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Abstract

We perform a search for charge-parity violation (CPV) in the density of events in a binned
Dalitz plot of D∗-tagged D0 → π+π−π0 decays. The data used for this analysis is 362 fb−1 of
Υ(4S) data collected at Belle II from 2019–2022. We develop a novel binned Dalitz analysis
method to determine local CPV; our method carefully accounts for nuisance asymmetries
not due to CPV using the data itself rather than relying on simulations. All final asym-
metry measurements are consistent with the no-CPV hypothesis. Our analysis method will
scale well as Belle II collects more data, and we expect both the statistical and systematic
uncertainties on the results to decrease if the analysis is redone on a larger dataset.
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Chapter 1

Introduction

Conservation laws are critical to the way physicists understand the universe. As the field
of particle physics began to emerge in the mid-twentieth century, it was no exception. One
particularly important concept for particle physicists was parity conservation, which holds
that the laws of physics do not change under mirror symmetry: the mirror image of any
physical process is also a valid physical process. This seemed obvious to particle physicists; it
just made sense that this would be true. But in 1956, Lee and Yang pointed out that although
it had been verified in the strong and electromagnetic interactions, parity conservation had
never been confirmed in the weak interaction [1]. In 1957, in the famous cobalt-60 β-decay
experiment, Wu and others found that parity was not conserved in the weak interaction [2].
(Lee and Yang won the 1957 Nobel Prize in Physics for their work. Madame Wu was notably
denied this recognition, despite being nominated multiple times.)

The discovery of parity violation prompted something of a crisis in particle physics: did
the weak interaction preserve any discrete symmetry? Very quickly, charge-parity (CP )
conservation was proposed as a possibility [3]. CP conservation means that if you first
charge-conjugate the particles involved in a physical process, then the mirror image is also
a valid physical process. But this was also eventually found not to be a universal symmetry.
The first observation of charge-parity violation (CPV) occurred in 1964 [4], and the search
for additional examples as well as the development of a model to explain them has been a
central part of particle physics ever since.

Our current understanding of CPV can be broken down into what is included in the
Standard Model (SM) that was developed in the 1960s and 1970s and what must be explained
another way. Even before experimental confirmation of quarks [5, 6] and the development of
the CKM matrix [7, 8], CPV in the kaon sector had already been observed [4]. However, the
original quark model only postulated the existence of three quark flavors – up, down, and
strange – and the mathematics of this model could not account for CPV. In 1964, a fourth
quark – charm – was postulated [9]; the phenomenology of the charm quark was further
developed in 1970 [10]. In 1974, the charm quark was observed experimentally [11, 12], but
a model with four quarks was still not sufficient to explain CPV. The CKM matrix called
for a six-quark model, which would be able to account for CPV via a complex phase. The
fifth quark – bottom, or beauty – was discovered in 1977 [13], and although the sixth quark
remained elusive (the top quark was finally observed in 1995 at a much larger mass than
anyone anticipated [14]), this was enough to convince particle physicists of the validity of
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the quark model and CKM matrix and send them on a decades-long search for CPV in B
mesons (the bottom sector) and D mesons (the charm sector).

CPV in the bottom sector was first observed in the early 2000s at BaBar [15] and Belle
[16] in neutral B mesons. Additional measurements, plus observations of CPV in B± and Bs

meson decays, came in the following decade [17–20]. These measurements are all consistent
with the level of CPV predicted by the SM.

Despite this success, CPV in the charm sector remained elusive. Evidence for D0-D0

mixing (one mechanism through which CPV could occur) was seen as early as 2007 [21–23],
and the first observation of mixing in a single measurement was seen in 2013 [24], but these
studies did not find evidence for CPV. CPV in the D meson system was finally observed in
2019 by LHCb [25]. This measurement is also consistent with the amount of CPV predicted
by the SM.

But what drives physicists to study CPV is not just an attempt to confirm the SM, but
rather a desire to prove it incorrect, or at least incomplete. The level of CPV predicted
by the current CKM matrix, for example, is not large enough to explain the dominance of
matter over antimatter in our universe [26]. There must therefore be sources of CPV coming
from beyond-the-SM physics, or “New Physics.”

Detecting CPV from New Physics is one of the main goals of the Belle II experiment’s
physics program [27]. Using 362 fb−1 of Belle II data collected at the Υ(4S) resonance, this
analysis focuses on searching for CPV in one particular decay of the D0 meson: D∗-tagged D0

→ π+π−π0 (charge-conjugate decays are implied throughout unless otherwise stated). This
decay involves a c → d quark transition via the weak interaction, so based on the elements
of the CKM matrix, it is suppressed relative to decays containing c → s transitions (i.e.,
D0 decays with a K− or K0 in the final state). This is easiest to see with the Wolfenstein
parameterization of the CKM matrix. The general elements of the CKM matrix are:

VCKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 (1.1)

The Wolfenstein parameterization uses four real parameters: A, λ, ρ, and η. ρ and η are the
CP -violating parameters. λ� 1, and the CKM elements are expanded in increasing powers
of λ [28]:

VCKM =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (1.2)

The elements along the diagonal, which represent the rates of u → d, c → s, and t → b
quark transitions, are all O(1). But away from the diagonal, the power of λ increases. Of
particular interest, Vcd, i.e., the c → d transition rate, is O(λ), so it is suppressed relative to
c → s.

A large amount of data is required to analyze suppressed decays, but they are good
places to look for New Physics, as the lower amplitude of the SM processes means it should
be easier to see any New Physics process. In a Cabibbo-favored (CF) decay, the amplitude
of the SM processes is so large that even if CPV from New Physics were present, it might
be very difficult to observe.
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The other reason we consider specifically D0 → π+π−π0 is the presence of the neutral π0

meson. Reconstruction of π0 mesons from π0 → γγ decays, using precise detection of photon
showers in the electromagnetic calorimeter (ECL), is expected to be one of the strengths of
Belle II [29, 30]. As we are still relatively early in Belle II data-taking, this analysis will
test Belle II ’s π0 performance capabilities and inform future analyses of D meson decays
containing π0s.

In order to search for CPV, we develop a novel binned analysis method for the D0 →
π+π−π0 Dalitz plot. Importantly, this analysis method allows us to account for nuisance
asymmetries (i.e., asymmetries caused by sources other than CPV) using the data rather
than relying on simulations. It also accounts for peaking backgrounds, and it is broadly
scalable and adaptable to larger amounts of data. Since our current data sample is only
a small fraction of what Belle II will eventually collect, we set out to develop an analysis
technique that could be used for later analyses at Belle II as well.

The structure of this thesis is as follows:

• Chapter 2 describes previous examples of Dalitz analyses in the literature and discusses
their various uses. This chapter is supplemented by Appendix A and Appendix B,
which go into more detail about the history of the development of Dalitz plots as well
as the specific methodologies of different Dalitz analyses.

• Chapter 3 discusses the SuperKEKB accelerator and the Belle II detector. This anal-
ysis, like all physics analyses done at Belle II , relies on the excellent performance of
the detector and the various subdetectors that comprise it.

• Chapter 4 describes the dataset used for the analysis in this thesis and details our
procedure for event selection.

• Chapter 5 describes in detail our novel binned analysis method. This chapter is sup-
plemented by Appendix C, which goes into more detail about additional analyses that
may be performed to complement the results obtained with our method.

• Chapter 6 presents the results of our method when performed on simulated data (also
called Monte-Carlo data or MC). Since this simulated data does not contain CPV, we
should see asymmetry measurements consistent with zero. The results described in
this chapter serve as a test of our methodology to confirm that we do not see false
positives.

• Chapter 7 presents the results of our analysis on 362 fb−1 of Belle II data.

• Chapter 8 details the estimation of systematic uncertainties to apply to the results
from chapter 7.

• Chapter 9 summarizes the procedure and results from this analysis and looks ahead to
how these results could be improved upon and expanded in the future.
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Chapter 2

Dalitz Analyses

This chapter discusses the purpose (section 2.1) and selected past uses (section 2.2) of Dalitz
plots as well as the motivation for the analysis described in this thesis (section 2.3). For
more detailed discussions of particular types of Dalitz analyses used to search for CPV, refer
to chapter 5, Appendix A, and Appendix B.

2.1 Overview of Dalitz plots

The analysis presented in this thesis will use data binned in regions of the Dalitz plot to
measure a local CP asymmetry. A Dalitz plot is a way to visualize a three-body decay,
and Dalitz analyses have been used in particle physics for more than 70 years [31, 32]. The
principle behind a Dalitz plot is as follows: if A is a particle of mass mA and B, C, and D
are spin-0 particles of masses mB, mC , and mD, respectively (the masses of the three decay
products need not be equal), then the decay A→ B C D can be completely described by only
two variables. It is common to use the invariant mass squared for two pairs of decay products
(e.g., m2

BC for the invariant mass squared of the BC system and m2
CD for the invariant mass

squared of the CD system) as Dalitz plot axes in modern analyses. There are two main
reasons why these axes are a sensible choice. The first reason can be demonstrated by some
simple four-vector algebra. Using the convention p̂ = (E, ~p), four-momentum conservation
gives:

p̂A = p̂B + p̂C + p̂D,

p̂2
A = (p̂B + p̂C + p̂D)2,

m2
A = m2

B +m2
C +m2

D + 2p̂B · p̂C + 2p̂C · p̂D + 2p̂B · p̂C . (2.1)

If we let p̂BC be the four-momentum of the BC system, then p̂BC = p̂B + p̂C , and it follows
that:

p̂2
BC = (p̂B + p̂C)2,

m2
BC = m2

B +m2
C + 2p̂B · p̂C ,

2p̂B · p̂C = m2
BC −m2

B −m2
C . (2.2)
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Using similar equations for 2p̂B · p̂D and 2p̂C · p̂D, we can substitute Equation 2.2 into
Equation 2.1, and (after rearranging) we have:

m2
A +m2

B +m2
C +m2

D = m2
BC +m2

CD +m2
BD. (2.3)

But the left-hand side of Equation 2.3 is just a constant. This leads to the constraint:

constant = m2
BC +m2

CD +m2
BD. (2.4)

Equation 2.4 is one justification for the choice of invariant pair masses squared as Dalitz
plot axes: since the three invariant pair masses squared must always sum to a constant,
if two of them appear on the x and y axes, the diagonals x + y = constant represent the
third. Resonances in a particular pair of decay products, say B and C, appear as stripes
perpendicular to the m2

BC axis. Determining the masses of intermediate resonances is often
a main goal of Dalitz analyses, and this choice of axes makes that very easy.

The other reason this choice of axes is particularly useful is because, for this three-body
decay, the differential decay probability is [33]:

dΓ =
1

(2π)3

1

32m3
A

|A|2dm2
BCdm

2
CD. (2.5)

The only non-constant term in the coefficients in Equation 2.5 is A, the decay amplitude.
Thus, any structure (i.e., non-uniform density) in a Dalitz plot is due to the variation in A

[34]. Another way of saying this is that the area in the Dalitz plot is proportional to the
phase space of the decay. Again, since understanding the intermediate resonances in a decay
is often a goal of these analyses, this makes a Dalitz plot a particularly useful visualization
of the decay process.

Figure 2.1 shows what the Dalitz plot of a decay with no structure (i.e., no resonances)
would look like. Figure 2.2 shows the kinematic boundaries of a Dalitz plot, which are set
by the invariant mass of the decaying particle, plus the configuration of the decay products
around the edge of the plot.

The remaining sections of this chapter discuss how Dalitz analyses have been used to
studyD meson decays. More detail on the history of Dalitz plots can be found in Appendix A.

2.2 Dalitz analyses in practice

In the last two decades, Dalitz analyses have been used both to search for CPV and to deter-
mine amplitude models for resonant decays (see Appendix A for a discussion of amplitude
models). They have been used by many different collaborations, at a wide range of energy
scales, and on numerous different decays. The mode analyzed in this thesis, D0 → π+π−π0,
has been analyzed with several types of Dalitz analyses going back more than fifteen years.

2.2.1 D0 → π+π−π0 analyses

The BaBar collaboration has published several analyses on D0 → π+π−π0. In 2006, they

published the most precise measurements (at the time) of the ratios Γ(D0→π+π−π0)
Γ(D0→K−π+π0)

and
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Figure 2.1: The area of a Dalitz plot reveals the phase-space structure of a decay. A uniform
Dalitz plot, like this one, indicates that there are no resonances; resonances would appear
as stripes along an axis.

