Belle II status and prospects for studies of charged currents

Sourav Dey
on behalf of the Belle II Collaboration

May 15, 2023
• Exchange of W bosons
• Verified mediators of neutrino absorption and emission
• Unambiguous signals of W bosons first seen in UA1 and UA2 experiments at Super Proton Synchrotron in CERN (1983)
• $b \to c, d \to u$ etc. Change of flavor
• Belle II prospects (covered in this talk):
 • $b \to c$ anomalies
 • Light lepton Universality tests
 • $|V_{cb}|$ measurement
SuperKEKB

- 40 times larger luminosity than previous generation KEKB
- Using nano-beam scheme with a tiny beam spot:
 - 60 nm x 10 \(\mu\)m x few 100 \(\mu\)m in y, x, z
 - A few hundred atomic layers in y
• SuperKEKB collides electron and positrons

• $\sqrt{s} = 10.58$ GeV: mass of $\Upsilon(4S)$

• $B\bar{B}$ pair production with a boost of the center-of-mass system: asymmetric collider

• B mesons can decay in a number of ways: prospect for studying a vast region of particle physics (Precision studies of B, charm, and tau physics, QCD and exotic hadrons, searches for BSM particles etc.)
The Belle II Detector

- SuperKEKB collides electron and positrons
- $\sqrt{s} = 10.58$ GeV : mass of $\Upsilon(4S)$
- $B\bar{B}$ pair production with a boost of the center-of-mass system: asymmetric collider
- B mesons can decay in a number of ways: prospect for studying a vast region of particle physics (Precision studies of B, charm, and tau physics, QCD and exotic hadrons, searches for BSM particles etc.)
Luminosity

- Design integrated luminosity 50 ab$^{-1}$
- Regular data-taking since April 2019
- Current integrated luminosity 424 fb$^{-1}$
- Peak luminosity recorded: 4.7×10^{34} cm$^{-1}$s$^{-1}$
- At present, we have a long shutdown for accelerator and detector upgrades, will resume data taking in late 2023
Light-Lepton Universality Test: $R(X_{e/\mu})$ Measurement
Light-Lepton Universality Test: $R(X_{e/\mu})$ Measurement

- Excellent sensitivity to potential lepton-universality-violating (LUV) physics
- Previous direct searches
 - BR ratio in a single exclusive charmed hadron decay mode [Phys. Rev. D 100, 052007 (2019)].
 - the shapes of kinematic distributions of all decays to charmed hadrons [Phys. Rev. D 104, 112011 (2021)]
- First measurement of the inclusive branching fraction ratio.
- The most precise test of $e - \mu$ universality in semi-leptonic B-meson decays to date

\[
R(X_{e/\mu}) = \frac{\mathcal{B}(\bar{B} \to Xe^-\bar{\nu}_e)}{\mathcal{B}(\bar{B} \to Xm^-\bar{\nu}_\mu)}
\]

This analysis uses:
- Belle II collision data from 2019 and 2021 at a center-of-mass energy of $\sqrt{s} = 10.58$ GeV,
- Integrated luminosity 189 fb^{-1}, ~ 198×10^6 BB pairs.
- Additional 18 fb^{-1} off-resonance collision data below the $\Upsilon(4S)$ resonance, for backgrounds from continuum processes $e^+e^- \to q\bar{q}$, where $q = u, d, s, c$ quarks

arXiv:2301.08266
Light-Lepton Universality Test: $R(X_{e/\mu})$ Measurement

- X the generic hadronic final state of the semi-leptonic decay of any flavor of B meson originating from $b \to c\ell\nu$ or $b \to u\ell\nu$ quark transitions

- Tag-side B mesons decay in fully hadronic modes (FEI)

- Lepton charge requirement:
 - corresponds to the charge of a primary lepton from the semi-leptonic decay of a signal B meson
 - that signal B meson has the opposite flavor to the tag B candidate

Inclusive signal modes

- MVA based approach
- reconstructs more than 100 explicit decay channels

https://doi.org/10.1007/s41781-019-0021-8
Simultaneous binned template fits to the p_e^B and p_μ^B spectra

($p_e^B =$ momentum of e in B rest frame etc.)

