

Replace short dipoles with longer ones (LER)

From KEKB to Super-KEKB

Positron source Damping ring
Redesign the lattices of HER \& LER to squeeze the emittance

New positron target / capture section

Colliding bunches

New superconducting / permanent final focusing quads near the IP

Low emittance gun
Low emittance electrons inject

To obtain $\mathbf{x 4 0}$ higher luminosity

Belle-II Schedule

Short Term:

- Phase I (2016-7): detector integration, first beams
- Phase II (2017-8): detector in, no VXD, limited PID, lumi ~ Belle-I

Mid Term:

- Phase III (2018) : full detector , luminosity ramping up Long Term:

SuperKEKB Luminosity Project

SuperKEK-B goals for Phase-II:

- understand beam backgrounds
- establish conditions for stable operation
- target lumi: 1×10^{34} (0.5xKEKB)

Phase-II operating conditions :

- 4-5 months: machine studies
- Some time for physics
(Ldt $=20 \pm 20 \mathrm{fb}^{-1}$), preferably at energies close to $\mathrm{Y}(4 \mathrm{~S})$

QWG 2016, PNNL
R.Mussa, Bottomonium Physics at dene-и

KEKB Phase-I

From Funakoshi-san report 2 weeks ago :

- Much faster startup than KEKB
- KEKB beam currents achieved after first 3 months LER: $\sim 300 \mathrm{~mA}$, HER: $\sim 200 \mathrm{~mA}$
- SuperKEKB beam currents achieved after first 3 months LER: ~650mA, HER: ~590mA

- Compared with KEKB...
- Each hardware component has been upgraded with experiences at KEK and has worked fine (RF, Magnet, Vacuum...)
- The bunch-by-bunch feedback system has more effectively suppressed instabilities.
- Operational tools (such as closed orbit correction system) has worked fine based on experiences at KEKB.
- Less machine troubles than KEKB so far
$\varepsilon_{y}=96 \mathrm{pm}\left(\beta_{y}=67 \mathrm{~m} @\right.$ source $)$
$\varepsilon_{y} / \varepsilon_{x}=5.3 \%\left(\varepsilon_{x}=1.8 \mathrm{~nm}\right)$
\quad March 23,2016
$\varepsilon_{y}=280 \mathrm{pm}\left(\beta_{y}=9.7 \mathrm{~m} @\right.$ source $)$
$\varepsilon_{y} / \varepsilon_{x}=5.3 \%\left(\varepsilon_{x}=5.3 \mathrm{~nm}\right)$

April 5, 2016
$\varepsilon_{y}=20 \mathrm{pm}\left(\beta_{y}=67 \mathrm{~m} @\right.$ source $)$ $\varepsilon_{y} / \varepsilon_{x}=1.1 \%\left(\varepsilon_{x}=1.8 \mathrm{~nm}\right)$

Target vertical emittance in Phase 1 is 10 pm .

Super KEKB limitations

Y(6S) peak energy can be reached keeping the same beam asymmetry (i.e. the same boost) used for standard running at $\mathrm{Y}(4 \mathrm{~S})$

The LER beam is limited by magnets in the beam transport line.

To reach Ecm $=11.24 \mathrm{GeV}$ ($\Lambda_{c} \Lambda_{c}$ threshold) we can increase HER energy only, up to 7.55 GeV . (max Linac Energy)
$\overline{\mathrm{B}}_{\mathrm{c}} \mathrm{B}_{\mathrm{c}}$ threshold: 12.55 GeV

Belle-II commissioning

Cherenkov ring imaging with precision time measurement (better than 100ps)

CDC will be installed in August

- A complete ladder set of SVD was tested in DESY

Phase II Tracking

During Phase-II we can do physics with limited performance: the inner region will be equipped with BEAST-2 sensors, to monitor beam backgrounds and test the final SVD detectors.

No low momentum tracking (slow pions do not cross all CDC layers)

Minimum pion momentum

First question: where to run

Energy	Outcome	Lumi (fb^{-1})	Comments
Y(1S) On	N/A	60+	-No interest identified -Low energy
Y(2S) On	New physics searches	20+	-Requires special trigger
$\mathrm{Y}(1 \mathrm{D})$ Scan	Particle discovery	10-20	-Already accessible in B Factories?
Y(3S) On	Many -onia topics	200+	-Known resonance -Luminosity requirement: Phase 3
Y(3S) Scan	Precision QED	~10	-Understanding of beam conditions needed
$\mathrm{Y}(2 \mathrm{D})$ Scan	Particle discovery	10-20	-Unknown mass
>Y(4S) On	Particle discovery?	10+?	-Energy to be determined
$\mathrm{Y}(6 \mathrm{~S}) \mathrm{On}$	Particle discovery?	30+?	-Upper limit of machine energy
Single γ	New physics?	30+	-Special triggers required

Where to run for $L d t \sim 10 \mathrm{fb}^{-1}$?