Γ(D0→K−K+π0)
Γ(D0→K−π+π0)

, calculated using Dalitz techniques [35]. In 2007, they published a Dalitz

analysis of D0 → π+π−π0 from B± → D0K± decays using 315 fb−1 of BB data collected at
or near the Υ(4S) resonance [36]. This analysis explicitly measured the SM CKM angle γ
[33]. A theoretical follow-up to this paper analyzing the results in terms of isospin eigenstates
was published the following year [37].

In 2008, BaBar published binned Dalitz analyses of D0 → π+π−π0 and D0 → K−K+π0

using a technique colloquially referred to as the “Miranda method” [38]. The Miranda
method is a novel method for performing a binned analysis that involves measuring a signif-
icance in a particular bin of the Dalitz plot rather than a fractional asymmetry. Appendix B
describes the Miranda method in detail, including its advantages over a traditional binned
analysis and its limitations.

In 2008, Belle II ’s predecessor, Belle, also published a Dalitz analysis of D0 → π+π−π0

using 532 fb−1 of BB data [39]. They measured the ratio Γ(D0→π+π−π0)
Γ(D0→K−π+π0)

as well as the CP
asymmetry across the Dalitz plot. They used a binned analysis based on event counts instead
of an amplitude analysis with an isobar model (see Appendix A for description) to reduce
the model dependence of the CPV measurement. It is worth noting that this is Belle’s only
analysis on this mode, and it was published before the full Belle dataset was available.

In 2015, LHCb published an analysis of this mode [40]. They analyzed the decay D0 →
π+π−π0 using a technique called the “energy test,” which was first described as a possible
Dalitz-based technique in a 2011 paper by Williams [41]. The energy test is discussed in
more detail in Appendix B.

None of these analyses found evidence for CPV. As mentioned in chapter 1, CPV in the
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Figure 2.2: Kinematic boundaries of a Dalitz plot. The gray text demonstrates the rela-
tive orientation of the particles in the decay at these kinematic limits. The actual decay
demonstrated in this plot is B0 → π−D0K+, where M = MB0 , ma = mπ− , mb = mD0 , and
mc = mK+ [34].

charm sector was not observed until 2019, and it was found using two-body, not three-body,
singly Cabibbo-suppressed (SCS) D0 decays [25].

2.2.2 Other selected D decays

The decay D0 → K−π+π0 was studied with a Dalitz model by the CLEO II collaboration in
2001 [42]. They performed an amplitude analysis and calculated an integrated CP asymme-

try. This analysis still provides the dominant contribution to the fit fraction Γ(D0→K−ρ+)
Γ(D0→K−π+π0)

reported by the Particle Data Group (PDG) [33]. The FOCUS collaboration published an
isobar model of this mode in 2007 [43].

In 2002, an amplitude analysis of the D+ → K−π+π+ Dalitz plot was performed by
the E791 collaboration at Fermilab [44]. This analysis was updated in 2006 [45] and still
contributes to PDG averages for fit fractions of this decay [33].

The mode D+ → K+K−π+ was analyzed by CLEO-c with an amplitude analysis in 2008
[46] and by LHCb with a binned analysis (using the Miranda method) in 2011 [47]. LHCb
also applied the Miranda method to a binned Dalitz analysis of D+ → π−π+π+ in 2014 [48].
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Again, none of these analyses found evidence for CPV. However, they illustrate that
Dalitz analyses are well-established in the study of charm physics. They further demonstrate
the wide range of Dalitz analyses that exist. This one basic technique can be used with
amplitude models, binned analyses (which have many variations), and the newer energy test
method to extract a wealth of information from many different decays.

2.3 Motivation

Given that the mode D0 → π+π−π0 has been studied with Dalitz analyses by three different
collaborations multiple times over the last fifteen years, one may reasonably wonder why
we propose to do so again in this thesis. There are three main reasons. First, Belle II ’s
predecessor, Belle, only published one analysis on this mode early in the experiment [39],
so it would be useful to restart analysis of D0 → π+π−π0 at Belle II . Second, Belle II is a
relatively new experiment, and this analysis will provide proof of concept that charm decays
with neutral daughters can be well-measured by this collaboration. Third, we have developed
a novel, data-based methodology for performing a Dalitz analysis that we demonstrate in
this thesis.
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Chapter 3

Experimental Apparatus

This chapter discusses the accelerator at which Belle II is based (section 3.1) as well as
the individual components of the Belle II detector (section 3.2). In section 3.3, we discuss
sources of nuisance asymmetries within the detector.

3.1 SuperKEKB Accelerator

The Belle II experiment is run at the SuperKEKB accelerator located at the High Energy
Accelerator Research Organization (KEK, abbreviation from the Japanese) in Tsukuba,
Japan. SuperKEKB is an asymmetric electron-positron collider, with the electron (positron)
beam at 7 GeV (4 GeV) [49]. A schematic is shown in Figure 3.1. The diagram includes the
four experimental halls – Nikko, Fuji, Oho, and Tsukuba – located around the accelerator’s
circumference. The Belle II experiment is located in Tsukuba Hall, which contains the only
interaction point of the two beam lines. The asymmetric beams allow for time-dependent
CPV analyses in B meson decays [29]. The collider is run primarily at a center-of-mass (CM)
energy of

√
s = 10.58 GeV, which is the mass of the Υ(4S) resonance, with some data also

collected at other Υ resonances or off-resonance energies [29]. The Υ(4S) decays primarily
into B+B− and B0B0 pairs. However, the e+e− → cc cross section is roughly equal to e+e−

→ Υ(4S) → BB, which makes charm physics accessible at SuperKEKB as well [29].
SuperKEKB began taking data on April 26, 2018 [50], and has already achieved multiple

instantaneous luminosity records [51]. The design luminosity of the collider was originally
reported as 8× 1035 cm−2s−1 [29], but in 2020 this was amended to 6× 1035 cm−2s−1 [52].
The target integrated luminosity remains 50 ab−1 by the end of the Belle II experiment [29].

3.2 Belle II Detector

Belle II is the first next-generation (super) B-factory detector. While the original B-factory
detectors, BaBar and Belle, probed CPV in the SM, Belle II , with higher luminosities and
greater precision, will be able to probe CPV both in and beyond the SM [34]. A state-of-the-
art detector is required to undertake this physics program. Figure 3.2 shows a top view cross
section of the Belle II detector. The specific components of the detector, especially those
most relevant to the work described in this thesis, are detailed in the subsections below.
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Figure 3.1: Schematic of the SuperKEKB accelerator [49].

Figure 3.2: Top-view schematic of the Belle II detector. In this schematic, the z-axis (i.e.,
the beamline) points from the left, where the electron beam enters, to the right, where the
positron beam enters from the opposite direction. The x-axis points up the page, and the
remaining y-axis is found by the right-hand rule to point out of the page [53].

3.2.1 Vertex detector (VXD)

The vertex detector (VXD) is the first detector component outside of the beryllium beam
pipe and is crucial to the vertex resolution (and hence, the entire physics program) of Belle II .
It is made of six total layers and two sub-detectors: the inner silicon pixel vertex detector
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(PXD) and the outer silicon strip vertex detector (SVD). The PXD is two layers, and the
remaining four layers are the SVD, made up of double-sided silicon strip sensors [29].

The use of pixels in the PXD (as opposed to a six-layer strip detector) is in response to
the nano-beam scheme employed by SuperKEKB. Figure 3.3 shows a schematic of the beam
crossing; the beam pipe radius in the collision region is only 10 mm. While this is good for
vertex reconstruction, the small radius increases the background in the collision region. The
silicon strip sensors of the SVD would not be able to handle this larger background, hence
the inclusion of the inner PXD layers [30].

Figure 3.3: Nano-beam collision scheme at SuperKEKB. d ≈ σ∗x/φ, where σ∗x is the horizontal
beam size at the interaction point (IP), and φ is half the crossing angle. At SuperKEKB,
σ∗x = 10.2 µm and φ = 41.5 mrad, which means d ≈ 0.25 mm [30].

3.2.2 Central drift chamber (CDC)

The central drift chamber (CDC) is the most important detector for charged particle tracking.
It also plays a crucial role in particle identification (PID), especially for low-momentum

tracks. The CDC at Belle II contains 14,336 sense wires in 56 layers inside a He C2H6

50:50 gas mixture with an average 3 cm/µs drift velocity. The sense wires in each layer are
in either an axial or stereo orientation. Axial wires are aligned with the detector’s z-axis,
and thus with the solenoidal magnetic field inside the detector. In contrast, stereo wires are
skewed with respect to the detector axis (imagine holding a bunch of uncooked spaghetti in
both hands and then slightly twisting your hands in opposite directions: this is effectively
the geometry of stereo wires) [29].

As a charged particle moves through the CDC, it ionizes atoms and molecules in the
gas mixture. The ionization electrons drift toward the sense wires, since there is a voltage
difference between the sense and field wires, and this permits the detection of the original
charged particle. The charge, positive or negative, is determined by the curvature of the
track. While both axial and stereo wires give information about the particle’s r–φ position,
the measurement angle of the stereo wires allows us to extract the particle’s z position as well.
Combining this information with the drift time measurement gives the vector momentum of
the particle.

Particles of different masses will exhibit different amounts of ionization energy loss as they
travel through the CDC gas. These characteristic curves, called dE/dx (i.e., energy loss per
distance) curves, are used for PID within the CDC [30, 54]. While essentially all charged
particles will have dE/dx information (and thus PID information) from the CDC, the helical
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track shape of low-momentum particles (due to the Lorentz force from the solenoidal field)
means they may spiral in on themselves and never reach the dedicated PID system in the
TOP or ARICH. Additionally, the TOP and ARICH do not cover the backward endcap. In
these cases it is particularly critical to have high-quality PID information from the CDC.

3.2.3 Particle identification systems (TOP and ARICH)

In the barrel and forward endcap regions, particles that leave the CDC enter either the
TOP (barrel) or ARICH (endcap) detectors. TOP stands for time-of-propagation and is a
special type of Cherenkov detector. Figure 3.4 gives the conceptual overview of the TOP, and
Figure 3.5 describes the theory behind Cherenkov detection in general. The TOP detector’s
main purpose is to improve K/π separation, but it provides information about other charged
particles as well [30].

Figure 3.4: Schematic of the quartz radiator used in the TOP counter. Cherenkov photons
are internally reflected in the quartz radiator, and the time-of-propagation is measured [30].

Figure 3.5: Schematic of the theory behind Cherenkov radiation. When a particle’s velocity,
v, is larger than the speed of light in the medium it travels in, c/n (where n = the refractive
index of the medium), a Cherenkov cone with a characteristic angle ΘC is produced. cos ΘC =
c/(nv), so measuring ΘC determines particle velocity. [55].

In the forward endcap, the aerogel ring-imaging Cherenkov detector (ARICH) provides
particle identification (PID) information. Figure 3.6 shows a schematic of the ARICH. As
the name implies, the ARICH uses an aerogel radiator, while the TOP uses a quartz radiator
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[30]. The ARICH is also a more traditional Cherenkov detector, using ring-imaging of the
Cherenkov cone to identify particles where the TOP is a time-of-propagation device (though
the time-of-propagation is related to the Cherenkov angle).

Figure 3.6: Principle behind the ARICH detector. As in the TOP, Cherenkov radiation is
used, but rather than measuring the time-of-propagation, the ARICH images the ring of
Cherenkov photons produced on the photon detector [30].

The reason for the different PID systems in different regions of the detector largely results
from geometric constraints. Additionally, there is no PID system in the backward endcap.
Due to the asymmetric beam energies, decays in Belle II are forward-boosted, and thus
we expect the absence of a dedicated PID system in the backward endcap to have a small
effect on the detector’s capabilities. Overall, only about 10% of the CDC angular coverage
is outside the TOP and ARICH coverage.

3.2.4 Electromagnetic calorimeter (ECL)

The electromagnetic calorimeter (ECL) is located outside the CDC and PID systems (see
Figure 3.2) and covers all three detector regions (forward endcap, backward endcap, and
barrel). The ECL contains 8,736 thallium-doped CsI crystals covering 90% of the solid angle
in the CM system [29]. The main purpose of this detector is two-fold: 1) identify neutral
decay products, in particular γ and π0 particles, and 2) separate photons from electrons
and hadrons. To accomplish this, in the ECL we look for localized large energy depositions
called clusters or showers. Photons, electrons, and hadrons produce ECL showers with
different characteristics, enabling separation between them. The ECL must also provide
precise measurements of photon energy and angular position [30].

