34th Rencontres de Blois

Particle Physics and Cosmology May 17, 2023

Recent Belle II Results on Hadronic *B* Decays

Shu-Ping Lin* on behalf of the Belle II collaboration

* shupinglin@hep1.phys.ntu.edu.tw - National Taiwan University

Outline and motivation

- Expanding our knowledge of the *B* hadronic sector: observation of new $B \rightarrow D^{(*)}K^-K_S^0$ decays.
- CKM matrix measurements for SM precision tests in favoured and suppressed *B* decays
 - Determination of CKM angle γ/ϕ_3

SM gauge for CP violation

- Toward CKM angle $\alpha/\phi_2: B \to \pi\pi, B \to \rho\rho$
- $K\pi$ isospin sum rule

Highly sensitive to NP, null test for SM

B factory basics

- Asymmetric-energy e^+e^- collisions at $\sqrt{s} = m(\Upsilon(4S)) = 10.58 \text{ GeV} \approx 2m_B$
 - Expected $M_{bc} \approx m_B$
 - Expected $\Delta E \approx 0$

- Exploit coherent $B\overline{B}$ production for flavour tagging with 30% effective efficiency.
- Continuum background ($e^+e^- \rightarrow q\bar{q}$) suppression

 \Rightarrow MVA trained with topological variables

Continuum

BB events

 $B \to D^{(*)} K^- K_{\rm c}^0$

arXiv:2305.01321

- $B \rightarrow D^{(*)}KK$ makes up a few % of *B* hadronic decay, but only a small fraction is known.
- First observation of 3 decays.

Contribute to simulation and tagging techniques.

- Low mass structure observed in $m(K^-K_S^0)$.
- Structures observed from Dalitz distributions.

 $\begin{aligned} \mathscr{B}(B^- \to D^0 K^- K_S^0) &= (1.89 \pm 0.16 \pm 0.10) \times 10^{-4} \\ \mathscr{B}(\bar{B}^0 \to D^+ K^- K_S^0) &= (0.85 \pm 0.11 \pm 0.05) \times 10^{-4} \\ \mathscr{B}(B^- \to D^{*0} K^- K_S^0) &= (1.57 \pm 0.27 \pm 0.12) \times 10^{-4} \\ \mathscr{B}(\bar{B}^0 \to D^{*+} K^- K_S^0) &= (0.96 \pm 0.18 \pm 0.06) \times 10^{-4} \end{aligned}$

CKM angle
$$\gamma/\phi_3$$

$$\phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

- Current world average: $\phi_3 = (65.9^{+3.3}_{-3.5})^\circ$, dominated by LHCb measurements.
- CPV in the interference $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$

•
$$\frac{A_{sup}(B^- \to \bar{D}K^-)}{A_{fav}(B^- \to DK^-)} = r_B \ e^{i(\delta_B - \phi_3)}$$

- Approaches: different D decay final states
 - Self-conjugate final states $D \to K_S^0 h^+ h^-$

Belle + Belle II: $\phi_3 = (78.4 \pm 11.4 \pm 0.5 \pm 1.0)^\circ$

- Cabibbo-suppressed decays $D \to K_S^0 K^{\pm} \pi^{\mp}$
- CP eigenstates $D \to K^+ K^-, K_S^0 \pi^0$

γ/ϕ_3 with Cabbibo-suppressed channels

Belle II + Belle 362 fb^{-1} + 711 fb^{-1}

New for Blois

- $B^{\pm} \to DK^{\pm}, D\pi^{\pm} \ (D \to K^0_S K^{\pm} \pi^{\mp})$ *SS*: same-sign, *OS*: opposite sign
- 2D fit ($\Delta E, C'$) of 8 categories: (+, -) × (SS, OS) × ($DK, D\pi$) in the full D phase space and the interference-enhanced $D \rightarrow K^*K$ region. $m(K_S^0K) \sim m_{K^*(892)^{\pm}}$
- External input: D decay parameters from CLEO [Phys. Rev. D 94, 099905 (2016)].

- Results are consistent with LHCb, but not competitive.
- Contribute to constrain ϕ_3 in combination with measurements from other methods.