- $\mathrm{E}=10.65 \mathrm{GeV}$

Dip in Rb , just on $\mathrm{B}^{*} \mathrm{~B}^{*}$ threshold

- $\mathrm{E}=10.75 \mathrm{GeV}$

Above Rb drop at 10.74
Bump observed in R_{Y}

- $\mathrm{E}=11.02 \mathrm{GeV}$

Y(6S) peak,
6 pt scan ($1 \mathrm{fb}^{-1}$ each) in Belle-I

Study these channels: $\mathrm{BB}, \mathrm{B}^{*} \mathrm{~B}, \mathrm{~B}^{*} \mathrm{~B}^{*}, \mathrm{Y} \pi \pi, \mathrm{Y} \eta$ at $10.65,10.75$

Y(6S) results in Belle-I

- Preliminary evidence for $\Upsilon(6 S) \rightarrow \pi \pi h_{b}(n P)$, via $\pi Z_{b}{ }^{ \pm}(106 X X)$ decay

- Resonance structure of $\Upsilon(6 S) \rightarrow \pi \pi \Upsilon(p S)$ decays not fully studied
Threshold for $\mathrm{Z}_{\mathrm{bs}}+\mathrm{K}$

Access to lower bottomonia limited to $h_{b}(1 \mathrm{P})$ and $\mathrm{Y}(1,2 \mathrm{~S})$

Spectrum below threshold

Below threshold:

* $3 S$: $\eta_{b}(3 S)$ not yet observed by anyone, maybe reachable from $\mathrm{h}_{\mathrm{b}}(3 \mathrm{P})$?
* 3P: $\chi_{\mathrm{b}}(3 \mathrm{P})$ discovered at LHC, not yet resolved, can we see them from 4 S?
$h_{b}(3 P)$: too high to be reached from $5 S$ via $Z_{b^{\prime}}$ maybe from 6S? How?
* 1D states : triplet states BEST STUDIED from 3S, singlet $\left(2^{+}\right)$maybe reachable from h (2P)
*2D, 1F, 1G: totally unknown We propose to search for the lowest member of the 2D triplet with a scan. The others may be reached from 6 S . The 1 F triplet $2,3,4^{++}$is very close in mass to Y3S, but may be reached from the 2D triplet via E1 radiative transitions.

Spectrum below threshold

Below threshold:

* $3 S: \eta_{b}(3 S)$ not yet observed by anyone, maybe reachable from $h_{b}(3 P)$?
* $3 \mathrm{P}: \mathrm{h}_{\mathrm{b}}(3 \mathrm{P})$: too high to be reached from 5S via $Z_{b^{\prime}}$ maybe from 6S? How?
$\chi_{\mathrm{b}}(3 \mathrm{P})$ discovered at LHC, not yet resolved, can we see them from $4 S$?

Spectrum below threshold

Below threshold:

* $3 S: \eta_{b}(3 S)$ not yet observed by anyone, maybe reachable from $\mathrm{h}_{\mathrm{b}}(3 \mathrm{P})$? * 3P: $\chi_{b}(3 P)$ discovered at LHC, not yet resolved, can we see them from 4 ?
$h_{b}(3 P)$: too high to be reached from $5 S$ via $\mathrm{Z}_{\mathrm{b}^{\prime}}$ maybe from 6S? How?
* 1D states : triplet states BEST STUDIED from 3S, singlet $\left(2^{+}\right)$maybe reachable from $h_{b}(2 P)$. We plan to scan the 1^{-}region.
* 2D, 1F, 1G: totally unknown We propose to search for the lowest member of the 2D triplet with a scan. The others may be reached from 65 . The 1 F triplet $2,3,4^{++}$is very close in mass to Y3S, but may be reached from the 2D triplet via E1 radiative transitions.