As in the VXD, the large (compared to Belle) detector backgrounds impact the ECL
hardware and geometry. The CsI(Tl) crystals, which have been reused from Belle, exhibit
scintillations with relatively long decay times, which increases the noise from background
events. The detector electronics are equipped to handle this in the short term, but long-
term, increased noise will degrade detector performance. Possible upgrades to address this,
including replacing the CsI(Tl) crystals with pure CsI, are under consideration [29].
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3.2.5 K0
L

and muon detector (KLM)

The K0
L and muon detector (KLM) is the outermost subdetector in Belle II . The KLM

covers all three detector regions and consists of 4.7 cm-thick iron plates alternating with
glass electrode resistive plate chambers (RPCs).

An in-depth description of the KLM is beyond the scope of this document, since none of
the particles relevant to this analysis are expected to reach it. The KLM is well-described
elsewhere [30].

3.2.6 Other detector components

Besides the main subdetectors detailed above, there are several other components of the
Belle II detector critical to its operation. Two important ones are the trigger system and
the data acquisition system (DAQ).

The trigger system has two levels: the hardware-based low-level trigger (L1) and the
software-based high-level trigger (HLT). The function of both triggers is to filter out beam
background and retain only events of interest as well as to prescale common interactions
like Bhabha scattering [29]. Filtering out hadronic events (events where a meson or baryon
is produced) is relatively easy, as they “look” quite different to the detector compared to
noise, beam backgrounds, and other events that are not of interest. This function couples
into the DAQ, which would be overwhelmed by high rates without the trigger filtering out
these events.

The DAQ is responsible for reading data from all Belle II subdetectors. It is designed
to handle a 10 kHz maximum event rate from the HLT (reduced for offline storage from a
30 kHz trigger rate out of the L1), the value expected at peak luminosity [29, 53].

All of the hardware in the Belle II detector, including all of the front-end electronics
in the DAQ, must be able to operate in a strong magnetic field, averaging around 1.5 T
throughout the detector [30]. (For reference, the Earth’s magnetic field is ∼50 µT.) This
places some limitations on detector components and requires careful monitoring.

3.3 Sources of detector-induced asymmetries

Since the goal of the analysis described in this thesis is to measure an asymmetry due to CPV,
the analysis method must account for asymmetries from other sources, so-called “nuisance
asymmetries.” It is worth discussing how the detector itself contributes to such nuisance
asymmetries.

There are three nuisance asymmetries that we account for in our analysis (see chapter 5 for
detailed discussions on each): the forward-backward production asymmetry, the slow pion
reconstruction asymmetry, and the internal D0 asymmetry. The production asymmetry
comes from γ–Z0 interference and higher order QED effects, but the other two nuisance
asymmetries come from detector effects that lead to different reconstruction efficiencies for
positive and negative tracks. There are two specific sources of detector asymmetries that
contribute to this: the CP asymmetry of the detector material and the different behavior of
positive and negative particles in the axial ~B field.
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The CP asymmetry of the detector simply means the detector is made of matter,
not equal parts matter and antimatter. Therefore, the detector is unavoidably not CP -
symmetric. This means that the detector response is sensitive to differences in the cross
sections of XN vs. XN , where X and X are a particle-antiparticle pair, either of which
may be produced by a decay at Belle II , and N = p, n, i.e., a nucleon in the detector. The
differences in these cross sections are more prominent for kaons (X = K), which our analysis
does not have in the signal mode, but they are still present for pions (X = π) as well. The
overall effect is a difference in reconstruction efficiency for the two charges of pion.

The presence of an axial ~B field in the detector is a feature of the CDC that allows for
charged-particle momentum measurements, but it must be noted that positive and negative
particles do not behave the same way in this field: positively charged particles curl in one
direction, and negatively charged particles curl in the opposite direction. However, particles
of both charge types result in ionization electrons, which of course are always negative and
always curl in the same direction. In effect, the axial ~B field breaks the symmetry of the
drift cells in the r–φ projection. Like the CP asymmetry of the detector, this also leads to
a difference in reconstruction efficiency for the two charges of pion. Calibration can remove
much of this effect, but residual asymmetries lead to PID efficiency differences.

3.4 Summary

Overall, the components of Belle II come together to form a state-of-the-art detector. The
analysis described in this document relies on the excellent performance of almost all Belle II
subdetectors. The analysis methodology also takes into careful consideration the nuisance
asymmetries caused by the detector itself, which must be accounted for in order to isolate
CPV.
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Chapter 4

Dataset and Event Selection

This chapter describes the Belle II dataset (section 4.1) and the selection criteria applied to
it (section 4.2) for the Dalitz analysis described in this thesis. The event selection efficiency
as a function of location in the Dalitz plot is also examined (section 4.3).

4.1 Dataset

We use 362 fb−1 of Belle II data collected at the Υ(4S) resonance for the analysis described
in this thesis. The data was collected from 2019–2022, before the experiment entered its
first long shutdown. Based on the way that data is processed at Belle II , the dataset is
divided into two subsets: 187 fb−1 of data collected from March 2019–July 2021 (subset
I) and 175 fb−1 of data collected from October 2021–June 2022 (subset II). Subset I is a
reprocessing of older data with an updated software release (see section 4.2) and updated
calibration constants. Subset II is a “prompt” processing of more recent data, performed
with the same software release as subset I. Historically, prompt processings used preliminary
calibrations that needed to be updated in later reprocessings; the difference between the
prompt processing and the reprocessing of older data is very minor with current calibrations.
Thus, beyond possible deterioration due to detector aging, the difference in quality between
the two subsets is expected to be negligible, but this is checked explicitly and discussed
further in chapter 8. Some plots in this chapter were made using only subset I; figures are
clearly labeled to indicate when this is the case.

To study background events and to test the analysis procedure, we use simulated Monte-
Carlo data (MC). Unless otherwise stated, the MC used here is 400 fb−1 of MC generated
with the same background and detector conditions as the most recent processing of the data.

An advantage of examining MC is that we can separate correctly reconstructed signal
events from background as well as identify the sources of background contamination. This is
referred to as “truth-matching” or “truth-tagging.” Several plots in this chapter use truth-
matching. Plots of MC are clearly labeled to indicate if they show all reconstructed MC
events or if truth-tagging has been used to isolate signal or background.

Figures included in this document are clearly labeled to indicate whether they show data
or MC. All plots should be assumed to show the sum of D0 and D0 events, unless it is
explicitly stated that a plot is “charge-separated.”
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4.2 Event Selection

We use the Belle II Analysis Software Framework (basf2) [56] to process data and MC
samples. Unless otherwise stated, the basf2 version light-2205-abys is used for MC,
and version light-2210-devonrex is used for data. (Each release was the most up-to-date
version of the software at the time each analysis was performed; the practicle differences for
our purposes are minimal.) The CERN data analysis tool ROOT v6.24/06 is used to analyze
the final selected events.

In order to reduce background while retaining events of interest, certain requirements are
imposed on the particles in the decay chain. Additionally, two vertex fits and a best candidate
selection procedure are performed. In the case of the real data, performance corrections are
included on the charged track momenta and photon energies.1 Table 4.1 shows the full list
of selection criteria for D∗+ → D0 (π+π−π0) π+

s in both data and MC, and the following
subsections explain these cuts in more detail. The goal of the selection criteria is to improve
the signal-to-background ratio (equivalent to the purity) of the final selected events and to
optimize the signal significance, defined as s/

√
s+ b, where s = number of signal events and

b = number of background events. Some basic optimization was done on key variables before
the criteria listed in Table 4.1 were finalized.

4.2.1 Photon and π0 reconstruction requirements

The π0 in the final state is reconstructed from the decay π0 → γγ, using ECL clusters to
identify the photons. The branching fraction for π0→ γγ is 98.8% [33], so there is a small loss
in efficiency at this stage. As noted in subsection 3.2.4, the ECL is subject to large detector
backgrounds (e.g., fake photons from beam background radiation), so the cuts made here
are to separate photons of interest from beam background photons as well as to distinguish
photons from leptons and hadrons.

To remove beam background photons and detached hadronic shower fragments, we re-
quire the photon energy to be above 100 MeV. Most beam background photons and shower
fragments are low-energy compared to the signal, so this loose cut removes much of the
background without severely impacting the signal efficiency.

To distinguish photons from leptons and hadrons, we use several key variables. First,
the cluster in question must be inside the CDC acceptance region. This region is slightly
narrower than the ECL,2 but this restriction allows us to determine whether the ECL cluster
has a corresponding track in the CDC, in which case the cluster is due at least in part to
a charged particle. Second, we look at the ratio of energies deposited in inner versus outer
crystals of the ECL cluster via the variables clusterE1E9 and clusterE9E21. Figure 4.1
shows a schematic of how these quantities are determined. If the crystal numbered 1 in this

1When data is processed at Belle II , care is taken to ensure particle information is calibrated correctly.
However, some small biases may still occur. These biases are determined after the processing is complete,
and the instructions for how to correct them are made available to analysts. These corrections to particle
information applied after the central data processing are called “performance corrections.”

2In terms of the cosine of the polar angle θ in the lab frame, the CDC acceptance region is −0.866 <
cos θ < 0.956. The ECL acceptance region is −0.907 < cos θ < −0.652 (backward endcap) plus −0.625 <
cos θ < 0.846 (barrel) plus 0.854 < cos θ < 0.977 (forward endcap).
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Particle Selection criteria

γ

E > 100 MeV
created from ECL cluster
in CDC geometric acceptance region
clusterE9E21 > 0.9 and clusterE1E9 > 0.3

π0 105 MeV/c2 < m(γγ) < 150 MeV/c2

π+
s

dr < 0.5 cm and |dz| < 2.0 cm
in CDC geometric acceptance region

π+, π−
dr < 0.5 cm and |dz| < 2.0 cm
in CDC geometric acceptance region
binaryPID(π,K) > 0.4

D0 1.7 GeV/c2 < M(π+π−π0) < 2.1 GeV/c2

flightSig > 0 (applied after D∗+ vertex fits)

D∗+
∆M < 0.160 GeV/c2

p∗ > 2.5 GeV/c

Vertex
fitting

Perform two fits with TreeFitter on full decay chain:
1) ipConstraint and massConstraint on π0, require chiProb1 > 0.001
2) ipConstraint and massConstraint on π0 and D0, require fit not to
fail but no other restrictions on chiProb2

Other
m(π+π−) < 485.0 MeV/c2 or m(π+π−) > 502.5 MeV/c2 (K0

S veto)
BestCandidateSelection, rank on χ2-probability of second vertex fit
Tracking and photon energy corrections applied to data only

Table 4.1: Finalized cuts for D∗+ → D0 (π+π−π0) π+
s in both data and MC. Variable names

are defined in-text.

figure is the center of an ECL cluster (i.e., the crystal where the most energy was deposited),
then clusterE1E9 = E1/E9, where E1 = the energy deposited in crystal 1, and E9 = the
sum of the energies deposited in the crystals labeled 1–9 (i.e., the central 3 × 3 region).
Similarly, clusterE9E21 = E9/E21, where E21 = the sum of the energies deposited in
the crystals labeled 1–21 (i.e., all of the crystals in the schematic except for the outermost
corners). Both clusterE1E9 and clusterE9E21 are always between 0 and 1. Most of the
energy from a photon shower is deposited in the central crystals, which means both of these
variables tend toward higher values for photons compared to hadrons. (Lepton showers also
tend toward higher values for these variables, but as discussed above, we have other ways to
distinguish between photons and leptons.)

Finally, a cut on the π0 mass window requiring the invariant pair mass of the two photons,
m(γγ), to be between 105 MeV/c2 and 150 MeV/c2 serves to remove incorrectly paired photons
that did not come from a parent π0. Figure 4.2 shows a plot of m(γγ). The resolution on
the mass of the true π0s is very wide, with an asymmetric low-side tail due to energy leakage
out the back of the ECL crystals. This is why the cut on the mass is asymmetric about the
π0 mass peak, which is nominally (134.9768 ± 0.0005) MeV/c2 [33]. The resolution on the
reconstructed mass of the decaying particles, D0 and D∗+, is improved by the vertex fits
discussed in subsection 4.2.4, which both include a mass constraint on the π0.
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Figure 4.1: A top-down view of the ECL where each square represents a CsI(Th) crystal and
the crystal numbered 1 is the center of an ECL cluster.

Figure 4.2: Invariant mass of the two photons used to reconstruct π0 candidates in MC.
The solid black line represents all candidates, while the dashed red line represents true (i.e.,
correctly reconstructed) π0s and the dashed blue line represents background.