Light-Lepton Universality Test : $R(X_{e/\mu})$ Measurement

$R(X_{e/\mu}) = 1.033 \pm 0.010{\text{(stat)}} \pm 0.019{\text{(syst)}}$

$R(X_{e/\mu} | p_l^B > 1.3 \text{ GeV/c}) = 1.031 \pm 0.010{\text{(stat)}} \pm 0.019{\text{(syst)}}$

Consistent with Standard Model $R(X_{e/\mu})_{SM}$ \cite[1] by 1.2σ and the exclusive Belle $R(D^{*}_{e/\mu})$ \cite[2,3] measurement

Light-Lepton Universality Test: Angular Asymmetry
Light-Lepton Universality Test: Angular Asymmetry

- $B^0 \rightarrow D^* l^- \nu$ channel is used and reconstructed exclusively
- First dedicated light-lepton LU test using a complete set of angular asymmetry observables
 - designed to cancel most theoretical and experimental uncertainties
 - highly sensitive to LUV
- lepton universality is tested by comparing five angular asymmetries of e and μ

Belle II collision data from 2019 and 2021 at a center-of-mass energy of $\sqrt{s} = 10.58$ GeV,
- Integrated luminosity 189 fb^{-1}, $\sim 198 \times 10^6$ BB pairs.

This analysis uses:
Due to the spin of the final-state D^*, much of the properties of the V –A coupling and the spin of the virtual W are encoded in angular distributions of the final-state particles.

- Fully characterized by four parameters.
Light-Lepton Universality Test: Angular Asymmetry

- Angular Observable:

\[A_x(w) = \left(\frac{d\Gamma}{dw} \right)^{-1} \left[\int_0^1 - \int_{-1}^0 \right] dx \frac{d^2\Gamma}{dw dx} \]

- theoretically and experimentally clean probes of LUV

\[\Delta A_x(w) = A^\mu_x(w) - A^e_x(w) \]

- Most uncertainties cancel
 - experimental uncertainties cancel in the asymmetries \(A \)
 - hadronic uncertainties in the form factors, largely cancel in \(\Delta A \)

\[
\begin{align*}
A_{FB} : x &= \cos \theta_I \\
S_3 : x &= \cos 2\chi \\
S_5 : x &= \cos \chi \cos \theta_V \\
S_7 : x &= \sin \chi \cos \theta_V \\
S_9 : x &= \sin 2\chi
\end{align*}
\]

Three w regions

- \(D^* \) zero-recoil
- \(D^* \) maximum-recoil

\[
\begin{align*}
W_{low} &\quad W_{incl.} &\quad W_{high} \\
1.0 &\quad 1.275 &\quad 1.5
\end{align*}
\]
Light-Lepton Universality Test: Angular Asymmetry: Results

No evidence of deviation from the standard model has been observed up to P values of 0.12.

For each asymmetry A_X and w range, signal candidates separated into + and − categories based on the measured value of x.

Numbers of signal events determined with binned maximum-likelihood fit of M_{miss}^2.

$M_{miss}^2 \equiv \left(p_{e^+e^-} - p_{B_{tag}} - p_{D^*} - p_\ell \right)^2$

For $B \rightarrow D^{**}l\nu$
Determination of $|V_{cb}|$ using $\bar{B}_0 \to D^*+l-\bar{\nu}_l$
Determination of $|V_{cb}|$ using $\bar{B}_0 \to D^{*+} l^- \bar{\nu}_l$

- The non-perturbative physics:

$$\frac{d^4T}{dw \ d\cos \theta_l \ d\cos \theta_V \ d\chi} \propto |V_{cb}|^2 \times |F(w, \cos \theta_l, \cos \theta_V, \chi)|^2$$

- is parametrized by three form factors as a function of

$$w = \frac{p_B \cdot p_{D^*}}{m_Bm_{D^*}} = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_Bm_{D^*}}$$

- The neutrino direction is reconstructed inclusively using the known angle $\cos \theta_{BY}$ between the B and the $Y = D^* + l$ direction

$$\cos \theta_{BY} = \frac{2E_B^{CM}E_Y^{CM} - m_{Bc}^2 - m_{Yc}^2}{2 |\vec{p}_B^{CM}| \ |\vec{p}_Y^{CM}| c^2}$$

