Determination of the Cabibbo-Kobayashi-Maskawa matrix elements V_{cb} and V_{ub}

Christoph Schwanda (Austrian Academy of Sciences)
On behalf of the Belle and Belle II collaborations
The Cabibbo-Kobayashi-Maskawa mechanism
The weak interaction down-type doublet partners are a mixture of the mass (flavour) eigenstates described by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix.

The CKM element magnitudes squared determine the rate of quark flavour transitions in charged current processes.

\(-\mathcal{L}_{W^\pm} = \frac{g}{\sqrt{2}} \overline{u_L} i \gamma^\mu (V_{\text{CKM}})_{ij} d_L^j W^\mu_\mu + \text{h.c.}\)

\(V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}\)

\(VV^\dagger = V^\dagger V = 1\)
CP violation

Wolfenstein parametrization of V_{CKM}

$$V_{\text{CKM}} = \begin{pmatrix}
1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4)$$

- However, V_{CKM} also contains a complex phase, responsible for all CP-violating phenomena in the quark sector of the SM, and consistent with observations in K, D and B meson decays so far.
- New physics would typically disturb the SM pattern of CPV.
The CKM unitarity triangle

...and how to probe it with B mesons

\[V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \]

CPV in \(B \rightarrow \pi\pi, \rho\rho, \rho\pi \)

CPV in \(B \rightarrow J/\psi K_s \)
Semileptonic B decays

Determination of the CKM elements $|V_{cb}|$ and $|V_{ub}|$

- SL B decays are studied to determine the CKM elements $|V_{cb}|$ and $|V_{ub}|$

 - $|V_{xb}|$ are limiting the global constraining power of UT fits

 - Important inputs in predictions of SM rates for ultrarare decays such as $B_s \rightarrow \mu\nu$ and $K \rightarrow \pi\nu\nu$

- The determinations can be

 - *Exclusive* — from a single final state

 - *Inclusive* — sensitive to all SL final states

$$d\Gamma \propto G_F^2 |V_{qb}|^2 |L_\mu \langle X |\bar{q}\gamma_\mu P_L b |B\rangle|^2$$

<table>
<thead>
<tr>
<th></th>
<th>Experiment</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Exclusive $</td>
<td>V_{cb}</td>
<td>$**</td>
</tr>
<tr>
<td>**Inclusive $</td>
<td>V_{cb}</td>
<td>$**</td>
</tr>
</tbody>
</table>
Determinations of both $|V_{cb}|$ and $|V_{ub}|$ exhibit a discrepancy at the level of $\sim 3\sigma$ between exclusive and inclusive.

The current experimental focus is on understanding the origin of this discrepancy, as this inconsistency limits the power of precision flavour physics.

$$|V_{cb}|_{\text{excl}} = (39.10 \pm 0.50) \times 10^{-3}$$
$$|V_{ub}|_{\text{excl}} = (3.51 \pm 0.12) \times 10^{-3}$$
$$|V_{cb}|_{\text{incl}} = (42.19 \pm 0.78) \times 10^{-3}$$
$$|V_{ub}|_{\text{incl}} = (4.19 \pm 0.17) \times 10^{-3}$$

[PRD 107, 052008 (2023)]
The facilities
1999 – 2010: B factory at KEK (Japan)

KEKB double ring e+e- collider

$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$

Belle detector
The Belle detector

- SC solenoid
 - 1.5T
- CsI(Tl)
- $16X_0$
- TOF counter
- 8 GeV e^-
- Si vtx. det.
 - 3(4) lyr. DSSD
- Central Drift Chamber
- small cell +He/C$_2$H$_5$
- μ / K_L detection
 - 14/15 lyr. RPC+Fe
- Aerogel Cherenkov cnt.
 - n=1.015~1.030
 - 3.5 GeV e^+
Comparison of B factories (1999-2010)

> 1 ab$^{-1}$
On resonance:
$\Upsilon(5S): 121$ fb$^{-1}$
$\Upsilon(4S): 711$ fb$^{-1}$
$\Upsilon(3S): 3$ fb$^{-1}$
$\Upsilon(2S): 24$ fb$^{-1}$
$\Upsilon(1S): 6$ fb$^{-1}$
Off reson./scan:
~ 100 fb$^{-1}$