4.2.2 Charged pion reconstruction requirements

There are three charged pions in the final state for this decay: two from the Dalitz decay of
the D0 and one from D∗+ → D0 π+

s , which is used to tag the flavor of the D0 (D0). The
tagging pion is called the “slow pion” (or sometimes “soft pion”) and usually labeled π+

s to
distinguish it from the charged D0 decay products, which we will collectively refer to here
as “fast pions.” As the moniker implies, the momentum of the slow pion tends to be lower
than that of the fast pions. Figure 4.3 shows the spectra of the three charged pions in signal
D∗+ decays in MC. The slow pion spectrum tapers off below 0.6 GeV/c, while the fast pion
spectra have long tails that extend to almost 5 GeV/c.

The quality cuts on the slow pion differentiate the pion track from detector noise by
ensuring it originated from the interaction point (IP) and was reconstructed correctly. The IP
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a) b) c)

Figure 4.3: Charged pion spectra for signal events in MC. Note the different scale for images
a) and b) (fast pions) as compared to c) (slow pion).

parameters, dr and dz, are the distances in the x-y plane and along the z-axis (respectively)
from the particle’s point of closest approach (POCA) to the IP (see Figure 3.2 for orientation
of axes). We require dr < 0.5 cm and |dz| < 2.0 cm. These are fairly loose cuts, so they do
not have a large effect on signal efficiency, but they do remove background tracks that could
not physically have been part of the D∗+ decay. We also require that the slow pion track be
within the CDC acceptance region. This is another loose cut that ensures we remove tracks
with a misreconstructed polar angle.

For the fast pions, the same IP cuts and CDC acceptance requirement used for the slow
pion are included, but there is an additional cut to remove background from D0 → K−X
transitions. As discussed in chapter 1, final states containing K− mesons are Cabibbo-
favored for D0 meson decays and consequently occur about an order of magnitude more
often than final states containing only pions, so we need to remove decays in which a kaon
has been misreconstructed as a pion. To achieve this, we use a particle ID (PID) variable
that compares the likelihood that the particle is a pion to the likelihood that the particle is
a kaon. Many different PID variables are available to identify any of six different charged
particle types (electron, muon, pion, kaon, proton, or deuteron). The variable we use is
explicitly defined as:

binaryPID(π,K) =
Lπ

Lπ + LK
(4.1)

where LX indicates the likelihood of a particle being of type X. The likelihood has been
calculated using information from all Belle II subdetectors except the SVD and PXD.3

binaryPID(π,K) ranges from 0 to 1 (as do all other PID variables), with particles that are
more likely to be pions tending toward higher values. The cut we use is binaryPID(π,K) >
0.4; this cut is relatively loose, but it removes much of the kaon background, which peaks
near 0. Since the ultimate goal of this analysis is to measure an asymmetry, we need to avoid

3The PXD does not provide PID information and is excluded from PID variabels by default. At the
time the analysis in this thesis was being completed, there was a bug in the basf2 tracking software that
meant SVD likelihoods were not computed for low-momentum particles in data. For consistency between
data and MC, and to avoid having to make momentum-dependent PID cuts, we did not use SVD likelihoods
in calculating PID.
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charge asymmetries introduced by PID, which typically become more of an issue as the PID
cut is tightened. Since both the D0 and D0 decays contain a π+ and a π−, näıvely one might
think any charge asymmetry in PID would cancel out. However, since the spectra of the
pions are not identical (compare the left and center plots in Figure 4.3), PID asymmetries
and detector asymmetries caused by the different spectra might couple together. The safest
way to avoid these issues is to use a loose PID cut to reduce charge asymmetries.

There are three variables – nCDCHits, pValue, and globalPID – that are used for standard
track quality and PID cuts in many other Belle II analyses but that we do not include here.
nCDCHits is the number of wires in the CDC with a signal (“hit”) from the particle track.
pValue is the χ2-probability from the track fit. globalPID for our purposes is defined as:

globalPID(π) =
Lπ

Lπ + LK + Le + Lµ + Lp + Ld
(4.2)

so that we are effectively comparing the pion likelihood to all other particle likelihoods, not
just the kaon likelihood. While finalizing the cuts for this analysis, we discovered that cuts
on these three variables in particular introduce a large efficiency discrepancy between MC
and data.

To some degree, a discrepancy between data and MC is acceptable for this analysis. Other
than some systematic uncertainty calculations (see chapter 8), we are not using MC in cal-
culations of asymmetries. However, we would like to use the MC to check the reasonableness
of certain cuts and to test the analysis procedure. If there is a large discrepancy between
data and MC, then we cannot be certain that conclusions drawn from the MC are valid.
Since omitting these cuts does not significantly degrade the purity or signal significance, we
do not include them.

4.2.3 D0 and D∗+ reconstruction requirements

After the final state particle lists have been created, we make loose cuts on the D0 and D∗+

particles to remove candidates made from tracks and π0s that, while they may be real pions,
are unlikely to have come from the decay of interest as well as to reduce the combinatorial
background.

Firstly, we make a loose cut on the mass of the D0 candidate, requiring that the invariant
mass of the three pions, M(π+π−π0), be between 1.7 GeV/c2 and 2.1 GeV/c2. This cut will
be substantially tightened when we define the signal region, but we leave it loose at this
stage so that we can examine sideband regions if needed and to avoid biasing the vertex fits
(see subsection 4.2.4).

Next, we make another loose cut on the variable ∆M = M(D∗+)−M(D0), or in terms
of the final state particles, ∆M = M(π+π−π0π+

s )−M(π+π−π0). This is sometimes referred
to as the “D∗ trick.” Since the D∗+ is reconstructed from the same three particles used to
reconstruct the D0 plus one extra pion, the resolution on the difference between M(D∗+)
and M(D0) is much narrower than the resolution on either of these masses individually.
We cut on ∆M < 160 MeV/c2 at this stage, again to preserve sidebands and to reduce bias
from vertex fitting. The nominal value for ∆M is (145.4258± 0.0017) MeV/c2, and there is a
physical lower bound at the rest mass of the slow pion, which is (139.57039±0.00018) MeV/c2,
so we do not include a lower bound explicitly in the cut [33].
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Finally, the last cut we make before performing the vertex fits is on the center-of-mass
(CM) momentum of the D∗+, p∗(D∗+), where the asterisk on the variable indicates it is mea-
sured in the CM frame. We cut at p∗(D∗+) > 2.5 GeV/c to remove the high combinatorial
background that occurs at lower momenta. This also has the effect of removing D∗+ candi-
dates coming from BB decays, since B mesons are produced at threshold at SuperKEKB.
In principle, we would be happy to include signal decays from BB, but they are not worth
the high rate of combinatorics that would unavoidably be included with them.

There is one additional cut made on the D0 candidate after the vertex fitting has been
performed. To remove background from other qq processes (ss, uu, and dd fragmentation),
we make a cut on the flight significance (flightSig) of the D0 candidate. The flight signif-
icance is defined as the flight distance divided by the error on the flight distance:

flightSig =
flightDist

flightDistErr
. (4.3)

Since the D0 has a finite lifetime and flies a significant distance from the IP before it decays,
flightSig must be positive (except for resolution smearing) for true D0 mesons. The ss,
uu, and dd processes do not exhibit this behavior, so their flightSig values are mostly
symmetric about 0. Thus, the cut we include is flightSig > 0, which removes about half of
the other qq background but has only a small effect on signal efficiency. It is worth noting,
however, that this cut does not remove much cc background, since this background can
also have a finite lifetime. We rely on other cuts (such as the particle ID cut discussed in
subsection 4.2.2) to reduce cc background.

4.2.4 Vertex fitting

We perform two vertex fits on the full D∗+ decay chain using TreeFitter. TreeFitter is a
global fitting tool actively being worked on by members of Belle II [57, 58]. Its primary
advantage, and what differentiates it from other fitters such as KFit, is that it fits an entire
decay chain at once, eliminating the need to perform a separate fit for every intermediate
particle. Based on the fit results, the fitter updates the kinematic variables of all decay
products. Because intermediate particles are reconstructed from the four-vectors of their
decay products, this also updates the invariant mass of the intermediate particles.

The first vertex fit requires the D∗+ to originate at the IP, and it constrains the mass
of the π0 candidate to its nominal mass. The fit quality is determined by its χ2-probability
(chiProb1), and so we also require chiProb1 > 0.001 to remove events inconsistent with the
decay topology. The results of this vertex fit are used to define the signal region (via cuts
on M(π+π−π0) and ∆M) and to perform yield fits (on ∆M).

The second vertex fit requires the D∗+ to originate at the IP, and it constrains the mass
of both the π0 candidate and the D0 candidate to their nominal masses. The fit is required
not to fail (i.e., chiProb2 ≥ 0), but no other cuts are made on fit quality. Because this
fit mass-constrains the D0, even a very loose cut on fit quality can have a large effect on
signal efficiency. The results of this vertex fit are used to calculate the variables that define
the Dalitz plot regions in the binned analysis because mass-constraining the D0 candidate
enforces the physical boundary of the Dalitz plot.
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4.2.5 K0
S

veto

The decay we are interested in for this analysis is the Dalitz decay D0 → π+π−π0. How-
ever, there is another way for the parent D0 to proceed to the same final state: through the
channel D0 → K0

Sπ
0, K0

S → π+π−, which is an entirely different decay process and not part
of the Dalitz decay we are interested in. Since the K0

S also has a finite lifetime, much of
this background is removed by the vertex fitting (and, to a lesser extent, the track IP cuts),
but a small amount remains and contaminates the Dalitz plot. To remove this residual K0

S

background, we apply a K0
S veto in the form of a narrow cut on the π+π− invariant mass,

m(π+π−), after both vertex fits. Figure 4.4 shows a plot of the π+π− mass for this K0
S back-

ground in MC. The cut we apply is m(π+π−) < 485.0 MeV/c2 or m(π+π−) > 502.5 MeV/c2,
which removes most of the K0

S peak. The few remaining events are fractionally O(10−4)
of all retained events and are negligible compared to the signal. The cut region is asym-
metric about the nominal K0

S mass (497.611 ± 0.013 MeV/c2 [33]) because the peak itself is
asymmetric.

Figure 4.4: K0
S → π+π− background, identified using truth-matching in MC. The dashed

vertical lines are the boundaries of the region removed with our K0
S veto. This plot was

made with 200 fb−1 of MC analyzed with basf2 version light-2203-zeus. All of the cuts
are identical to those described in Table 4.1 except the K0

S veto is not yet included.

4.2.6 Best candidate selection

Even after all of the quality cuts and the fitting procedure described in the previous subsec-
tions, we are left with many events that contain multiple candidates of a given charge (D∗+

or D∗−). Figure 4.5 illustrates the fraction of events this occurs for in MC, and Figure 4.6
shows the same in data. The relatively high fraction of multiple candidates is due to the
combinatorics of the final state particles: if, for example, multiple π0s are present in an
event, it is possible that several of them passed our quality cuts and all of them could be
consistent with a D0 → π+π−π0 decay. Only one of them (at most) is, though, and so we
need a way to pick the candidate most likely to contain the correct π0. The same issue could
arise for multiple charged pions in an event as well.
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a) b)

Figure 4.5: The percentage of events that contain a particular number of a) D∗+ and b)
D∗− candidates in MC. Notably, 82.9% (82.9%) of events that have at least one D∗+ (D∗−)
candidate contain only one D∗+ (D∗−) candidate.

a) b)

Figure 4.6: The percentage of events that contain a particular number of a) D∗+ and b)
D∗− candidates in data. Notably, 81.8% (81.9%) of events that have at least one D∗+ (D∗−)
candidate contain only one D∗+ (D∗−) candidate. This is similar to what we see in MC; it
is not unexpected for the percentage of single-candidate events to be slightly lower. These
plots were made with a 187 fb−1 subset of the full dataset.

The most effective way to pick the correct candidate is to rank all the candidates of a
particular charge (i.e., treat D∗+ and D∗− candidates separately, since one candidate of each
charge per event is possible) in a single event on the χ2-probability of the second vertex fit
described in subsection 4.2.4 (chiProb2). This is the fit that constrains the D0 mass to its
nominal value. Table 4.2 shows the relative efficiency of ranking on chiProb1 vs. chiProb2
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for each charge and for different numbers of multiple candidates in MC. Figures 4.5 and
4.6 show MC and data behave similarly in terms of multiple candidates, so we expect the
relative efficiencies to be similar, perhaps a bit lower, in data. Relative efficiency is calculated
using truth-matching in MC, dividing the number of signal candidates that are rank 1 in a
particular ranking by the total number of signal candidates being ranked. For example, there
are 28,249 true D∗+ signal candidates in events with exactly 2 D∗+ candidates. Ranking
the candidates with chiProb1, 18,393 signal candidates are retained (i.e., are rank 1), for
an efficiency of 65.1%. Using chiProb2 instead, 25,026 signal candidates are retained, for
an efficiency of 88.6%. For both charges and for all numbers of candidates (note the case of
only 1 candidate per event is trivial), chiProb2 is the more effective ranking variable.

