pm 25

 $A_{CP} = 0.04 \pm 0.15(stat) \pm 0.05(syst), S_{CP} = 0.75^{+0.20}_{-0.23}(stat) \pm 0.04(syst)$

 $I_{K\pi}$ (with TI analysis) = $-0.03 \pm 0.13 \pm 0.05$ (see Karim's talk)

- Improved neutrals reconstruction, continuum suppression and event-by-event resolution of proper times
- Achieve precision comparable with world's best result even with smaller sample!

Measurement in $B^0 \rightarrow K^0_S K^0_S K^0_S$

- Similar challenge like $K_S^0 \pi^0$: no primary charge track to vertex and poor decay time resolution
- Events are categorized based on Δt resolution
- Good and poor Δt resolution are fitted simultaneously to determine *CP* parameters

Conclusion

- Belle II has unique access to channels that offer key tests of the SM
- Precision achieved on the $B^0\to K^0_S\pi^0$ channel already competitive to world's best measurement
- Precision on $I_{K\pi}$ test comparable to world best result
- Belle II is in a unique position to measure $b \rightarrow sq\bar{q}$ transitions, which are sensitive to prove BSM physics through penguin loops

Thank You

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- installation of 2-layered pixel vertex detector
- improved data-quality monitoring and alarm system
- o completed transition to new DAQ boards (PCle40)
- O accelerator improvements: injection, non-linear collimators, monitoring
- o replacement of aging components
- O additional shielding and increased resilience against beam bckg

Currently working on pixel detector installation:

==> shipping to KEK in ~mid March

==> final tests at KEK scheduled in April

On track to resume data taking next winter with new pixel detector 1