- Signal yields in bins of kinematic variables w, $\cos \theta_l$, $\cos \theta_V$ and χ are determined bin by bin independently by 2D fits of $\cos \theta_{BY}$ and $\Delta M = M(D^*) - M(D^0)$

This analysis uses:

- Belle II collision data from 2019 and 2021 at a center-of-mass energy of $\sqrt{s} = 10.58$ GeV,
- Integrated luminosity $189 \ fb^{-1}$, ~ 198×10^6 BB pairs.
Determination of $|V_{cb}|$ using $\bar{B}_0 \to D^*+l^-\bar{\nu}_l$

- The non-perturbative physics:
\[
\frac{d^3\Gamma}{dw \ d\cos\theta_l \ d\cos\theta_V d\chi} \propto |V_{cb}|^2 \times |F(w, \cos\theta_l, \cos\theta_V, \chi)|^2
\]

- is parametrized by three form factors as a function of
\[
w = \frac{p_B \cdot p_{D^*}}{m_B m_{D^*}} = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}
\]

- The neutrino direction is reconstructed inclusively using the known angle $\cos\theta_{BY}$ between the B and the $Y = D^* + l$ direction

\[
\cos\theta_{BY} = \frac{2E_B^{CM} E_Y^{CM} - m_B^2 c^4 - m_Y^2 c^4}{2|\vec{p}_B^{CM}||\vec{p}_Y^{CM}| c^2}
\]

- Signal yields in bins of kinematic variables $w, \cos\theta_l, \cos\theta_V$ and χ are determined bin by bin independently by 2D fits of $\cos\theta_{BY}$ and $\Delta M = M(D^*) - M(D^0)$

An example only: done for all the bins, for all the kinematic variables

Belle II

$\int \mathcal{L} dt = 189.3 \text{ fb}^{-1}$

$\bar{B}^0 \to D^* e^- \bar{\nu}_e$

10^3 entries/Bin
Determination of $|V_{cb}|$ using $\bar{B}_0 \rightarrow D^{*+} l^- \bar{\nu}_l$

- Bin-to-bin migration is corrected with SVD (Singular Value Decomposition) unfolding method [arXiv:hep-ph/9509307]

$\mathcal{M}_{ij} = P(\text{measured value in bin } i \mid \text{true value in bin } j)$
Determination of $|V_{cb}|$ using $\bar{B}_0 \to D^{*+} l^- \bar{\nu}_l$

- $|V_{cb}|$ value is determined from measured partial rates $\Delta \Gamma$

Boyd-Grinstein-Lebed parameterization

$$|V_{cb}|_{BGL} = (40.9 \pm 0.3_{\text{stat}} \pm 1.0_{\text{sys}} \pm 0.6_{\text{theo}}) \times 10^{-3}$$

Caprini-Lellouch-Neubert parameterization

$$|V_{cb}|_{BGL} = (40.4 \pm 0.3_{\text{stat}} \pm 1.0_{\text{sys}} \pm 0.6_{\text{theo}}) \times 10^{-3}$$

results agree well with the standard-model expectations, give no evidence for LUV

To be submitted to PRD
To sum up...

- The results shown in this presentation agree with SM
- No evidence of LUV(yet)

\[R(X_{e/\mu}) = 1.033 \pm 0.010(\text{stat}) \pm 0.019(\text{syst}) \]

\[R(X_{e/\mu} | p_T^B > 1.3 \text{ GeV}/c) = 1.031 \pm 0.010(\text{stat}) \pm 0.019(\text{syst}) \]

Boyd-Grinstein-Lebed parameterization
\[|V_{cb}|_{BGL} = (40.9 \pm 0.3_{\text{stat}} \pm 1.0_{\text{sys}} \pm 0.6_{\text{theo}}) \times 10^{-3} \]

Caprini-Lellouch-Neubert parameterization
\[|V_{cb}|_{BGL} = (40.4 \pm 0.3_{\text{stat}} \pm 1.0_{\text{sys}} \pm 0.6_{\text{theo}}) \times 10^{-3} \]