Using chiProb2, from the vertex fit that mass-constrains the D0, in order to pick the best
candidate has the downside of biasing the background toward the D0 mass peak. However, it
does not have the same impact on the ∆M peak, which is what we use for performing yield
fits. Additionally, as shown in Table 4.2, it is much better at correctly identifying the signal
candidate as compared to ranking on chiProb1, so we accept this bias in the M(π+π−π0)
background as a trade-off for keeping the signal efficiency as high as possible.

Relative efficiency for BCS Method:
Particle Number of candidates Rank on chiProb1 Rank on chiProb2

D∗+

1 100% 100%
2 65.1% 88.6%
3 51.2% 84.2%
> 3 30.4% 58.3%

D∗−

1 100% 100%
2 65.4% 88.4%
3 50.8% 83.8%
> 3 29.1% 57.7%

Table 4.2: Relative efficiency of ranking on chiProb1 and chiProb2 given charge and number
of candidates in MC.

4.2.7 Defining the signal region

Figure 4.7 shows plots of the M(π+π−π0) and ∆M distributions in MC for the remaining
events once all the cuts described in the preceding sections are applied. Truth-matched signal
and background distributions are plotted separately. The plots are “signal-enhanced,” which
means that each distribution is cut on the signal region of the other. The two signal regions
are: 1.83 GeV/c2 < M(π+π−π0) < 1.89 GeV/c2 and 144.5 MeV/c2 < ∆M < 146.2 MeV/c2.
The two cuts together define the overall signal region used when making Dalitz plots or plots
of other relevant variables. Note that quantitatively, only the M(π+π−π0) signal region cut
is particularly relevant; the asymmetry measurement performed in this analysis relies on a
fit to the ∆M distribution, so we never explicitly cut on the ∆M variable when performing
these calculations. The ∆M signal region is relevant only in that it helps to isolate signal
decays and estimate signal efficiency when examining other distributions.
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Figure 4.7: Signal-enhanced M(π+π−π0) and ∆M plots of candidates in MC retained after
all selection criteria are applied. “Signal-enhanced” means each distribution is cut on the
signal region of the other. The dotted vertical lines indicate the signal regions.

4.2.8 MC vs. data

Figure 4.8 shows the M(π+π−π0) and ∆M distributions in data overlaid with the distri-
butions in MC. The contributions coming from different types of MC (i.e., cc processes vs.
other types of background) are plotted separately. A discrepancy between the height of the
signal peak in data and MC is visible in both plots, although the background is in very good
agreement. Most of what we want to understand from MC is the behavior of the background,
so this level of discrepancy is acceptable. More importantly, this discrepancy is observed by
many different analyses of charm hadrons at Belle II , and we believe it is a feature of Belle II
MC in general (probably because the fraction of c quarks forming D∗ mesons is incorrect)
and not an artifact introduced by this specific analysis.

4.3 Dalitz plots

We apply all of the selection criteria described in the previous subsections in order to isolate
signal events to use in our binned Dalitz analysis. Using truth-matched MC events, the
signal efficiency of the selection criteria is (5.712± 0.010)% in the signal region. The purity
in the signal region is 74%, and the signal significance, s/

√
s+ b, is 475. Note that although

efficiency and purity are independent of the size of the dataset, the significance is not.

Figure 4.9 (Figure 4.10) shows the Dalitz plot of events in the signal region in MC (data).
The three ρ bands that dominate the phase space of the decay, including the interference
between them, are clearly visible. To emphasize that the three ρ bands are not all equally
populated, contour plots are shown in addition to scatterplots. Both D0 and D0 events
are included in both plots; for D0, the plot is filled as indicated by the axis labels. For
D0, m(π+π0)2 and m(π−π0)2 are interchanged and then the plot is filled (i.e., the axes are
charge-conjugated for the D0 events).
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Figure 4.8: Signal-enhanced M(π+π−π0) and ∆M plots of candidates in MC and data.(See
Figure 4.7 for a description of “signal-enhanced” and the signal region).

Comparing the contour plots, there is a resonance in the MC that is not nearly as promi-
nent in the real data. This is attributed to the f2(1270)→ π+π− resonance having too large
an amplitude in the software that generates the MC. This too-large amplitude is reported
in the paper the MC parameters are taken from, but it is consistently not observed in data
[36]. Figure 4.11 shows a comparison of the three Dalitz projections for MC and data; while
the overall shapes are similar, there is some discrepancy coming from the incorrectly en-
hanced f2(1270). Since we only use MC for background studies and to determine systematic
uncertainties, this discrepancy should not be problematic for this analysis.

4.3.1 Dalitz plot efficiency

We have shown that the cuts described in the previous section result in a clear signal peak
with an overall signal efficiency of (5.712 ± 0.010)%. However, since we are performing a
binned Dalitz analysis, it is not only the overall signal efficiency that is relevant: we are also
interested in the signal efficiency as a function of position in the Dalitz plot. Figure 4.12
shows contour plots of the signal efficiency in a 10× 10 grid across the Dalitz plot for both
D0 and D0 candidates. In both plots, the efficiency is largely consistent across the plot
except at low m(π−π0)2 and low m(π+π0)2 (the lower left corner of the plot), where there
is a noticeable decrease. Table 4.3 gives the actual signal efficiency for the D0 and D0

candidates combined. (At this level of quantitative detail, separating the charges in MC is
unlikely to map to what we expect to see in data.) The lower-left corner of the Dalitz plot,
where a noticeable drop in efficiency occurs, corresponds to low-momentum π0 events. As
described in subsection 4.2.1, our photon energy cuts remove low-energy photons and hence
many low-momentum π0s, so we expect to see a drop in efficiency in this region.

This thesis does not efficiency-correct the Dalitz plot before calculating asymmetries.
In principle, one should do this to ensure differences in efficiency are not obscuring real
asymmetries. Future work will look into the best way to accomplish this.
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a) b)

Figure 4.9: Dalitz a) scatterplot and b) contour plot of events in the signal region in MC.
The axis labels are for the D0 decay, but D0 events are included as well (with the charge-
conjugate axes). The total number of events in the plot (D0 +D0) is N = 410,978.

a) b)

Figure 4.10: Dalitz a) scatterplot and b) contour plot of events in the signal region in
data. The axis labels are for the D0 decay, but D0 events are included as well (with the
charge-conjugate axes). The total number of events in the plot (D0 +D0) is N = 313,264.
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Figure 4.11: Comparison of projections onto the three Dalitz axes in MC and data. The
MC has been scaled to the data luminosity and to account for the signal peak discrepancy
observed in Figure 4.8

a) b)

Figure 4.12: Plot of efficiency as a function of Dalitz region in MC for a) D0 decays and b)
D0 decays. Truth-matched signal MC is used to calculate efficiency.

29



m
(π

+
π

0
)2

[G
eV
/c

2
]2

6.632±
0.094

5.521±
0.093

6.08±
0.16

6.565±
0.081

6.241±
0.060

5.790±
0.058

5.93±
0.28

6.42±
0.20

6.422±
0.066

6.251±
0.092

6.15±
0.14

6.88±
0.70

6.72±
0.12

6.55±
0.12

6.47±
0.16

6.34±
0.18

7.26±
0.53

5.46±
0.90

6.26±
0.12

5.98±
0.23

6.34±
0.23

6.89±
0.23

6.10±
0.28

6.27±
0.23

6.89±
0.48

5.33±
0.23

5.85±
0.19

6.28±
0.20

6.70±
0.19

6.56±
0.21

6.93±
0.16

6.26±
0.13

6.56±
0.33

5.166±
0.093

6.011±
0.077

6.48±
0.17

6.68±
0.13

6.87±
0.18

6.46±
0.20

6.63±
0.10

5.896±
0.082

6.61±
0.21

4.275±
0.038

5.070±
0.038

5.87±
0.11

6.240±
0.099

6.67±
0.15

6.33±
0.16

6.52±
0.11

6.260±
0.062

5.787±
0.041

5.92±
0.11

3.377±
0.044

4.296±
0.051

5.186±
0.043

5.918±
0.070

6.18±
0.14

5.80±
0.17

6.446±
0.080

6.481±
0.051

6.242±
0.046

5.482±
0.056

3.315±
0.073

4.271±
0.047

4.999±
0.080

5.62±
0.11

6.29±
0.10

6.477±
0.085

6.614±
0.087

6.597±
0.058

6.517±
0.086

m(π−π0)2 [ GeV/c2]2

Table 4.3: Reconstruction efficiency (given in %) in a 10× 10 (0.3[ GeV/c2]2 × 0.3[ GeV/c2]2)
binned Dalitz plot in MC. The efficiencies’ positions in this table map to the Dalitz plot
regions in Figure 4.12. While Figure 4.12 separates D0 and D0 Dalitz plots to emphasize
that the two plots are similar, this table gives the reconstruction efficiency for the combined
plot. The axis labels are for the D0 decay, but D0 events are included as well (with the
charge-conjugate axes).
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Chapter 5

Analysis Procedure

This chapter describes our novel binned analysis method used to analyze the dataset from
chapter 4. In section 5.1, we define the different asymmetries, and in section 5.2, we describe
the relevant considerations to ensure cancellation of all nuisance asymmetries in our search
for CPV. We provide a summary in section 5.3.

5.1 Definitions

We investigate CPV by measuring an asymmetry in the number of D0 vs. D0 candidates
in bins of the Dalitz plot. However, sources other than CPV may contribute to such an
asymmetry. This chapter discusses several different sources of asymmetries, one of which may
be true CPV and the rest of which are nuisance asymmetries. Our methodology is based on
cancelling the nuisance asymmetries using the data itself rather than relying on simulations.
Table 5.1 provides a comprehensive list of the asymmetries discussed in this chapter and
their definitions. Asymmetries without a superscript i for the bin index are treated as
constant across the Dalitz plot modulo some systematic uncertainty. The asymmetry we
will ultimately measure is the local CP asymmetry in each bin, AiCP ,loc.

The asymmetries are related as follows:

A∗ibin = Aibin −AiD0 = AiCP +AFB +Aπs (5.1)

Aavg =

∑
i (n

iA∗ibin)∑
i n

i
, ni = number of signal events in bin i (5.2)

AiCP ,loc = A∗ibin −Aavg (5.3)

Note that ni includes both D0 and D0 signal events. More detail is provided in section 5.2
as to how A∗ibin is measured and how AiCP ,loc is calculated.

Equation 5.3 gives the actual CP asymmetry in each bin relative to the Dalitz aver-
age, which can be demonstrated by some simple algebra. Substituting Equation 5.1 and
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Equation 5.2 into Equation 5.3, we have:

AiCP ,loc = AiCP +AFB +Aπs −
∑

i (n
i(AiCP +AFB +Aπs))∑

i n
i

= AiCP +AFB +Aπs −
∑

i (n
iAiCP )∑
i n

i
− (AFB +Aπs)

= AiCP −
∑

i (n
iAiCP )∑
i n

i

AiCP ,loc = AiCP −ACP ,avg (5.4)

AFB and Aπs cancel (modulo some systematic uncertainty) when subtracting Aavg from A∗ibin,
so AiCP ,loc is indeed the difference between the real CP asymmetry in bin i (AiCP ) and the
average CP asymmetry across the whole Dalitz plot.

Asymmetry Definition

AiCP
The asymmetry in bin i coming from real CPV in the decay. We cannot
calculate this with only the information from the binned analysis.

Aibin

The total asymmetry in bin i, consisting of real CPV, AiCP , and the sum
of three nuisance asymmetries, AFB, Aπs , and AiD0 .

AiD0

The internal D0 asymmetry in bin i coming from the fact that the Dalitz
plot is not exactly symmetric.

A∗ibin Aibin corrected for the internal D0 asymmetry (AiD0).

AFB
The forward-backward production asymmetry in the detector, treated as
bin-independent with the small bin dependence as a systematic effect.

Aπs
The slow pion reconstruction asymmetry in the detector, treated as
bin-independent with the small bin dependence as a systematic effect.

Aavg

The weighted average of A∗ibin across all bins, i.e., the average asymmetry
from all sources (except AiD0) across the whole Dalitz plot. The
weighting is done according to the number of events in each bin.

ACP ,avg

The weighted average of AiCP across all bins, i.e., the average real CPV
across the whole Dalitz plot. We cannot calculate this with only the
information from the binned analysis.

AiCP ,loc

The local CP asymmetry in bin i, i.e., the difference between AiCP and
ACP ,avg. This is what we ultimately want to measure in the binned
analysis. AiCP and ACP ,avg may be found another way (see Appendix C).

