

Recent results from the Belle II experiment Chengping Shen

shencp@fudan.edu.cn

The 29th International Workshop on Weak Interactions and Neutrinos, Zhuhai, China, 2 Jul 2023 - 8 Jul 2023

Belle II experiment

GeV for exotic hadron studies

- Max instantaneous luminosity $\mathcal{L}=4.7\times10^{34}$ cm⁻²s⁻¹ (world record)
- LS1 starts from summer 2022 to fully install the PXD detector
- Operation will be resumed around the end

The instrument

It looks like the "old" Belle, but it is effectively a brand new detector

Only structure, magnet and calorimeter crystals are re-used

A diversified physics program

(Some) B-factory basics

Low-background production of 30 (now) -600 (design) $B\overline{B}$ per second.

Threshold *B* production from point-like colliding particles, $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}.$ Kinematic well constrained.

The asymmetric collision gives the boost to measure the displacement.

Full Event Interpretation

■ Full Event Interpretation algorithm [Comput Softw Big Sci 3, 6 (2019)] to reconstruct B_{tag}

- Reconstruct B candidate with all combination of daughters
- Calculate signal probability with multivariate classifiers

- Hadronic FEI
 - Over 200 BDTs to reconstruct $\mathcal{O}(10000)$ distinct decay chains $\epsilon_{B^+} \approx 0.5\%$, $\epsilon_{B^0} \approx 0.3\%$ at $\sim 15\%$ purity
 - - \sim 50% increase over Belle tag

SEMILEPTONIC *B*-MESON DECAYS

- The universality of the lepton coupling, g_{ℓ} ($\ell = e, \mu, \tau$), to the electroweak gauge bosons can be probed
 - Lepton universality (LU) is challenged by several current measurements. Deviations would be a clear sign of BSM physics
- SL *B* decays are studied to determine the CKM elements $|V_{cb}|$ and $|V_{\mu b}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of the SM rates for ultrarare decays such as $B_s \rightarrow \mu \nu$ and $K \rightarrow \pi \nu \nu$

V

W

V_{cb}

Anomalies in $b \rightarrow c$ decays

Standard Model assumes **lepton flavor universality** (LFU): $g_e = g_\mu = g_\tau$

• Observed ~3 σ tension in $R(D^{(*)})$ could hint possible new physics scenarios

B-mesons are produced in pairs with opposite flavors

- Tag a *B*-meson (*B*_{tag}) in fully hadronic decays
 - $\mathcal{O}(0.1\%)$ efficiency of correctly reconstructed B_{tag}
- The other *B*-meson has well-defined energy and momentum

 $R(X_{e/\mu})$

arXiv:2301.08266 (submitted to PRL)

- Tag a *B*-meson (*B*_{tag}) in **fully** hadronic decays
- Lepton momentum in B_{sig}
 rest-frame: p_e^B > 1.3 GeV/c
 - reduce fakes and secondaries
 - \circ suppress $B \rightarrow X \tau v$
 - if more leptons, keep the one with highest lepton-ID probability
- Rest of the event assigned to fully-inclusive X

Extract signal yields N^{meas} by fit in 10 bins of p_{ℓ}^{B} (simultaneously for *e* and μ -channel)

- Maximize binned likelihood, systematics included as nuisance parameters
- 3 model templates (for e, μ separately):
 - $X\ell v$ signal
 - continuum background
 - other backgrounds (fakes and secondaries)

Obtain N^{meas} by fit on signal-region data and evaluate R(X), reweighting for signal efficiency:

$$R(X_{e/\mu}) = \frac{N_e^{\text{meas}}}{N_{\mu}^{\text{meas}}} \cdot \frac{\varepsilon_{\mu}}{\varepsilon_e}$$