γ/ϕ_3 with *CP* eigenstates

- $B^{\pm} \rightarrow D_{CP\pm}K^{\pm}$
- *CP* eigenstates: K^+K^- (*CP* even), $K_S^0\pi^0$ (*CP* odd) $\mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3$ Accessible only at Belle II
 - $\mathscr{A}_{CP\pm} = \pm 2r_B \sin \phi_3 / \mathscr{R}_{CP\pm}$
- 2D fit $(\Delta E, C')$ of 6 categories: $(D\pi, DK) \times (K^+K^-, K_S^0\pi^0, K^+\pi^-)$
- Results are consistent with BarBar and LHCb, but not competitive.
- Contribute to constraining phi3 in combination with other measurements

$$\begin{aligned} \mathcal{R}_{CP+} &= 1.164 \pm 0.081 \pm 0.036 \\ \mathcal{R}_{CP-} &= 1.151 \pm 0.074 \pm 0.019 \\ \mathcal{A}_{CP+} &= (+12.5 \pm 5.8 \pm 1.4) \% \\ \mathcal{A}_{CP-} &= (-16.7 \pm 5.7 \pm 0.6) \% \end{aligned}$$

New for Blois

First evidence for difference in $\mathscr{A}_{CP\pm}$ in a direct measurement.

Towards CKM angle α/ϕ_2

$$\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$

• Current world average: $\phi_2 = (85.2^{+4.8}_{-4.3})^{\circ}$

Least precisely known angle starts limiting the global testing power of the CKM model.

- Combine information from BR and ACP measurement of
 - $B^0 \rightarrow \rho^+ \rho^-, B^+ \rightarrow \rho^+ \rho^0, B^0 \rightarrow \rho^0 \rho^0$
 - $B^0 \rightarrow \pi^+\pi^-, B^+ \rightarrow \pi^+\pi^0, B^0 \rightarrow \pi^0\pi^0$

to reduce impact of hadronic uncertainties exploiting isospin symmetry.

- Measurements of $B \rightarrow \rho \rho$ requires a complex angular analysis.
- Preliminary Belle II results on par with best performance from Belle/Babar.

Towards CKM angle α/ϕ_2

362 fb⁻

•
$$B^0 \rightarrow \pi^+\pi^-, B^+ \rightarrow \pi^+\pi^0$$

- First measurement of $B^0 \to \pi^0 \pi^0$ at Belle II.
 - Only photons in the final state.
 - CKM-suppressed and colour-suppressed.
 - Achieves Belle's precision using only 1/3 of data.

 $\mathscr{B}(\pi^0\pi^0) = (1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$ $\mathscr{A}_{CP}(\pi^0\pi^0) = 0.14 \pm 0.46 \pm 0.07$

New for Blois 362 fb⁻

• Isospin sum rule

$$I_{K\pi} = \mathscr{A}_{K^{+}\pi^{-}} + \mathscr{A}_{K^{0}\pi^{+}} \cdot \frac{\mathscr{B}_{K^{0}\pi^{+}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}_{K^{+}\pi^{0}} \cdot \frac{\mathscr{B}_{K^{+}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathscr{A}_{K^{0}\pi^{0}} \cdot \frac{\mathscr{B}_{K^{0}\pi^{0}}}{\mathscr{B}_{K^{+}\pi^{-}}} \approx 0$$

- Exactly zero in the limit of isospin symmetry and no EW penguins.
- Theoretical precision: O(1%) experimental precision: O(10%), driven by $\mathscr{A}_{K^0\pi^0}$.
- All final states are measured: $B^0 \to K^+\pi^-$, $B^+ \to K^0_S \pi^+$, $B^+ \to K^+\pi^0$, $B^0 \to K^0_S \pi^0$

Unique to Belle II

- Similar strategy for all modes:
 - Common selections for final-state particles.
 - Continuum suppression for each channel.
 - 2D fit (ΔE , C') for the branching fractions and **time-integrated** \mathscr{A}_{CP} .