Table 5.1: Definitions of asymmetries. i is the bin index in the Dalitz plot.

5.2 Binned analysis

To search for CPV in particular regions of the Dalitz plot, we first divide the plot in Fig-
ure 4.10 into six bins, as shown in Figure 5.1. Note that bins may be disjoint. These bins
are symmetric across the diagonal line m(π+π0)2 = m(π−π0)2, henceforth referred to as

32



the “m(π±π0)2 symmetry axis”, which is the line bisecting the plot starting in the lower
left corner. The symmetry of the bins allows us to correct for the internal D0 asymmetry,
AiD0 (defined in section 5.1 and further explained in subsection 5.2.3), when calculating the
per-bin asymmetry. We perform fits to the ∆M variable in each bin (taking D0 and D0 sep-
arately) to calculate the yield for each charge and use this yield to calculate an asymmetry.
The subsections below explain this process in more detail.

Figure 5.1: Binned version of the Dalitz plot in Figure 4.10. Each different color (black, red,
green, blue, yellow, and magenta) indicates a different bin. The axis labels are for the D0

decay, but D0 events are included as well (with the charge-conjugate axes).

5.2.1 Binning choice

Figure 5.1 shows the binned Dalitz plot used in this analysis. The number and orientation
of the bins were informed by both practical and physical concerns.

The number of bins (6) is in part limited by the statistics of the plot. Since we perform fits
to determine the signal yield and asymmetry in each bin (rather than sideband-subtracting
and counting the number of signal events), the statistics per bin must be high enough to get
a reasonable fit. Further, fits to the D0 and D0 signal are performed separately and, as will
be described in subsection 5.2.3, each bin is divided in half along the m(π±π0)2 symmetry
axis, so each bin must accommodate four separate fits. If subsequent versions of this analysis
are performed on a significantly larger dataset, using more bins may be justified.

The bin orientation is informed by the structure of the Dalitz decay. As seen in Fig-
ure 4.10, the Dalitz plot is dominated by three interfering ρ resonances, each with a cos2 θ
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dependence. The bins roughly follow this structure, with three bins in the signal-dense cor-
ner regions, two bins in the depleted edge regions, and one bin in the center. The orientation
is also symmetric across the the m(π±π0)2 symmetry axis to allow us to cancel AiD0 .

It is worth addressing why we do not attempt to bin according to the strong phase.
While binning in the strong phase makes sense when searching for CPV within the SM,
we are interested in CPV from New Physics. CPV from New Physics is proportional to
sin(φ − φ′), where φ = the strong phase in the SM and φ′ = the strong phase from New
Physics. Therefore, it is not possible to optimize the binning without making assumptions
about φ′, which we know nothing about. If some expectations about New Physics (or other
inputs relevant to binning) become clearer, subsequent versions of this analysis may use a
different binning scheme.

5.2.2 Accounting for AFB and Aπs
The forward-backward production asymmetry, AFB, and the slow pion asymmetry, Aπs ,
occur at the level of the D∗+ → D0 π+

s decay and are approximately constant across the
Dalitz plot. With perfect efficiency, they would be exactly constant, since we cannot violate
causality, so asymmetries occurring at the level of the tagging decay cannot depend on
position in the D0 → π+π−π0 Dalitz plot. We do not have perfect efficiency, so some small
Dalitz bin-dependence may exist. Systematics to account for the small differences in each
bin will be discussed in chapter 8. AFB comes from γ–Z0 interference and higher order QED
effects, and Aπs comes from the different detector efficiencies for positive and negative tracks.
We do not expect these asymmetries to vary significantly across the Dalitz plot, but this can
be checked via plots of kinematic variables correlated with AFB and Aπs in each bin.
AFB is related to the center-of-mass (CM) angle of the D∗ candidate: if plots of cos θ∗D∗

(the asterisk on θ indicates the angle is measured in the CM frame) in each bin show that
this variable behaves the same way across all bins, it is reasonable to conclude that AFB

is constant across all bins and cancels out of the final asymmetry calculation, as shown in
Equation 5.4. Similarly, Aπs is related to the slow pion kinematics, specifically the momen-
tum, pπs , and angle, cos θπs . If these variables behave the same way across all Dalitz bins,
it is reasonable to conclude that Aπs is constant and cancels out of the final asymmetry
calculation, as shown in Equation 5.4. Figures 5.3 – 5.8 show these normalized kinematic
distributions. (Note that not all bins are equally populated; bins with fewer signal events
exhibit larger fluctuations in these distributions.) Specifically:

• Figure 5.3 shows the cos θ∗D∗ distribution in all MC events as well as in signal and
background separately. While it appears in the case of all events that there is some
disagreement between these distributions in the different bins, this disagreement dis-
appears when only signal events are considered. We conclude that any discrepancy
observed here is the result of varying signal-to-background ratios between the bins, as
bins 1, 3 and 5 have a much higher signal-to-background ratio than bins 0, 2, and 4,
and not due to differences in behavior within the signal.

• Figure 5.4 shows the cos θ∗D∗ distribution in data. Based on what we observed in MC
in Figure 5.3, we conclude that any discrepancy observed here is again the result of

34



varying signal-to-background ratios between the bins. Note that in data the signal-to-
background ratio is worse in general, and especially in bins 0, 2, and 4, than it is in
MC. This explains why the disagreement between the bins in Figure 5.4 is exaggerated
as compared to Figure 5.3a.

• Figure 5.5 (Figure 5.7) shows the pπs (cos θπs) distribution in all MC events as well
as in signal and background separately. While it appears in the case of all events
that there is some disagreement between these distributions in the different bins, this
disagreement disappears when only signal events are considered. We conclude that any
discrepancy observed here is the result of varying signal-to-background ratios between
the bins, as bins 1, 3 and 5 have a much higher signal-to-background ratio than bins
0, 2, and 4, and not due to differences in behavior within the signal.

• Figure 5.6 (Figure 5.8) shows the pπs (cos θπs) distribution in data. Based on what we
observed in MC in Figure 5.5 (Figure 5.7), we conclude that any discrepancy observed
here is again the result of varying signal-to-background ratios between the bins. Note
that in data the signal-to-background ratio is worse in general, and especially in bins
0, 2, and 4, than it is in MC. This explains why the disagreement between the bins in
Figure 5.6 (Figure 5.8) is exaggerated as compared to Figure 5.5a (Figure 5.7a).

Based on Figures 5.3 and 5.4, we conclude that it is reasonable to treat AFB as approximately
constant across the Dalitz plot. Similarly, based on Figures 5.5, 5.6, 5.7, and 5.8, we conclude
that it is reasonable to treat Aπs as approximately constant across the Dalitz plot. Since
global asymmetries cancel out when two particular asymmetry measurements are subtracted,
we never explicitly determine AFB or Aπs as part of this analysis. The cancellation of both
AFB and Aπs has some small systematic uncertainty, which we discuss in chapter 8.

5.2.3 Accounting for AiD0

Unlike AFB and Aπs , which are approximately constant across the Dalitz plot, AiD0 must
be accounted for separately in each bin. Even though the final state we are interested
in, π+π−π0, is self-conjugate, so both the D0 and D0 candidates contain one π+ and one
π−, the Dalitz plot and subregions of it are not self-conjugate. The Dalitz structure is
intrinsically related to the momenta of the decay products at any point on the plot, and
in an arbitrary region of the Dalitz plot, the π+ and π− particles will not have the same
momentum spectrum. Thus, when charge-conjugating, the π+ from the D0 decay has a
different momentum spectrum than the π+ from the D0 decay (and similarly for the π−).
This then couples into the detector effects which cause positive and negative particles to be
detected at different rates (the same issue that causes Aπs) and leaves us with an intrinsic
D0 asymmetry in each bin, which we call AiD0 . Note that the way in which the spectra differ
can change bin-to-bin, which is why this is not a global asymmetry but is bin-dependent.
This asymmetry can be accounted for by choosing a binning structure that is symmetric
across the m(π±π0)2 symmetry axis, which we have done (see Figure 5.1). However, this
does not completely fix the issue, as two other concerns remain. First, since we have bins
of a finite size, as opposed to infinitesimally small bins, it is possible that even within a
symmetric bin, the position of events may not be exactly symmetric across the m(π±π0)2
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symmetry axis. This becomes more of a concern as the bins get larger, but six bins is
enough to mitigate this problem considerably. Second, the number of events on one side
of the symmetry axis as compared to the other may be significantly different. This is due
to the underlying, non-self-conjugate structure of the Dalitz decay. For example, the fit
fraction (see Appendix A for a description of fit fractions) for the resonance D0 → ρ+π− (D0

→ ρ−π+) is (1.01± 0.04)%, while the fit fraction for the charge-conjugate resonance D0 →
ρ−π+ (D0 → ρ+π−) is (0.515± 0.025)% [33]. The former occurs almost twice as frequently
as the latter, so a rate difference across the Dalitz plot should be expected. This is also
clearly visible in the contour plots in Figure 4.9 and Figure 4.10.

Figure 5.2: Figure 5.1 with additional labels for the m(π±π0)2 symmetry axis and the upper
(A) and lower (B) bin regions.

We must go one step further to account for this normalization effect. In addition to
choosing bins that are symmetric across the m(π±π0)2 symmetry axis, we also split each bin
into the region above the axis (A) and the region below the axis (B), illustrated in Figure 5.2.
We calculate an asymmetry separately in region A (AiA) and region B (AiB), and then we
take an unweighted average of these asymmetries to determine A∗ibin:

A∗ibin = Aibin −AiD0 =
AiA +AiB

2
(5.5)

To demonstrate that this works (i.e., this method effectively corrects for AiD0), note that an
equivalent method would be to weight the number of events so that region A and region B
contributed the same number of events to the asymmetry calculation and then to calculate

36



A∗ibin directly. Therefore, if we plot the π+ and π− p and cos θ distributions in each bin,
with the number of events weighted so that the same number are coming from above and
below the axis, we expect the distributions to be the same. Figures 5.9 – 5.16 demonstrate
this procedure. In each plot, the number above the plot corresponds to the bin number, as
defined in Figure 5.2; the solid line is the momentum or cosine of the π+ (π−) in the D0 (D0)
decay, and the dashed line is the momentum or cosine of the π− (π+) in the D0 (D0) decay.
In weighted plots, events in region B of each bin are weighted by N i

A/N
i
B, where N i

A = the
number of events in region A of bin i and N i

B = the number of events in region B of bin i.
The specific plots are:

• Figure 5.9 (Figure 5.13) shows the unweighted pπ (cos θ∗π) distribution in truth-tagged
signal MC. Although the cosine distributions are in relatively good agreement even
without weighting, there is a noticeable difference in the π+ and π− momenta, especially
in bins 1 and 3.

• Figure 5.10 (Figure 5.14) shows the weighted pπ (cos θ∗π) distribution in truth-tagged
signal MC. The difference in the spectra that we observe in Figure 5.9 has largely
disappeared.

• Figure 5.11 (Figure 5.15) shows the weighted pπ (cos θ∗π) distribution in all MC. Even
in the presence of background, the weighting procedure brings the spectra in each bin
into much better agreement.

• Figure 5.12 (Figure 5.16) shows the weighted pπ (cos θ∗π) distribution in data. We
cannot look at the signal by itself in data, but as shown by comparing plots of signal
MC to plots of all MC, even in the presence of background, the weighting procedure
brings the spectra in each bin into much better agreement.

Based on Figures 5.9 – 5.16, we conclude that most of the disagreement between the fast pion
kinematics in a particular bin is due to the rate difference above and below the m(π±π0)2

symmetry axis and that our method of taking an unweighted average ofAiA andAiB effectively
cancels AiD0 (modulo systematic uncertainties that are discussed in chapter 8).

5.2.4 Performing yield fits

To determine AiA, AiB, and A∗ibin for each bin i, we perform a yield fit to a plot of the ∆M
variable in the M(π+π−π0) signal region. Each bin requires four fits to determine signal
yield: 1) fit to D0 in region A, 2) fit to D0 in region A, 3) fit to D0 in region B, and 4) fit to
D0 in region B. Table 5.2 defines the relevant signal parameters for each of these four fits.