Signal **efficiency** ε for each channel is:

$$\varepsilon_{\ell} = \frac{N_{\ell}^{\text{sel}}}{N_{\ell}^{\text{gen}}} \qquad \varepsilon_{e} = (1.62 \pm 0.03) \times 10^{-3} \\ \varepsilon_{\mu} = (2.04 \pm 0.05) \times 10^{-3}$$

- $N^{sel} \rightarrow signal yield extracted by fit on MC$
- $N^{\text{gen}} \rightarrow \text{total generated signal events}$

Most precise BF based lepton universality test in semileptonic decays to date

 $R(X_{e/u})_{SM} = 1.006 \pm 0.001$

IHEP11(2022)007

$$R(X_{e/\mu}) = 1.033 \pm 0.010(\text{stat}) \pm 0.019(\text{syst})$$

$B^0 \rightarrow D^* \ell \nu$ angular asymmetries

- Fully reconstruct a *B*-meson
 (*B*_{tag}) in hadronic decay
- Reconstruct signal-side D*tv
 exclusively
 - select one lepton with p_{ℓ} > 1.0 GeV/*c*
 - look for clean and abundant D^0 decay modes
 - combine with a charged slow pion: $D^* \rightarrow D^0 \pi_s$

Study semileptonic *B* decays to D* vector

- **4 parameters** to fully describe $B \rightarrow D^* \ell v$ decay: $\circ q^2 = (p_B - p_{D^*})^2$
 - Three angle $\theta_{\ell}, \theta_{V}, \chi$

We measure **angular distributions asymmetries** as function of q^2 World's first experimental measurement of complete set of angular asymmetries

$B^0 \rightarrow D^* \ell \nu$ angular asymmetries

• Light lepton universality tested by comparing five angular asymmetries of e and μ , $\Delta A_x = A_x^e - A_x^\mu$ using $B^0 \rightarrow D^{*-} \ell^+ \nu$ decays.

w : Recoil parameter $w = \frac{m_B^2 + m_{D^*}^2 - q^2 c^2}{2m_B m_{D^*}}$ The simultaneous determination of $\mathcal{A}_{x}(w) = \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0} \right] \mathrm{d}x \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}w\mathrm{d}x}$ all asymmetries in **different** *w* ranges is performed Whigh Wlow wincl. 1.275 $A_{\rm FB}(w)$: dx = d(cos θ_{ℓ}) w ℓ⁻ Lepton $S_3(w)$: dx = d(cos 2 χ) **Highly sensitive to lepton** universality violation $S_5(w)$: dx = d(cos χ cos θ_V) Less sensitive or insensitive to NP. $S_7(w)$: dx = d(sin $\chi \cos \theta_V$) Neutrino Control tests of the analysis method $S_{9}(w)$: dx = d(sin 2 χ)

- $S_7(w) = 0$ in SM and NP
- $S_9(w) = 0$ in SM and ~ 0 in NP
- Asymmetries *A* are **experimentally clean** (most systematics cancel)

Define a set of 5

observables x

asymmetries for angular

Ad difference is **theoretically well-known** (form factors uncertainty cancel)

~4 σ deviation in ΔA_{FB} was claimed by theoretical reinterpretation of Belle data [Eur. Phys. J. C 81, 984 (2021), Phys. Rev. D 103, 079901 (2021)]

$B^0 \rightarrow D^* \ell \nu$ angular asymmetries

• The signal yields are extracted through a binned maximum-likelihood fit to M^2_{miss} distributions

Observed overall agreement with Standard Model

χ^2/ndof	${}^{\mathcal{W}}$ incl.	$w_{\text{low}} + w_{\text{high}}$
$\varDelta\!A_{\rm FB}$, $\varDelta\!S_3$, $\varDelta\!S_5$	2.1 / 3 (p=0.56)	10.2/6 (<i>p</i> =0.12)
ΔS_7 , ΔS_9	0.6 / 2 (<i>p</i> =0.32)	1.1 / 4 (<i>p</i> =0.89)