~ 550 fb$^{-1}$
On resonance:
$\Upsilon(4S): 433$ fb$^{-1}$
$\Upsilon(3S): 30$ fb$^{-1}$
$\Upsilon(2S): 14$ fb$^{-1}$
Off resonance:
~ 54 fb$^{-1}$
From KEKB to SuperKEKB

Take advantage of existing items (KEKB tunnel, KEKB components)

- New beam pipe & bellows
 TiN-coated beam pipe with antechambers

- Main ring arc and straight section:
 Redesign the lattices of both rings to reduce the emittance

- Main ring arc section:
 LER: Replace all main dipoles
 HER: Preserve the present cells

- KEKB
- Super KEKB

- New design for Near-IR

- Add / modify RF systems for higher beam current

- New beam line Tsukuba section

- New QCS magnet for Nano-beam scheme
 New superconducting / permanent final focusing quads near the IP

- New low emittance e⁻ gun

- Positron damping ring

- New e⁺ source

- New and re-use wiggler magnets are mixed:
 Oho section (LER & HER)
 Nikko section (LER)

$L = 8 \times 10^{-35} \left[\frac{cm^2 s^{-1}}{s} \right] \times \frac{f_{\delta \xi \eta}}{\beta_y}$.

[Equation Image]
<table>
<thead>
<tr>
<th>parameters</th>
<th>KEKB LER</th>
<th>KEKB HER</th>
<th>SuperKEKB LER</th>
<th>SuperKEKB HER</th>
<th>units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy E_b</td>
<td>3.5</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>GeV</td>
</tr>
<tr>
<td>Half crossing angle ϕ</td>
<td>11</td>
<td></td>
<td>41.5</td>
<td></td>
<td>mrad</td>
</tr>
<tr>
<td>Horizontal emittance ε_x</td>
<td>18</td>
<td>24</td>
<td>3.2</td>
<td>4.3-4.6</td>
<td>nm</td>
</tr>
<tr>
<td>Emittance ratio κ</td>
<td>0.88</td>
<td>0.66</td>
<td>0.27</td>
<td>0.25</td>
<td>%</td>
</tr>
<tr>
<td>Beta functions at IP $\beta_x^/\beta_y^$</td>
<td>1200/5.9</td>
<td></td>
<td>32/0.27</td>
<td>25/0.31</td>
<td>mm</td>
</tr>
<tr>
<td>Beam currents I_b</td>
<td>1.64</td>
<td>1.19</td>
<td>3.60</td>
<td>2.60</td>
<td>A</td>
</tr>
<tr>
<td>beam-beam parameter ξ_y</td>
<td>0.129</td>
<td>0.090</td>
<td>0.0886</td>
<td>0.0830</td>
<td></td>
</tr>
<tr>
<td>Luminosity L</td>
<td>2.1×10^{34}</td>
<td></td>
<td>8×10^{35}</td>
<td></td>
<td>cm$^{-2}$s$^{-1}$</td>
</tr>
</tbody>
</table>

- **Small beam size & high current** to increase luminosity
- **Large crossing angle**
- **Change beam energies** to solve the problem of LER short lifetime
The Belle II detector

Central drift chamber
Spatial resolution ~100µm
\(dE/dx\) resolution: 5%
\(p_T\) resolution: 0.4%

Vertex detector
2 layers of DEPFET pixels (PXD) and 4 layers of silicon strips (SVD)
Vertex resolution ~15µm

Electromagnetic Calorimeter
Energy resolution: 1.6 - 4%

KLM
Instrumented flux return

\(E_{cm} = 10.58\text{ GeV} \) (\(\Upsilon(4S)\) resonance)

KEK
Tsukuba, Japan

4 GeV \(e^+\)
Belle II timeline

Luminosity projection

- Super-KEKB already delivered the world highest instantaneous luminosity at an e^+e^- machine (4.71×10^{34} cm$^{-2}$s$^{-1}$ in June 2022)

We are here
$\mathcal{L}_{\text{recorded}} = 428/fb$

LS1 (2022-23):
PXD2 installation and other maintenance/upgrade of detector & machine

LS2 (2026-27):
SKB IR upgrade VTX installation?