 ΔE fits

Decay	Signal	\mathcal{B} [10 ⁻⁶]	ACP		
	yield				
$B^0 ightarrow K^+ \pi^-$	$3868~\pm~71$	$20.67\pm0.37\pm0.62$	$-0.072~\pm~0.019~\pm~0.007$		
$B^+ ightarrow K^+ \pi^0$	$2070~\pm~57$	$14.21~\pm~0.38~\pm~0.85$	$0.013\pm0.027\pm0.005$		
$B^+ \rightarrow K^0 \pi^+$	$1547~\pm~45$	$24.4~\pm~0.71~\pm~0.86$	$0.046~\pm~0.029~\pm~0.007$		
$B^0 \rightarrow K^0 \pi^0$	$502~\pm~32$	$10.16\pm0.65\pm0.67$	$-0.06~\pm~0.15~~\pm~0.05$		
$B^0 \rightarrow K^0 \pi^0$	_	11.00 ± 0.67	$0.04 \pm 0.15 \pm 0.05$		
(time-dependent analysis $[11]$)					

- BR and A_{CP} results agree with world averages, competitive with world's best and BR systematically limited.
- $B^0 \rightarrow K_S^0 \pi^0$ result is combined with time-dependent analysis, obtaining world's best:
 - More detail in the TDCPV talk by Jakub Kandra

 $\mathscr{B}_{K^0\pi^0} = (10.50 \pm 0.65 \pm 0.69) \times 10^{-6}$

 $\mathscr{A}_{K^0\pi^0} = -0.01 \pm 0.12 \pm 0.05$

• $I_{K\pi} = -0.03 \pm 0.13 \pm 0.05$ (world average: 0.13 ± 0.11)

 \Rightarrow Competitive precision to world's best.

Summary

- First analyses using the full Belle II $\Upsilon(4S)$ sample (362 fb⁻¹)
- 3 new decay channels observed in $B \rightarrow DKK$, with structures observed in $m(K^-K_S^0)$ and Dalitz distributions.
- Cabbibo-suppressed, *CP* eigenstates *D* final states contribute additional information to γ/ϕ_3 .
- Belle II measurements of $B \to \pi \pi$ for α/ϕ_2 .
- $B^0 \rightarrow K_S^0 \pi^0$ asymmetry achieves world's best precision, competitive $I_{K\pi}$ sensitivity.

Thank you for your attention.

Backup

 $B \rightarrow D^{(*)}K^-K^0_S$

ΔE fits and $m(K^-K_S^0)$

 $B \to D^{(*)}K^-K^0_S$

Dalitz distributions

$B \rightarrow D^{(*)}K^-K^0_S$

Systematic uncertainties (relative)

Source	$B^- \to D^0 K^- K^0_S$	$\overline{B}{}^0 \to D^+ K^- K^0_S$	$B^- \to D^{*0} K^- K^0_S$	$\overline{B}{}^0 \to D^{*+} K^- K^0_S$
Eff MC sample size	0.6	0.9	1.0	0.8
Eff tracking	0.7	1.0	0.7	1.0
Eff π^+ from D^{*+}	_	-	-	2.7
Eff K_S^0	3.4	3.4	3.4	3.3
Eff PID	1.3	1.4	0.5	0.6
Eff π^0	-	-	5.1	-
Signal model	1.9	3.3	2.7	3.1
Bkg model	1.1	0.8	0.1	0.1
Self-cross-feed	-	-	2.7	-
D^{*0} peaking bkg	-	-	0.9	-
$N_{B\overline{B}},f_{+-,00}$	2.7	2.8	2.7	2.8
Intermediate \mathcal{B} s	0.7	1.7	1.6	1.1
Total systematic	5.2	6.1	7.6	6.2
Statistical	8.3	13.5	17.1	19.0

γ/ϕ_3 with Cabbibo-suppressed channels

Physics meanings

• $2 \mathscr{A}_{CP}$ for $DK(D\pi)$:

$$\mathcal{A}_{SS}^{DK} \equiv \frac{N_{SS}^{-} - N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}$$
Physics meanings
$$\mathcal{A}_{SS}^{DK} = \frac{2r_{B}r_{D}\kappa\sin(\delta_{B} - \delta_{D})\sin\phi_{3}}{1 + r_{B}^{2}r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} - \delta_{D})\cos\phi_{3}}$$

$$\mathcal{A}_{OS}^{DK} \equiv \frac{N_{OS}^{-} - N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}$$

$$\mathcal{A}_{SS}^{DK} = \frac{2r_{B}r_{D}\kappa\sin(\delta_{B} + \delta_{D})\sin\phi_{3}}{1 + r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} + \delta_{D})\cos\phi_{3}}$$