Each fit is performed with a binned, log-likelihood fit. The signal function is a Johnson’s
SU -distribution or, in the case of a lower statistics bin, a single Gaussian. A Johnson’s
SU -distribution is similar to a Gaussian but with an asymmetric tail; in addition to the
mean and width parameters, µ and σ, the Johnson’s SU -distribution has two additional
shape parameters, γ and δ [59, 60]. The background function is the sum of 1/2-power and
3/2-power threshold functions with a single shape parameter, α, that gives the ratio of the
1/2-power and 3/2-power functions. (This is referred to as just a “a 3/2-power threshold
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Variable Definition

niA (σiA)
The number (error on the number) of
D0 signal events in region A of bin i.

n̄iA (σ̄iA)
The number (error on the number) of
D0 signal events in region A of bin i.

niB (σiB)
The number (error on the number) of
D0 signal events in region B of bin i.

n̄iB (σ̄iB)
The number (error on the number) of
D0 signal events in region B of bin i.

Table 5.2: Definitions of yield parameters for the four fits performed in each Dalitz bin. Note
that in Equation 5.2, ni = niA + n̄iA + niB + n̄iB.

function” going forward.) In the case of peaking background, a single Gaussian is added to
the background function.

All fit functions are normalized so that the signal and background both integrate to 1
over the region of the fit. Two normalization parameters (one for signal, one for background)
are included directly in the fit, and the yield and its associated error is simply related to the
signal normalization parameter. Specifically, if I iA,sig is the signal normalization parameter
for the D0 fit in region A of bin i, then:

niA = I iA,sig/w (5.6)

and similarly for n̄iA and region B. w is the bin width in the ∆M histogram being fit. In
every case for our nominal analysis, w = 0.07 MeV/c2.

The specific fit functions used for the bins in this analysis in MC (data) are discussed in
chapter 6 (chapter 7), and plots of fits and residuals are included as well.

We explored the possibility of using simultaneous fitting for the D0 and D0 distributions
in a particular region. This involves constraining the background shape or signal shape
parameters (or both) to be the same for both the D0 and D0 fits. The main motivation for
this would be to lower the relative error on the final asymmetry measurements. When tested
on MC, constraining the background shape parameter α improved the statistical uncertainty
on AiCP ,loc by 5–10%. Constraining the signal width σ did slightly better, improving the
statistical uncertainty by 6–16%. However, the relative error is not the only consideration.
We also need good evidence that it is reasonable to expect a particular parameter to be
the same in the D0 and D0 distributions. Especially since we are trying to measure an
asymmetry, forcing a parameter that is not the same in reality to be the same in the fits
might reduce the statistical uncertainty but induce a fake asymmetry in the process. The
signal width σ is potentially susceptible to this: different detector resolutions for positive and
negative particles could lead to real differences in σ between the D0 and D0 distributions.
In light of these concerns and observing only a modest improvement in the uncertainties, we
opted against simultaneous fitting. Future versions of this analysis may revisit simultaneous
fitting or change the fit parameterization in other ways if further investigation indicates this
is warranted.
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5.2.5 Calculating AiCP ,loc
Once we have obtained the yield parameters in Table 5.2 from the fits described in subsec-
tion 5.2.4, we can calculate AiCP ,loc. First, we calculate AiA, AiB, A∗ibin, and their associated
errors for each bin i:

AiA ± σAiA =
niA − n̄iA
niA + n̄iA

±
2
√

(niAσ̄
i
A)2 + (n̄iAσ

i
A)2

(niA + n̄iA)2
(5.7)

AiB ± σAiB =
niB − n̄iB
niB + n̄iB

±
2
√

(niBσ̄
i
B)2 + (n̄iBσ

i
B)2

(niB + n̄iB)2
(5.8)

A∗ibin ± σ∗ibin =
AiA +AiB

2
±

√
σ2
AiA

+ σ2
AiB

2
(5.9)

We can then calculate AiCP ,loc using Equation 5.2 and Equation 5.3. We avoid correlated
errors by rearranging the sum in Equation 5.2 as follows:

AiCP ,loc =
AiA +AiB

2
−

∑
j

(
AjA+AjB

2
nj
)

∑
j nj

(5.10)

=
AiA +AiB

2
− (AiA +AiB) ni

2
∑

j nj
−
∑

j 6=i
(
AjA +AjB

)
nj

2
∑

j nj
(5.11)

=
(AiA +AiB)

(∑
j nj
)
− (AiA +AiB) ni

2
∑

j nj
−
∑

j 6=i
(
AjA +AjB

)
nj

2
∑

j nj
(5.12)

=
(AiA +AiB)

((∑
j nj
)
− ni

)
2
∑

j nj
−
∑

j 6=i
(
AjA +AjB

)
nj

2
∑

j nj
(5.13)

AiCP ,loc =
(AiA +AiB)

(∑
j 6=i n

j
)
−
∑

j 6=i
(
AjA +AjB

)
nj

2
∑

j nj
(5.14)

Propagating the errors from Equation 5.7 and Equation 5.8, and ignoring the error on ni,
we have:

σiCP,loc =
1

2
∑

j nj

√√√√(σ2
AiA

+ σ2
AiB

)(∑
j 6=i

nj

)2

+
∑
j 6=i

(
σ2
AjA

+ σ2
AjB

)
(nj)2 (5.15)

5.3 Summary

The binned analysis method described in this chapter fully accounts for the three nuisance
asymmetries Aπs , AFB, and AiD0 in a data-based way, and it allows for a direct calculation
of the per-bin asymmetries across the Dalitz plot even in the presence of a non-negligible
number of background events. This method is also scalable, if more data is used in the
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future, and allows for changes to the procedure, such as finer binning or a different fitting
method, if a larger dataset warrants them.

It is worth noting that this analysis does not capture any real CP asymmetries that
are constant across the Dalitz plot. A complementary analysis to this one could check for
CPV at this global level via a Dalitz-integrated analysis (i.e., one that is independent of the
structure of the Dalitz plot). Appendix C describes what such an analysis could look like.

a) b) c)

Figure 5.3: Comparison of cos θ∗D∗ in Dalitz plot bins in MC in a) all events, b) signal events,
and c) background events.

Figure 5.4: Comparison of cos θ∗D∗ in Dalitz plot bins in data. This plot was made with a
187 fb−1 subset of the full dataset.
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a) b) c)

Figure 5.5: Comparison of pπs in Dalitz plot bins in MC in a) all events, b) signal events,
and c) background events.

Figure 5.6: Comparison of pπs in Dalitz plot bins in data. This plot was made with a 187 fb−1

subset of the full dataset.
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a) b) c)

Figure 5.7: Comparison of cos θπs in Dalitz plot bins in MC in a) all events, b) signal events,
and c) background events.

Figure 5.8: Comparison of cos θπs in Dalitz plot bins in data. This plot was made with a
187 fb−1 subset of the full dataset.
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Figure 5.9: Unweighted pion p in truth-tagged signal MC. The number above each plot
corresponds to the bin number, as defined in Figure 5.2. In each plot, the solid line is the
momentum of the π+ (π−) in the D0 (D0) decay, and the dashed lines is the momentum of
the π− (π+) in the D0 (D0) decay.
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Figure 5.10: Weighted pion p in truth-tagged signal MC. The number above each plot
corresponds to the bin number, as defined in Figure 5.2. In each plot, the solid line is the
momentum of the π+ (π−) in the D0 (D0) decay, and the dashed lines is the momentum of
the π− (π+) in the D0 (D0) decay. Events in region B of each bin are weighted by N i

A/N
i
B,

where N i
A = the number of events in region A of bin i and N i

B = the number of events in
region B of bin i.

44



Figure 5.11: Weighted pion p in all MC. The number above each plot corresponds to the
bin number, as defined in Figure 5.2. In each plot, the solid line is the momentum of the
π+ (π−) in the D0 (D0) decay, and the dashed lines is the momentum of the π− (π+) in the
D0 (D0) decay. Events in region B of each bin are weighted by N i

A/N
i
B, where N i

A = the
number of events in region A of bin i and N i

B = the number of events in region B of bin i.

45



Figure 5.12: Weighted pion p in data. The number above each plot corresponds to the bin
number, as defined in Figure 5.2. In each plot, the solid line is the momentum of the π+

(π−) in the D0 (D0) decay, and the dashed line is the momentum of the π− (π+) in the D0

(D0) decay. Events in region B of each bin are weighted by N i
A/N

i
B, where N i

A = the number
of events in region A of bin i and N i

B = the number of events in region B of bin i. This plot
was made with a 187 fb−1 subset of the full dataset.
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Figure 5.13: Unweighted pion cos θ distributions in truth-tagged signal MC. The number
above each plot corresponds to the bin number, as defined in Figure 5.2. In each plot, the
solid line is the cosine of the π+ (π−) in the D0 (D0) decay, and the dashed lines is the cosine
of the π− (π+) in the D0 (D0) decay.
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Figure 5.14: Weighted pion cos θ distributions in truth-tagged signal MC. The number above
each plot corresponds to the bin number, as defined in Figure 5.2. In each plot, the solid
line is the cosine of the π+ (π−) in the D0 (D0) decay, and the dashed lines is the cosine of
the π− (π+) in the D0 (D0) decay. Events in region B of each bin are weighted by N i

A/N
i
B,

where N i
A = the number of events in region A of bin i and N i

B = the number of events in
region B of bin i.
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Figure 5.15: Weighted pion cos θ distributions in all MC. The number above each plot
corresponds to the bin number, as defined in Figure 5.2. In each plot, the solid line is the
cosine of the π+ (π−) in the D0 (D0) decay, and the dashed line is the cosine of the π− (π+)
in the D0 (D0) decay. Events in region B of each bin are weighted by N i

A/N
i
B, where N i

A =
the number of events in region A of bin i and N i

B = the number of events in region B of bin
i.
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Figure 5.16: Weighted pion cos θ distributions in data. The number above each plot corre-
sponds to the bin number, as defined in Figure 5.2. In each plot, the solid line is the cosine
of the π+ (π−) in the D0 (D0) decay, and the dashed line is the cosine of the π− (π+) in
the D0 (D0) decay. This plot was made with a 187 fb−1 subset of the full dataset. Events in
region B of each bin are weighted by N i

A/N
i
B, where N i

A = the number of events in region A
of bin i and N i

B = the number of events in region B of bin i.
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Chapter 6

Methodology Test with Monte Carlo

This chapter presents the results of performing the analysis described in chapter 5 on the
Monte Carlo data (MC) described in chapter 4.

Since we know that in MC there is no CP asymmetry coming from CPV within the
decay process, all CP asymmetries present in the MC are nuisance asymmetries, and we
should observe AiCP ,loc consistent with zero in all bins. Performing the full analysis on MC
thus validates our analysis procedure: if we do not find AiCP ,loc to be consistent with zero in
all bins, this would indicate that our procedure does not correctly account for all nuisance
asymmetries.

6.1 Fit functions

In each region (A or B) of each bin (1–6) (see Figure 5.2 for visualization), two fits were
performed (one for D0 and one for D0) for a total of 24 fits. Table 6.1 (Table 6.2) summarizes
the fit functions used in region A (B) to determine signal yield. In most cases, a Johnson’s
SU -distribution was used as the signal function, and a 3/2-power threshold function was used
as the background. The exceptions to this were 1) in region A of bin 2, a single Gaussian was
used as the signal function because the statistics were too low to accommodate a function
with more parameters (a 3/2-power threshold function was still used as the background),
and 2) in regions A and B of bin 5, a single Gaussian was added to the 3/2-power threshold
function to accommodate the peaking background in that region (a Johnson’s SU -distribution
was still used as the signal). In each region, the same function was used for D0 and D0 fits.

i Signal function Background function

0
Johnson’s SU -distribution

3/2-power threshold function
1
2 Single Gaussian
3

Johnson’s SU -distribution4
5 Single Gaussian and 3/2-power threshold function

Table 6.1: Fit functions for fits to D0 and D0 ∆M plots in MC in region A for all six bins.
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i Signal function Background function

0

Johnson’s SU -distribution
3/2-power threshold function

1
2
3
4
5 Single Gaussian and 3/2-power threshold function

Table 6.2: Fit functions for fits to D0 and D0 ∆M plots in MC in region B for all six bins.

6.2 Fit results

The fits to D0 and D0 in each of the twelve Dalitz regions are shown in Figures 6.1 – 6.6.
The raw yields and fit quality (i.e., χ2/n.d.f.) are listed in Table 6.3 (Table 6.4) for region
A (B). The number of degrees of freedom (n.d.f.) in each case is the number of bins in the
∆M histogram being fit minus the number of fit parameters. The number of bins is always
210, and the number of fit parameters varies between 5 and 10 depending on the fit function
being used. The full list of signal parameters for each fit is given in Tables 6.6 – 6.11.