Spectrum below threshold

Below threshold:

* $3 \mathrm{~S}: \eta_{\mathrm{b}}(3 S)$ not yet observed by anyone, maybe reachable from $h_{b}(3 P)$? * 3P: $\chi_{\mathrm{b}}(3 \mathrm{P})$ discovered at LHC, not yet resolved, can we see them from $4 S$?
$h_{b}(3 P)$: too high to be reached from $5 S$ via $Z_{b^{\prime}}$ maybe from $6 S$? How?
* 1D states : triplet states BEST STUDIED from 3S, singlet $\left(2^{-+}\right)$maybe reachable from $h_{b}(2 P)$.We plan to scan the 1^{-}region.
* 2D, 1F, 1G: totally unknown We propose to search for the lowest member of the 2D triplet with a scan. The others may be reached from 6 .

The 1 F triplet $2,3,4^{++}$is very close in mass to Y3S, but may be reached from the 2D triplet via E1 radiative transitions.

Four photon cascades

Four photon cascades

Four photon cascades

Four photon cascades

Scanning $Y\left(1,2^{3} D_{1}\right)$?

Observable : e+e- to hadrons
Continuum cross section: $\quad \sigma=N_{c} Q_{f}^{2} \frac{86.8 \mathrm{nb}}{s\left(\mathrm{GeV}^{2}\right)}$

Search for 1D: 7 point scan (5 MeV steps) around 10.15 GeV
Search for 2D: 7 point scan (5 MeV steps?) around 10.43 GeV
IF the 2 S scan is successful, we may envisage a longer run on 2D peak and search for 1 F states (single photon spectrum, probably large background from ISR Y(3S))

Dipion transitions: BELLE-II vs Babar

Babar: two analyses:

- Aubert et al., PRD78, 112002 (2008)

Using data from $\mathrm{Y}(4 \mathrm{~S})$: ISR exclusive decays

- Lees et al, PRD84, 011104 (2011)

Inclusive dipion transitions from $108 \mathrm{M} \mathrm{Y}(3 \mathrm{~S})$

$$
Y(3 S) \rightarrow Y(2 S) M C
$$

Better resolution and better efficiency

Tamponi @ B2TIP2016

	BaBar σ	BaBar ε	Bellell σ	Bellell ε
$Y(3 S) \rightarrow Y(2 S)$	$\sim 4 \mathrm{MeV}$	16.7%	2.5 MeV	45%
$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \mathrm{Y}(1 \mathrm{~S})$	$<4 \mathrm{MeV}$	41.8%	1.8 MeV	63%

$Y(3 S) \rightarrow \pi^{+} \pi^{2} h_{b}(1 P)$

Great improvement thanks to better resolution
ics at Belle-II

$Y(3 S) \rightarrow \pi^{0} h_{b}(1 P)$

η transitions from $Y(3 S)$

Testing QCD multipole expansion
Three transitions should be visible from $\mathrm{Y}(3 S)$ but experimental limits, where available, are below theory expectations:

```
\(-\mathbf{B}(\mathbf{Y}(\mathbf{3 S}) \rightarrow \boldsymbol{\eta} \mathbf{Y}(1 \mathbf{S})) \quad\) theory: \(5-10 \times 10^{-4}\)
                        BaBar: \(<1 \times 10^{-4}\)
```


η transitions from $Y(3 S)$

Testing QCD multipole expansion
Three transitions should be visible from $\mathrm{Y}(3 \mathrm{~S})$ but experimental limits, where available, are below theory expectations:

$$
\begin{aligned}
& -\mathbf{B}(\mathbf{Y}(\mathbf{3 S}) \rightarrow \boldsymbol{\eta} \mathbf{Y}(\mathbf{1 S})) \quad \begin{array}{l}
\text { theory: } 5-10 \times 10^{-4} \\
\text { BaBar: }<1 \times 10^{-4}
\end{array}
\end{aligned}
$$

- Y(1D) $\rightarrow \boldsymbol{\eta} \mathbf{Y}(1 \mathbf{S}) \quad$ Voloshin: PLB 562, 68(2003)

QCD Axial Anomaly should enhance $Y(1 D) \rightarrow \eta Y(1 S)$ with respect to $\mathrm{Y}(1 \mathrm{D}) \rightarrow \pi \pi \mathrm{Y}(1 \mathrm{~S})$
\rightarrow no quantitative analysis
$\rightarrow \mathrm{Y}(1 \mathrm{D})$ reconstruction through radiative cascade: High sensitivity to low energy backgrounds