• 3 ratios:

$$\mathcal{R}_{SS}^{DK/D\pi} \equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}$$

$$\mathcal{R}_{SS}^{DK/D\pi} \equiv \frac{N_{OS}^{-} + N_{SS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}$$

$$\mathcal{R}_{OS}^{DK/D\pi} \equiv \frac{N_{OS}^{-} + N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}$$

$$\mathcal{R}_{SS/OS}^{D\pi} \equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}$$

$$\mathcal{A}_{SS}^{DK} = 0.055 \pm 0.119 \pm 0.020$$
$$\mathcal{A}_{OS}^{DK} = 0.231 \pm 0.184 \pm 0.014$$
$$\mathcal{A}_{SS}^{D\pi} = 0.046 \pm 0.029 \pm 0.016$$
$$\mathcal{A}_{OS}^{D\pi} = 0.009 \pm 0.046 \pm 0.009$$
$$\mathcal{R}_{SS}^{DK/D\pi} = 0.093 \pm 0.012 \pm 0.005$$
$$\mathcal{R}_{OS}^{DK/D\pi} = 0.103 \pm 0.020 \pm 0.006$$
$$\mathcal{R}_{SS/OS}^{D\pi} = 2.412 \pm 0.132 \pm 0.019$$

γ/ϕ_3 with Cabbibo-suppressed channels

Systematic uncertainties

	$A_{ m SS}^{DK}$	$A_{ m OS}^{DK}$	$A^{D\pi}_{ m SS}$	$A_{ m OS}^{D\pi}$	$R_{ m SS}^{DK/D\pi}$	$R_{ m OS}^{DK/D\pi}$	$R^{D\pi}_{ m SS/OS}$	
Full D phase space								
$\epsilon_{K^\pm}, \epsilon_{\pi^\pm}$	0.38	0.56	0.19	0.14	0.05	0.06	0.09	
δ		0.03			0.04	0.03	0.02	
Model	0.62	0.78	0.02	0.02	0.30	0.22	0.07	
$\epsilon_{K^0_{ m S}K^-\pi^+}/\epsilon_{K^0_{ m S}K^+\pi^-}$	0.82	0.83	0.82	0.83	0.01	0.01	0.02	
Total syst. unc.	1.1	1.3	0.9	0.9	0.4	0.3	0.2	
Stat. unc.	9.1	13.3	2.6	3.1	1.2	1.3	5.7	
$K^*(892)^{\pm}$ region								
$\epsilon_{K^{\pm}}, \epsilon_{\pi^{\pm}}$	0.37	0.61	0.17	0.15	0.03	0.08	0.13	
δ	0.02	0.02	0.01	0.01	0.03	0.04	0.04	
Model	1.04	0.97	0.20	0.03	0.46	0.49	0.61	
$\epsilon_{K^0_{ m S}K^-\pi^+}/\epsilon_{K^0_{ m S}K^+\pi^-}$	1.6	0.8	1.6	0.8	0.1	0.1	1.7	
Total syst. unc.	2.0	1.4	1.6	0.9	0.5	0.6	1.9	
Stat. unc.	11.9	18.4	$\overline{2.9}$	4.6	1.2	2.0	13.2	