Goal in the mid 2030ies:
$\mathcal{L}_{\text{recorded}} \approx 50/ab$
Untagged vs. Tagged

Untagged:
- only B_{sig} is reconstructed
- high signal yield (+)
- high backgrounds (-)
- poor neutrino reconstruction (-)

Tagged:
- B_{sig} and B_{tag} are reconstructed
- signal yield $O(10^3)$ lower (-)
- low backgrounds (+)
- good neutrino reconstruction (+)
- tag calibration (-)
Hadronic tagging at Belle II

The hadronic FEI employs over 200 boosted decision trees to reconstruct 10000 B decay chains at low purity (about 50% increase with respect to the Belle tag)

- $\epsilon_{B^+} \approx 0.5\%$, $\epsilon_{B^0} \approx 0.3\%$ at low purity (about 50% increase with respect to the Belle tag)

$$M_{bc} = \sqrt{E_{beam}^2 / 4 - (p_{B_{tag}}^{cm})^2} > 5.27 \text{ GeV}/c^2$$
Exclusive measurements
preliminary [to be submitted to Phys. Rev. D]
Parameterisation of $B \to D^* \ell \nu$

- Three form-factors as function of $w = V_B \cdot V_{D^*}$ parameterise the non-perturbative physics

$$\frac{d^4\Gamma}{dw \cos \theta_\ell d \cos \theta_V d\chi} \propto |V_{cb}|^2 F^2(w, \cos \theta_\ell, \cos \theta_V, \chi)$$

- Form factor parameterisations
 $$g(z) = \frac{1}{P_g(z)\phi_g(z)} \sum_{n=0}^{n_g-1} a_n z^n,$$
 $$f(z) = \frac{1}{P_f(z)\phi_f(z)} \sum_{n=0}^{n_f-1} b_n z^n,$$
 $$F_1(z) = \frac{1}{P_F(z)\phi_F(z)} \sum_{n=0}^{n_F-1} c_n z^n,$$
 $$z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}}$$

 $$h_{A_1}(z) = h_{A_1}(w = 1) \left(1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right)$$
 $$R_1(w) = R_1(1) - 0.12(w-1) + 0.05(w-1)^2$$
 $$R_2(w) = R_2(1) + 0.11(w-1) - 0.06(w-1)^2$$
Measurement

- $D^*+ \rightarrow D^0(\rightarrow K^−π^+)π^+$ is reconstructed and combined with an appropriately charged lepton (e or μ)

- The neutrino direction is reconstructed inclusively using the known angle $\cos \theta_{BY}$ between the B and the $Y = D^* + \ell$ direction

 $$\cos \theta_{BY} = \frac{2E_B^{CM}E_Y^{CM} - m_B^2c^4 - m_Y^2c^4}{2|p_B^{CM}||p_Y^{CM}|c^2}$$

- The yield in 10 (8) bins of w, $\cos \theta_\ell$, $\cos \theta_V$ and χ is extracted by fitting $\cos \theta_{BY}$ and $\Delta M = M(Kππ) - M(Kπ)$

- Bin-to-bin migration is corrected with SVD unfolding [arXiv:hep-ph/9509307]

- Main challenges: accurate background model, slow pion tracking and statistical correlations between bins
BGL fit result

BGL truncation order determined by Nested Hypothesis Test [Phys. Rev. D100, 013005]

<table>
<thead>
<tr>
<th>Values</th>
<th>Correlations</th>
<th>χ^2/ndf</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{a}_0 \times 10^3$</td>
<td>0.89±0.05</td>
<td>1.00</td>
</tr>
<tr>
<td>$\bar{b}_0 \times 10^3$</td>
<td>0.54±0.01</td>
<td>0.26</td>
</tr>
<tr>
<td>$\bar{b}_1 \times 10^3$</td>
<td>-0.44±0.34</td>
<td>-0.34</td>
</tr>
<tr>
<td>$\bar{c}_1 \times 10^3$</td>
<td>-0.05±0.03</td>
<td>0.07</td>
</tr>
</tbody>
</table>

LQCD used only for normalisation at zero recoil ($w = 1$)

$|V_{cb}|_{BGL} = (40.9 \pm 0.3_{\text{stat}} \pm 1.0_{\text{syst}} \pm 0.6_{\text{theo}}) \times 10^{-3}$

![Belle II plots](image)
Adding LQCD at \(w > 1 \)

LQCD constraints on \(h_A(w) \) at \(w = 1.03, 1.10, 1.17 \)

\[\text{[Eur. Phys. J. C 82, 1141 (2022)]} \]