η transitions from $Y(3 S)$

Testing QCD multipole expansion
Three transitions should be visible from $\mathrm{Y}(3 \mathrm{~S})$ but experimental limits, where available, are below theory expectations:

$$
\begin{aligned}
& -\mathbf{B}(\mathbf{Y}(\mathbf{3 S}) \rightarrow \boldsymbol{\eta} \mathbf{Y}(\mathbf{1 S})) \quad \begin{array}{l}
\text { theory: } 5-10 \times 10^{-4} \\
\text { BaBar: }<1 \times 10^{-4}
\end{array}
\end{aligned}
$$

- Y(1D) $\rightarrow \boldsymbol{\eta} \mathbf{Y}(1 S) \quad$ Voloshin: PLB 562, 68(2003)

QCD Axial Anomaly should enhance $\mathrm{Y}(1 \mathrm{D}) \rightarrow \eta \mathrm{Y}(1 \mathrm{~S})$ with respect
to $\mathrm{Y}(1 \mathrm{D}) \rightarrow \pi \pi \mathrm{Y}(1 \mathrm{~S})$
\rightarrow no quantitative analysis

$\rightarrow \mathrm{Y}(1 \mathrm{D})$ reconstruction through radiative cascade:
High sensitivity to low energy backgrounds

Voloshin: Mod.Phys.Lett. A19,
$-\chi_{b 0}(2 P) \longrightarrow \eta \eta_{b}$ 2895(2004)
$\rightarrow \mathrm{BF}$ of the order of few 10^{-3} (S-wave)
\rightarrow BelleII estimate $\sim 40 \mathrm{M} \chi_{\text {b0 }}(2 \mathrm{P}) \rightarrow \sim 10000$ reconstructed events
\rightarrow full inclusive analysis, low energy photons: hard to estimate the backgrounds now...

Hindered M1 transitions from $\mathrm{Y}(3 S)$

Components of the loop for different transitions

Spin triplet - spin singlet transitions
sensitive to heavy quark spin symmetry breaking

Very recent paper: arXiv:1604.00770

$$
\begin{array}{l|l}
\hline \chi_{b 0} \rightarrow h_{b} \gamma & {\left[B^{*}, \bar{B}^{*}, B\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right],\left[B, \bar{B}, B^{*}\right]} \\
\chi_{b 1} \rightarrow h_{b} \gamma & {\left[B^{*}, \bar{B}, B^{*}\right],\left[B, \bar{B}^{*}, B^{*}\right]} \\
\chi_{b 2} \rightarrow h_{b} \gamma & {\left[B^{*}, \bar{B}^{*}, B\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right]} \\
h_{b} \rightarrow \chi_{b 0} \gamma & {\left[B^{*}, \bar{B}, B\right],\left[B, \bar{B}^{*}, B^{*}\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right]} \\
h_{b} \rightarrow \chi_{b 1} \gamma & {\left[B^{*}, \bar{B}, B^{*}\right],\left[B^{*}, \bar{B}^{*}, B\right]} \\
h_{b} \rightarrow \chi_{b 2} \gamma & {\left[B, \bar{B}^{*}, B^{*}\right],\left[B^{*}, \bar{B}^{*}, B^{*}\right]} \\
\hline
\end{array}
$$

Hindered M1 transitions between P waves

Antinuclei in $\mathrm{Y}(3 S)$ decays

CLEO results :

$$
\begin{aligned}
& \mathcal{B}^{\operatorname{dir}}(Y(1 S) \rightarrow \bar{d} X)=(3.36 \pm 0.23 \pm 0.25) \times 10^{-5} . \\
& \mathcal{B}(Y(2 S) \rightarrow \bar{d}+X)=(3.37 \pm 0.50 \pm 0.25) \times 10^{-5} .
\end{aligned}
$$

BABAR results:

Resonance	Onpeak	\# of Υ Decays	Offpeak
$\Upsilon(4 S)$	$429 \mathrm{fb}^{-1}$	463×10^{6}	$44.8 \mathrm{fb}^{-1}$
$\Upsilon(3 S)$	$28.5 \mathrm{fb}^{-1}$	116×10^{6}	$2.63 \mathrm{fb}^{-1}$
$\Upsilon(2 S)$	$14.4 \mathrm{fb}^{-1}$	98.3×10^{6}	$1.50 \mathrm{fb}^{-1}$
Process	Rate		
$\mathcal{B}(\Upsilon(3 S) \rightarrow \bar{d} X)$	$\left(2.33 \pm 0.15_{-0.28}^{+0.31}\right) \times 10^{-}$		
$\mathcal{B}(\Upsilon(2 S) \rightarrow \bar{d} X)$	$\left(2.64 \pm 0.11_{-0.26}^{+0.26}\right) \times 10^{-}$		
$\mathcal{B}(\Upsilon(1 S) \rightarrow \bar{d} X)$	$\left(2.81 \pm 0.49_{-0.20)}^{+0.020} \times 10^{-}\right.$		
$\sigma\left(e^{+} e^{-} \rightarrow \bar{d} X\right)[\sqrt{s} \approx 10.58 \mathrm{GeV}]$	$\left(9.63 \pm 0.41_{-1.01}^{+1.17}\right) \mathrm{fb}$		
$\frac{\sigma\left(e^{+} e^{-} \rightarrow \bar{d} X\right)}{\sigma\left(e^{+} e^{-} \rightarrow \text { Hadrons }\right)}$	$\left(3.01 \pm 0.13_{-0.31}^{+0.37}\right) \times 10^{-}$		

With 0.8-1 Billion $\mathrm{Y}(3 \mathrm{~S})$ decays, we can search for anti-tritium and He-3 production in bottomonium

Only from $\mathrm{Y}(5,6 S): \eta_{b}(1 S) \rightarrow \gamma \gamma$

Search for $\eta_{b}(1 S) \rightarrow \gamma \nu$
via exclusive channel: $\pi^{+} \pi^{-} \gamma(\gamma \gamma)!!$ NRQCD NNLL prediction: Penin et al., NP B699(2004),183 $\Gamma\left(\eta_{b}(1 S) \rightarrow \gamma \gamma\right)=0.66 \pm 0.09 \mathrm{keV}$ With $\Gamma\left(\eta_{b}\right)=10 \mathrm{MeV}$,
$B R\left(\eta_{b}(1 S) \rightarrow \gamma \gamma\right)=0.66 * 10^{-4}$
~ 25 events with $1 \mathrm{ab}^{-1}$ at $\mathrm{Y}(5 \mathrm{~S})$ or $\mathrm{Y}(6 \mathrm{~S})$

Belle-II Theory Interface Platform (B2TIP)

Impact of new hardware New analysis methods
New Trigger
Expected Precision

Impact ofTheory Landscape after Belle/Babar / LHCb Progress in QCD?
New Physics after LHC run 2
GREEN PAPER on Belle-II Physics in preparation

	Meeting	Links	B2GM	Participants	Theory talks	Belle II talks	LHCb talks
2014	June 16-17 @ KEK (Kickoff meeting)	meeting indico	June	37	17	18	
	October 30-31 @ KEK, + KEKFF October 28-29	workshop indico	Nov	110	55	37	2
2015	February 23-25, NP WG @ Karlsruhe (Local organiser U. Nierste)	workshop indico		34	16	2	1
	April 27-29 @ Krakow (Local organiser A. Bozek)	workshop indico		94	52	23	6
	October 28-29 @ KEK, + KEKFF October 26-27	workshop indico	Oct	114	31	18	
	November 9-10 @ PNNL, NP \& EWP WGs	workshop indico		11	3	6	

2016 February 22-24 @ LAL, NP "Follow-up" meeting (Local organiser E. Kou)
May 23-25 @ Pittsburgh (Local organiser V. Savinov)
workshop
indico
https://kds.kek.jp/indico/event/19723/

Oct/Nov @ MPI Munich, Report Editorial meeting

Summaries \& minutes of the workshops https://d2comp.kek.jp/collection/Public\ Memo

Wrapping it up

Belle-II hopes to do some valuable physics during phase-II run, without low momentum tracking, and no vertexing.

A pilot run on $\mathrm{Y}(6 \mathrm{~S})$ peak, even with only $20 \mathrm{fb}^{-1}$, will give us about the 10x data taken in Belle-I. This will be a pilot run, to plan future studies in this interesting region.

Searches for exotics are feasible at $10.65+10.75 \mathrm{GeV}$, also
$200-300 \mathrm{fb}^{-1}$ at (and about) the $\mathrm{Y}(3 \mathrm{~S})$ peak will allow to publish >10 physics papers after the first year of data taking:

- Rare η transitions -Spectroscopy of D(F) waves
- Hindered radiative transitions - Antitritium, He-3 in Y decays

Scans of the $\mathrm{Y}(1 \mathrm{D})$ and $\mathrm{Y}(2 \mathrm{D})$ regions are planned for Phase-III
Looking forward showing first results from Belle-II in 2018