Uncertainties statistically dominated

 $P \leftarrow \frac{D^*}{\bullet} \rightarrow \nu$

Wlow

Wincl. 1.275

D* maximum-reco

1.5

w

Whigh

35 new hadrons at Belle

The most famous X(3872)

J. G. Wang, ⁵⁰ Y. Watanabe,⁴⁴ E. Won,¹⁴ B. D. Yabsley,⁵⁰ Y. Yamada,⁷ A. Yamaguchi,⁴² Y. Yamashita,²⁰ H. Yana⁵,²⁷ Heyoung Yang,³⁶ J. Ying,³¹ M. Yoshida,⁷ C. C. Zhang,⁹ Z. P. Zhang,³³ and D. Žontar¹⁷¹²

(Belle Collaboration)

...

The Nature of X(3872): Prospects with Belle II

- Many decay modes have been observed: $J/\psi \rho$, $J/\psi \omega$, $J/\psi \gamma$, $\psi(2S) \gamma$, DD^{*}, DD π^0 . etc.
- · Branching fractions and decay widths not known
 - Essential dynamic information!
- Belle II can contribute to a deeper understanding of this state!

Toward X(3872) Total and Partial Widths Measurements with Belle II

Bottomonium(-like) prospects at Belle II

Run at Y(6S) and Y(5S) and high energy scan:

- Search for new missing bottomonia $\eta_b(3S)$, $h_b(3P)$, $\Upsilon(D)$, exotic states Y_b , Z_b , etc
- Improve precision of already known processes and states, e.g., Z_b
- Measure the effect of the coupled channel contribution
- Study $B^{(*)}\overline{B}^{(**)}$ and $B_s^{(*)}B_s^{(**)}$ threshold regions (challenging for Super-KEKB)

Run at Y(3S) and Y(2S):

- Search for missing $\pi\pi/\eta$ transitions in inclusive decays to constrain further models

- Search for new physics: LFV, LFU, light Higgs, ...

S. Godfrey and K. Moats, Bottomonium mesons and strategies for their observation, Phys. Rev. D 92, 054034 (2015) S. Godfrey and N. Isgur, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32, 189 (1985).

Observation of $e^+e^- \rightarrow \omega \chi_{bJ}$ at \sqrt{s} near 10.75 GeV

ц°

0.5

0

10.6

10.6

10.7

10.7

10.8

10.8

10.9

vs (GeV)

10.9

11

√s (GeV)

11

11.1

11.1

11.2

• Interpretations as an admixture of the conventional 4S and 3D states predict comparable branching fractions of 10^{-3} for $\Upsilon(10753) \rightarrow \pi^+\pi^-\Upsilon(nS)$ and $\Upsilon(10753) \rightarrow \omega \chi_{bJ}$ [PRD 104, 034036 (2021), PRD 105, 074007 (2022)].

Observation of $e^+e^- \rightarrow \omega \chi_{bI}$

Belle Be

9.8/fb

PRL 130, 091902 (2023)

Center-of	-mass e	energy [[GeV]
-----------	---------	----------	-------

Channel	\sqrt{s} (GeV)	N ^{sig}	σ ^(UL) Born (pb)
ωχ _{b1}	40 745	68.9 ^{+13.7} -13.5	$3.6^{+0.7}_{-0.7} \pm 0.5$
ωχ _{b2}	10.745	$27.6^{+11.6}_{-10.0}$	$2.8^{+1.2}_{-1.0}\pm0.4$
ωχ _{b1}	40.005	$15.0^{+6.8}_{-6.2}$	1.6 @90% C.L.
ωχ _{b2}	10.805	$3.3^{+5.3}_{-3.8}$	1.5 @90% C.L.

Two dimensional unbinned maximum likelihood fits to the M($\gamma \Upsilon(1S)$) and M($\pi^+\pi^-\pi^0$) distributions.