<table>
<thead>
<tr>
<th>Values</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>V_{cb}</td>
</tr>
<tr>
<td>(a_0 \times 10^3)</td>
<td>22.0 ± 1.4</td>
</tr>
<tr>
<td>(b_0 \times 10^3)</td>
<td>13.2 ± 0.2</td>
</tr>
<tr>
<td>(b_1 \times 10^3)</td>
<td>9.0 ± 14.5</td>
</tr>
<tr>
<td>(b_2)</td>
<td>-0.5 ± 0.4</td>
</tr>
<tr>
<td>(c_1 \times 10^3)</td>
<td>-0.7 ± 0.8</td>
</tr>
</tbody>
</table>

LQCD constraints on \(h_A(w), R_1(w) \) and \(R_2(w) \) at \(w = 1.03, 1.10, 1.17 \)

\[\text{[Eur. Phys. J. C 82, 1141 (2022)]} \]

<table>
<thead>
<tr>
<th>Values</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>V_{cb}</td>
</tr>
<tr>
<td>(a_0 \times 10^3)</td>
<td>28.3 ± 1.0</td>
</tr>
<tr>
<td>(a_1 \times 10^3)</td>
<td>-31.5 ± 66.6</td>
</tr>
<tr>
<td>(a_2)</td>
<td>-5.8 ± 2.5</td>
</tr>
<tr>
<td>(b_0 \times 10^3)</td>
<td>13.3 ± 0.2</td>
</tr>
<tr>
<td>(c_1 \times 10^3)</td>
<td>-3.2 ± 1.4</td>
</tr>
<tr>
<td>(c_2 \times 10^3)</td>
<td>59.1 ± 31.1</td>
</tr>
</tbody>
</table>
Summary of the measurement

• Branching fraction

\[\mathcal{B}(\mathbf{B}^0 \rightarrow \mathbf{D}^{**}\ell^ {-}\nu) = (4.94 \pm 0.02_{\text{stat}} \pm 0.22_{\text{syst}})\% \]

• Value of \(|V_{cb}| \)

\[|V_{cb}|_{\text{BGL}} = (40.9 \pm 0.3_{\text{stat}} \pm 1.0_{\text{syst}} \pm 0.6_{\text{theo}}) \times 10^{-3} \]

\[|V_{cb}|_{\text{CLN}} = (40.4 \pm 0.3_{\text{stat}} \pm 1.0_{\text{syst}} \pm 0.6_{\text{theo}}) \times 10^{-3} \]

• Lepton flavour universality tests

\[R_{e/\mu} = 1.001 \pm 0.009_{\text{stat}} \pm 0.021_{\text{syst}} \]

\[\Delta AFB = (-4 \pm 16_{\text{stat}} \pm 18_{\text{syst}}) \times 10^{-3} \]

\[\Delta FL = 0.013 \pm 0.007_{\text{stat}} \pm 0.007_{\text{syst}} \]
$B \rightarrow D \ell^+ \nu$ untagged (189/fb)
preliminary [arXiv:2210.13143]
Measurement

- $D\ell\nu$ kinematics are described by w only and the decay form factor contains a single function $f_+(w)$
- $D^+ \to K^-\pi^+\pi^+$ and $D^0 \to K^-\pi^+$ are reconstructed and combined with an appropriately charged lepton (e or μ)
- Yields are extracted in 10 bins of w by fitting the $\cos \theta_{BY}$ distributions
- Main challenges: background model, in particular $B \to D^{*}\ell\nu$ downfeed (significant despite active D^* veto)
BGL fit

$|V_{cb}|_{\text{BGL}} = (38.28 \pm 1.16) \times 10^{-3}$

Average over B^0 and B^+, and e and μ
$B^0 \to \pi^- \ell^+ \nu$ untagged (189/fb)

preliminary [arXiv:2210.04224]
$B \rightarrow \pi \ell \nu$

The golden mode for $|V_{ub}|$ exclusive

- Differential rate in terms of $q^2 = (p_{\ell} + p_\nu)^2$

$$\frac{d\Gamma(B^0 \rightarrow \pi^- \ell^+\nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_\pi|^3 |f_+(q^2)|^2$$

- BCL extraction of $|V_{ub}|$ [Phys.Rev.D79, 013008; Erratum-ibid. D82, 099902]
- Measure the differential rate in bins of q^2
- Theory calculates $f_+(q^2)$ at values of q^2
- Combined fit to the BCL expansion to determine $|V_{ub}|$ and b_k (z is a map of q^2)

$$f_+(q^2) = \frac{1}{1 - q^2/m_B^2} \sum_{k=0}^{K-1} b_k \left[z^k - (-1)^{k-K} \frac{k}{K} z^K \right]$$
Measurement

- Charged π mesons are combined with e or μ, the neutrino direction is reconstructed inclusively.