 γ/ϕ_3 with *CP* eigenstates

Physics meanings

$$\begin{split} \mathcal{A}_{CP\pm} &= \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} = \pm \frac{r_B \sin \delta_B \sin \phi_2}{1 + r_B^2 \pm 2r_B \cos delta_B \cos \phi_3}, \\ \mathcal{R}_{CP\pm} &= \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{flav}K^-) + \mathcal{B}(B^+ \to D_{flav}K^+)} \approx \frac{R_{CP\pm}}{R_{flav}}, \text{ with} \\ R_X &\equiv \frac{\mathcal{B}(B^- \to D_X K^-) + \mathcal{B}^+ \to D_X K^+)}{\mathcal{B}(B^- \to D_X \pi^-) + \mathcal{B}^+ \to D_X \pi^+)}. \\ &\Rightarrow \begin{cases} \mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2 \cos \delta_B \cos \phi_3 \\ \mathcal{A}_{CP\pm} = \pm 2r_B \sin \phi_3 / \mathcal{R}_{CP\pm} \end{cases}, \text{ assuming } CP \text{ conservation in } B^\pm \to D\pi^\pm \end{split}$$

- Channels:
 - Signal: $B \to D(\to KK, K_S^0 \pi^0) K$
 - R_{flav} control channel: $B \to D(\to K\pi)K$
 - R_X control channel: $B \to D\pi$

γ/ϕ_3 with *CP* eigenstates

Results

Yields

 γ/ϕ_3 with *CP* eigenstates

Systematic uncertainties

	\mathcal{R}_{CP+}	$\mathcal{R}_{C\!P-}$	\mathcal{A}_{CP+}	$\mathcal{A}_{C\!P-}$
PDF parameters	0.012	0.014	0.002	0.002
PID parameters	0.009	0.010	0.003	0.005
peaking background yields	0.033	0.002	0.013	
Efficiency ratio	0.001	0.001	< 0.001	< 0.001
commonality of ΔE modes	-0.005	-0.006	< 0.001	< 0.001
Total systematic uncertainty	0.036	0.019	0.014	0.006
Statistical uncertainty	0.081	0.074	0.058	0.057

Systematic uncertainties

Source	$B^0 \to K^+ \pi^-$	$B^0 \to \pi^+\pi^-$	$B^+ \to K^+ \pi^0$	$B^+ \to \pi^+ \pi^0$	$B^+ \to K^0_{\scriptscriptstyle S} \pi^+$	$B^0 \to K^0_S \pi^0$
Tracking	0.5	0.5	0.2	0.2	0.7	0.5
$N_{B\bar{B}}$	1.5	1.5	1.5	1.5	1.5	1.5
$f^{+-/00}$	2.5	2.5	2.4	2.4	2.4	2.5
π^0 efficiency	-	-	5.0	5.0	-	5.0
K^0_S efficiency	-	-			2.0	2.0
CS efficiency	0.2	0.2	0.7	0.7	0.5	1.7
PID correction	0.1	0.1	0.1	0.2	-	-
ΔE shift and scale	0.1	0.2	1.2	2.0	0.3	1.7
$K\pi$ signal model	0.1	0.2	0.1	< 0.1	< 0.1	0.1
$\pi\pi$ signal model	< 0.1	0.1	< 0.1	< 0.1	-	-
$K\pi$ CF model	< 0.1	0.1	< 0.1	0.1	-	-
$\pi\pi$ CF model	0.1	0.2	< 0.1	0.1	-	-
$K^0_S K^+$ model	-	-	-	-	0.1	-
$B\overline{B}$ model	-	-	0.3	0.5	< 0.1	0.3
Multiple candidates	< 0.1	< 0.1	1.0	0.3	0.1	0.3
Total	3.0	3.0	6.0	6.2	3.6	6.6

TABLE II. Summary of the relative systematic uncertainties (%) on the branching ratios.

TABLE III. Summary of the absolute systematic uncertainties on the CP asymmetries.

Source	$B^+ \to K^+ \pi^-$	$B^+ \to K^+ \pi^0$	$B^+ \to \pi^+ \pi^0$	$B^+ \to K^0_S \pi^+$	$B^0 \to K^0_S \pi^0$
ΔE shift and scale	< 0.001	0.001	0.002	0.001	0.003
$K^0_S K^+ { m model}$	-	-	-	0.001	_
$B\overline{B}$ background asymmetry	-	-	-	-	0.046
$q\overline{q}$ background asymmetry	-	-	_	_	0.024
Fitting bias	_	-	0.007	0.006	-
Instrumental asymmetry	0.007	0.005	0.004	0.004	-
Total	0.007	0.005	0.008	0.007	0.052