The total χ_{bJ} signal significances are 11.1 σ and 4.5 σ at \sqrt{s} = 10.745 and 10.805 GeV.

Note that the $\sigma_{\text{Born}}(e^+e^- \rightarrow \omega \chi_{b1}/\omega \chi_{b2})$ is only $(0.76 \pm 0.16)/(0.29 \pm 0.14)$ pb at $\sqrt{s} = 10.867$ GeV [PRL 113, 142001(2014)].

Observation of Y(10753) $\rightarrow \omega \chi_{bJ}$

PRL 130, 091902 (2023)

1. $\sigma(e^+e^- \rightarrow \omega \chi_{b1})/\sigma(e^+e^- \rightarrow \omega \chi_{b2})=1.3\pm0.6$ at 10.745 GeV, contradicts the expectation for a pure D-wave bottomonium state of 15 [PLB 738, 172 (2014)] 2. There is also a 1.8 σ difference with the prediction for a S-D-mixed state of 0.2 [PRD 104, 034036 (2021)]

There's more to it

Journal-paper results approved in past 12 months

Energy-dependence of $B^{(*)}B^{(*)}$ bar cross section — unique Observation of $ee \rightarrow \omega xb$ at 10.75 GeV - unique, PRL. 130, 091902 (2023) Test of light-lepton universality in $B \rightarrow D^* \ell v$ decays — unique Test of light lepton universality in inclusive $B \rightarrow [Xc]\ell v$ decays — unique, arXiv: 2301.08266 Measurement of CKM angle y using GLW - Belle + Belle II sample Measurement of CKM angle y using GLS - Belle + Belle II sample Search for long-lived spin-0 mediator in $b \rightarrow s$ transitions – world leading Measurement of of the τ mass – world leading BF and ACP in $B^{0} \rightarrow h^{+}h^{0^{-}}$ decays and isospin sum rule – world leading BF and ACP of $B^{o} \rightarrow \pi^{0}\pi^{0}$ decays – competitive, arXiv: 2303.08354 ACP in $B^{\circ} \rightarrow K^{\circ}_{s} K^{\circ}_{s} K^{\circ}_{s}$ |Vcb| using untagged $B \rightarrow D^* \ell v$ decays — competitive CPV in $B^{o} \rightarrow K^{o}\pi^{o}$ decays — competitive, arXiv: 2305.07555 CPV in $B^{o} \rightarrow \phi K^{o}_{S}$ Novel method for charm flavor tagging - unique, arXiv: 2304.02042 B^{0} lifetime and oscillations in $B^{0} \rightarrow D^{(*)}h$ decays PRD 107, L091102 (2023) Search for a dark-sector π resonance in ee \rightarrow ee π decays — world leading Search for a dark-sector Z' to invisible - world leading, arXiv: 2212.03066 Search for $\tau \rightarrow \ell \alpha$ — world leading PRL **130**, 181803 (2023) Search for a dark y and invisible darkHiggs in µµ+MET- world leading, PRL 130, 071804 (2023) Measurement of the Omega_c^0 lifetime - PRD 107, L031103 (2023)

(Plus a bunch of conference-note results)

Summary & propsects

- SuperKEKB/Belle II is the luminosity frontier project to search for physics beyond SM with ultimate sensitivity.
- The project has achieved so far, by Summer 2022;
 - $L_{peak} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (the world highest luminosity)
 - $L_{int} = 428 \text{ fb}^{-1}$ (similar to BaBar, about 1/2 of Belle)
- Many physics results are coming.
 - Benefited by improved detector performance and analysis technique!
 - Some of them are already world-leading!
- Currently, we are in the long shutdown I (LSI). Many components are to be improved.
 - We plan to resume in the coming winter, and will try to achieve higher luminosity.
- LS2 is planed for the major upgrade of the IR region and detector subsystems to further boost the luminosity frontier!

感谢您的批评指正

沈成平

shencp@fudan.edu.cn