- The yield in 6 bins of q^2 is determined from a fit to $M_{bc} = \sqrt{E_{\text{beam}}^* - |\vec{p}_B^*|^2}$ vs. $\Delta E = E_B^* - E_{\text{beam}}^*$.

- Bin-by-bin unfolding to correct migration.
BCL fit result

- LQCD input from FNAL/MILC [Phys. Rev. D92, 014024]

\[B(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.426 \pm 0.056({\text{stat}}) \pm 0.125({\text{syst}})) \times 10^{-4} \]

\[|V_{ub}|_{B^0 \to \pi^- \ell^+ \nu_\ell} = (3.55 \pm 0.12({\text{stat}}) \pm 0.13({\text{syst}}) \pm 0.17({\text{theo}})) \times 10^{-3} \]

<table>
<thead>
<tr>
<th>Source</th>
<th>(B^0 \to \pi^- e^+ \nu_e)</th>
<th>(B^0 \to \pi^- \mu^+ \nu_\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector</td>
<td>q1</td>
<td>q2</td>
</tr>
<tr>
<td>MC sample size</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Continuum</td>
<td>13.1</td>
<td>5.5</td>
</tr>
<tr>
<td>(B \to p\ell\nu)</td>
<td>9.5</td>
<td>12.5</td>
</tr>
<tr>
<td>(B \to X_{c,0} \ell\nu)</td>
<td>3.3</td>
<td>1.9</td>
</tr>
<tr>
<td>(B \to X_{s} \ell\nu)</td>
<td>2.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Total syst.</td>
<td>17.2</td>
<td>14.3</td>
</tr>
<tr>
<td>Stat.</td>
<td>10.2</td>
<td>6.01</td>
</tr>
<tr>
<td>Total</td>
<td>20.2</td>
<td>15.5</td>
</tr>
</tbody>
</table>
Belle II | V_{cb} | and | V_{ub}

- Recent Belle II results on exclusive decays

| | $|V_{cb}| \times 10^3$ | Reference |
|-------|-------------------------|--------------------------------|
| Belle II $B^0 \to D^{*-}\ell^+\nu$ untagged | 40.9 ± 1.2 (BGL) Preliminary | To be submitted to PRD |
| Belle II $B^0 \to D^{*-}\ell^+\nu$ tagged | 37.9 ± 2.7 (CLN) Preliminary | [arXiv:2301.04716] |
| Belle II $B \to D\ell\nu$ untagged | 38.28 ± 1.16 (BGL) Preliminary | [arXiv:2210.13143] |

| | $|V_{ub}| \times 10^3$ | Reference |
|-------|-------------------------|--------------------------------|
| Belle II $B \to \pi\ell\nu$ tagged | 3.88 ± 0.45 Preliminary | [arXiv:2206.08102] |
| Belle II $B \to \pi\ell\nu$ untagged | 3.55 ± 0.25 Preliminary | [arXiv:2210.04224] |

WA values [HFLAV 2021]

$|V_{cb}|_{\text{excl}} = (39.10 \pm 0.50) \times 10^{-3}$

$|V_{ub}|_{\text{excl}} = (3.51 \pm 0.12) \times 10^{-3}$
Inclusive measurements
| V_{cb} | from inclusive decays |

\[\Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5(\mu) \rangle}{m_b^2} + \frac{c_6(\mu) \langle O_6(\mu) \rangle}{m_b^3} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \right) \]

- Based on the Operator Product Expansion (OPE)
- $\langle O_i \rangle$: hadronic matrix elements (non-perturbative)
- c_i: coefficients (perturbative)
- Parton-hadron duality \rightarrow the hadronic ME depend only on the initial state

<table>
<thead>
<tr>
<th></th>
<th>Kinetic</th>
<th>1S</th>
</tr>
</thead>
<tbody>
<tr>
<td>[JHEP 1109 (2011) 055]</td>
<td>[PRD70, 094017 (2004)]</td>
<td></td>
</tr>
<tr>
<td>$O(1)$</td>
<td>m_b, m_c</td>
<td>m_b</td>
</tr>
<tr>
<td>$O(1/m_b^2)$</td>
<td>μ^2_{π}, μ^2_G</td>
<td>λ_1, λ_2</td>
</tr>
<tr>
<td>$O(1/m_b^3)$</td>
<td>ρ^3_D, ρ^3_{LS}</td>
<td>ρ_1, τ_{1-3}</td>
</tr>
</tbody>
</table>
HFLAV fit (kinetic scheme)

| $|V_{cb}|$ [10^{-3}] | m_b^{kin} [GeV] | m_c^{MS} [GeV] | μ^2_π [GeV]2 | ρ_D^3 [GeV]3 | ρ_G^3 [GeV]3 | ρ_{LS}^3 [GeV]3 |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| value 42.19 | 4.554 | 0.987 | 0.464 | 0.169 | 0.333 | −0.153 |
| error 0.78 | 0.018 | 0.015 | 0.076 | 0.043 | 0.053 | 0.096 |

- Global fit to Γ_{SL} and other inclusive observables
- At different lepton energy thresholds

[PRD 107, 052008 (2023)]
Motivated by JHEP 02 (2019) 177 [arXiv:1812.07472]

Semileptonic B decays are reconstructed in 62.8/fb of hadronic tagged Belle II events

Signal weight w as a function of q^2 determined from fitting the hadronic mass M_X

q^2 spectra are calculated as event-wise average

Leading systematics: background, moment calibration

$$q^2 = (p_\ell + p_\nu)^2$$

q^2 moments in $B \to X_c \ell \nu$

arXiv:2205.06372, submitted to PRD

$$\langle q^{2m} \rangle = \frac{C_{\text{cal}} \cdot C_{\text{acc}}}{\sum \text{events}} \cdot \sum \frac{w(q_i^2)}{\text{events}} \cdot \frac{w(q_i^2)}{q_i^{2m}} \cdot q_{\text{cal}}^{2m}$$
q^2 moments in $B \to X_c \ell \nu$

arXiv:2205.06372, submitted to PRD

- Belle II q^2 moments compared to Belle q^2 moments PRD 104, 112011 (2021) [arXiv:2109.01685]
- And fit by Bernlochner et al. [arXiv:2205.10274]
- This fit gives

 $|V_{cb}| = (41.69 \pm 0.63) \cdot 10^{-3}$
\(B \rightarrow X_u \ell \nu \) and \(|V_{ub}| \) inclusive

PRD 104, 012008 (2021), PRL 127, 261801 (2021)

4 predictions of the partial rate

BLNP
DGE
GGOU
ADFR

Our average

HFLAV \(B \rightarrow \pi \ell \nu \)

CKMfitter

Exclusive Average for \(B \rightarrow \pi \ell \nu \)

\[|V_{ub}| = (3.67 \pm 0.09 \pm 0.12) \times 10^{-3} \]

CKM Unitarity:

\[|V_{ub}| = (3.62^{+0.11}_{-0.08}) \times 10^{-3} \]

Arithmetic average:

\[|V_{ub}| = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3} \]

Can be used for future shape-function independent determination of Vub
Summary and conclusion

- The Cabibbo-Kobayashi-Maskawa magnitudes $|V_{cb}|$ and $|V_{ub}|$ are fundamental parameters of the Standard Model that play an important role in constraining the mechanism of quark-mixing/CP violation.

- $|V_{cb}|$ and $|V_{ub}|$ are currently known to the level of <2% and <4% (respectively) but there is a discrepancy at the level of 3σ between exclusive and inclusive determinations.

- The aim of ongoing measurements is to understand/identify the origin of this discrepancy.

\[
|V_{cb}|_{\text{excl}} = (39.10 \pm 0.50) \times 10^{-3} \quad |V_{cb}|_{\text{incl}} = (42.19 \pm 0.78) \times 10^{-3}
\]

\[
|V_{ub}|_{\text{excl}} = (3.51 \pm 0.12) \times 10^{-3} \quad |V_{ub}|_{\text{incl}} = (4.19 \pm 0.17) \times 10^{-3}
\]

[PRD 107, 052008 (2023)]
Backup
From Belle to Belle II

CsI(Tl) EM calorimeter: waveform sampling electronics, pure CsI for endcaps

4 layers DSSD vertex detector →
2 layers PXD (DEPFET) + 4 layers DSSD

Central Drift Chamber: smaller cell size, long lever arm

RPC μ & K_L counter: scintillator + Si-PM for end-caps

Time-of-Flight, Aerogel Cherenkov Counter →
Time-of-Propagation (barrel), proximity focusing Aerogel RICH (forward)