We observe much greater precision in the raw asymmetries for bins 1 and 3 as compared
to bins 0, 2, and 4. This is due to the higher statistics in the odd-numbered bins. The
precision in bin 5 is an outlier because the fit includes several additional parameters to
account for peaking background present in this bin; the additional parameters that the fit
must accommodate cause the precision on the asymmetry to decrease compared to bins 1
and 3. The fit quality is good, with the χ2/n.d.f. falling between 0.86 and 1.48 for all fits,
with an average value of 1.10. The distributions of the residuals (shown in Figures 6.1 – 6.6)
show no obvious structure.

A D0 D0

AiA (%)
i χ2/n.d.f. niA χ2/n.d.f. n̄iA
0 0.86 2809± 97 0.92 2803± 102 0.1± 2.5
1 1.06 12956± 164 1.01 12639± 162 1.24± 0.90
2 1.16 531± 66 1.15 611± 52 −7.0± 7.5
3 1.26 17976± 179 1.22 17519± 177 1.29± 0.71
4 1.19 4360± 126 1.06 4769± 141 −4.5± 2.1
5 1.00 25280± 346 1.18 24483± 401 1.6± 1.1

Table 6.3: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region A
for all six bins. Errors are statistical only.

6.3 Asymmetries

Using equation 5.3 and equations 5.10 – 5.15, we calculate the local CP asymmetry in
each bin i from the raw asymmetries in Table 6.3 and Table 6.4. The results are shown in
Table 6.5.
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B D0 D0

AiB (%)
i χ2/n.d.f. niB χ2/n.d.f. n̄iB
0 1.12 4567± 125 1.02 4328± 115 2.7± 1.9
1 1.48 31178± 239 1.26 30369± 229 1.31± 0.54
2 1.13 2937± 89 0.95 2866± 86 1.2± 2.1
3 1.12 32007± 235 1.15 31482± 234 0.83± 0.52
4 1.05 9981± 160 1.05 9861± 157 0.6± 1.1
5 1.07 20668± 348 1.01 19726± 49 2.3± 1.2

Table 6.4: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region B
for all six bins. Errors are statistical only.

i AiA (%) AiB (%) A∗ibin (%) Ai
CP,loc (%)

0 0.1± 2.5 2.7± 1.9 1.4± 1.6 0.4± 1.5
1 1.24± 0.90 1.31± 0.54 1.28± 0.52 0.24± 0.39
2 −7.0± 7.5 1.2± 2.1 −2.9± 3.9 −3.9± 3.8
3 1.29± 0.71 0.83± 0.52 1.06± 0.44 0.02± 0.31
4 −4.5± 2.1 0.6± 1.1 −1.9± 1.2 −3.0± 1.1
5 1.6± 1.1 2.3± 1.2 1.97± 0.81 0.93± 0.59

Table 6.5: Final values for AiCP ,loc in each Dalitz bin. Errors are statistical only. The average
asymmetry across the plot is Aavg = (1.03 ± 0.33)%. AiCP ,loc is calculated by subtracting
Aavg from A∗ibin for each bin.

As with AiA and AiB, AiCP ,loc is much more precise in regions of higher statistics. This is
to be expected, given the use of a weighted average to determine Aavg (see Equation 5.2 for
definition). Weighting A∗ibin by the number of events in bin i when calculating Aavg means
we preserve the high precision measurements in high-statistics bins; by contrast, using an
unweighted average would dilute these more precise measurements by effectively assigning
disproportionate weight to the low-statistics bins.

We observe AiCP ,loc to be consistent with zero in all bins, which is what we expect for
MC where no real CPV is present. Note we have not included systematic uncertainties on
these measurements. We can test the level of agreement by calculating a χ2/n.d.f., using:

χ2/n.d.f. =
1

6

∑(
AiCP ,loc

σiCP,loc

)2

(6.1)

where 6 is the number of bins (and hence the number of values of AiCP ,loc). For the results
in Table 6.5, we find χ2/n.d.f. = 1.91 (we expect χ2/n.d.f. = 1 for a “good” result). For only
6 measurements, this is a reasonable χ2/n.d.f., indicating good agreement with AiCP ,loc = 0
across the Dalitz plot.
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a) b)

c) d)

Figure 6.1: Fits in MC for a) D0 in bin 0, region A, b) D0 in bin 0, region A, c) D0 in bin
0, region B, and d) D0 in bin 0, region B.

A B

Param. D0 D0 D0 D0

I0
sig 0.1966± 0.0068 0.1962± 0.0071 0.3197± 0.0087 0.3029± 0.0080

µ0 ( MeV/c2) 145.455± 0.041 145.379± 0.032 145.401± 0.023 145.383± 0.024
σ0 ( MeV/c2) 0.407± 0.088 0.324± 0.056 0.321± 0.035 0.321± 0.037

γ0 0.08± 0.17 −0.19± 0.14 −0.109± 0.089 −0.23± 0.10
δ0 1.57± 0.33 1.31± 0.23 1.17± 0.13 1.25± 0.14

Table 6.6: Signal parameters in MC for all fits in bin 0. I isig is the normalization parameter
from which the yields are calculated (see Equation 5.6).

54



a) b)

c) d)

Figure 6.2: Fits in MC for a) D0 in bin 1, region A, b) D0 in bin 1, region A, c) D0 in bin
1, region B, and d) D0 in bin 1, region B.

A B

Param. D0 D0 D0 D0

I1
sig 0.907± 0.011 0.885± 0.011 2.182± 0.017 2.126± 0.016

µ1 ( MeV/c2) 145.435± 0.012 145.427± 0.012 145.417± 0.006 145.415± 0.006
σ1 ( MeV/c2) 0.374± 0.022 0.361± 0.021 0.3204± 0.0099 0.340± 0.011

γ1 0.009± 0.044 −0.026± 0.044 −0.057± 0.021 −0.056± 0.022
δ1 1.279± 0.073 1.250± 0.069 1.081± 0.031 1.139± 0.033

Table 6.7: Signal parameters in MC for all fits in bin 1. I isig is the normalization parameter
from which the yields are calculated (see Equation 5.6).
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a) b)

c) d)

Figure 6.3: Fits in MC for a) D0 in bin 2, region A, b) D0 in bin 2, region A, c) D0 in bin
2, region B, and d) D0 in bin 2, region B.

A B

Param. D0 D0 D0 D0

I2
sig 0.0372± 0.0046 0.0427± 0.0036 0.2056± 0.0062 0.2006± 0.0060

µ2 ( MeV/c2) 145.458± 0.039 145.469± 0.026 145.462± 0.036 145.385± 0.043
σ2 ( MeV/c2) 0.333± 0.055 0.277± 0.025 0.421± 0.072 0.457± 0.080

γ2 – – 0.06± 0.13 −0.17± 0.16
δ2 – – 1.49± 0.25 1.59± 0.27

Table 6.8: Signal parameters in MC for all fits in bin 2. µ and σ are shape parameters for
both Gaussian and Johnson’s SU signal functions. δ and γ are parameters only for Johnson’s
SU -distributions. I isig is the normalization parameter from which the yields are calculated
(see Equation 5.6).
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a) b)

c) d)

Figure 6.4: Fits in MC for a) D0 in bin 3, region A, b) D0 in bin 3, region A, c) D0 in bin
3, region B, and d) D0 in bin 3, region B.

A B

Param. D0 D0 D0 D0

I3
sig 1.258± 0.013 1.226± 0.012 2.241± 0.016 2.204± 0.016

µ3 ( MeV/c2) 145.418± 0.009 145.413± 0.009 145.417± 0.005 145.417± 0.005
σ3 ( MeV/c2) 0.339± 0.016 0.339± 0.015 0.2976± 0.0087 0.2975± 0.0088

γ3 −0.058± 0.033 −0.080± 0.033 −0.052± 0.019 −0.062± 0.019
δ3 1.234± 0.053 1.201± 0.049 1.062± 0.028 1.051± 0.028

Table 6.9: Signal parameters in MC for all fits in bin 3. I isig is the normalization parameter
from which the yields are calculated (see Equation 5.6).
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a) b)

c) d)

Figure 6.5: Fits in MC for a) D0 in bin 4, region A, b) D0 in bin 4, region A, c) D0 in bin
4, region B, and d) D0 in bin 4, region B.

A B

Param. D0 D0 D0 D0

I4
sig 0.3052± 0.0088 0.3338± 0.0099 0.699± 0.011 0.690± 0.011

µ4 ( MeV/c2) 145.444± 0.026 145.431± 0.020 145.414± 0.011 145.443± 0.010
σ4 ( MeV/c2) 0.339± 0.050 0.291± 0.035 0.283± 0.019 0.268± 0.017

γ4 0.08± 0.11 0.018± 0.088 −0.062± 0.045 0.040± 0.045
δ4 1.35± 0.20 1.14± 0.14 1.094± 0.069 1.073± 0.064

Table 6.10: Signal parameters in MC for all fits in bin 4. I isig is the normalization parameter
from which the yields are calculated (see Equation 5.6).
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a) b)

c) d)

Figure 6.6: Fits in MC for a) D0 in bin 5, region A, b) D0 in bin 5, region A, c) D0 in bin
5, region B, and d) D0 in bin 5, region B.

A B

Param. D0 D0 D0 D0

I5
sig 1.770± 0.024 1.714± 0.028 1.447± 0.024 1.381± 0.025

µ5 ( MeV/c2) 145.426± 0.006 145.416± 0.006 145.418± 0.008 145.431± 0.007
σ5 ( MeV/c2) 0.244± 0.011 0.253± 0.013 0.284± 0.016 0.261± 0.015

γ5 −0.017± 0.027 −0.073± 0.030 −0.054± 0.035 −0.006± 0.033
δ5 1.152± 0.055 1.190± 0.067 1.251± 0.076 1.182± 0.074

Table 6.11: Signal parameters in MC for all fits in bin 5. I isig is the normalization parameter
from which the yields are calculated (see Equation 5.6).
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Chapter 7

Results

This chapter presents the results of performing the analysis described in chapter 5 on the
Belle II dataset described in chapter 4.

7.1 Fit functions

In each region (A or B) of each bin (1–6) (see Figure 5.2 for visualization), two fits were
performed (one for D0 and one for D0) for a total of 24 fits. Table 7.1 (Table 7.2) summarizes
the fit functions used in region A (B) to determine signal yield. In most cases, a Johnson’s
SU -distribution was used as the signal function, and a 3/2-power threshold function was
used as the background. The exceptions to this were 1) in region A of bins 0, 2, and 4,
a single Gaussian was used as the signal function because the statistics were too low to
accommodate a function with more parameters (a 3/2-power threshold function was still
used as the background), and 2) in regions A and B of bin 5, a single Gaussian was added
to the 3/2-power threshold function to accommodate the peaking background in that region
(a Johnson’s SU -distribution was still used as the signal). In each region, the same function
was used for D0 and D0 fits.

i Signal function Background function

0 Single Gaussian

3/2-power threshold function
1 Johnson’s SU -distribution
2 Single Gaussian
3 Johnson’s SU -distribution
4 Single Gaussian

5 Johnson’s SU -distribution Single Gaussian and 3/2-power threshold function

Table 7.1: Fit functions for fits to D0 and D0 ∆M plots in data in region A for all six bins.

7.2 Fit results

The fits to D0 and D0 in each of the twelve Dalitz regions are shown in Figures 7.1 – 7.6.
The raw yields and fit quality (i.e., χ2/n.d.f.) are listed in Table 7.3 (Table 7.4) for region A
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i Signal function Background function

0

Johnson’s SU -distribution
3/2-power threshold function

1
2
3
4
5 Single Gaussian and 3/2-power threshold function

Table 7.2: Fit functions for fits to D0 and D0 ∆M plots in data in region B for all six bins.

(B). The number of bins is always 210, and the number of fit parameters varies between 5
and 10 depending on the fit function being used. The full list of signal parameters for each
fit are listed in Tables 7.6 – 7.11.

We observe much greater precision in the raw asymmetries for bins 1 and 3 as compared
to bins 0, 2, and 4. This is due to the higher statistics in the odd-numbered bins. The
precision in bin 5 is an outlier because the fit includes several additional parameters to
account for peaking background present in this bin; the additional parameters that the fit
must accommodate cause the precision on the asymmetry to decrease slightly compared to
bins 1 and 3. The fit quality is not unreasonable, with the χ2/n.d.f. falling between 0.96 and
1.40 for all fits, with an average value of 1.14. The distributions of the residuals (shown in
Figures 7.1 – 7.6) show no obvious structure.

A D0 D0

AiA (%)
i χ2/n.d.f. niA χ2/n.d.f. n̄iA
0 1.26 561± 57 1.11 394± 57 17.4± 8.6
1 1.18 12074± 163 1.13 11565± 156 2.15± 0.93
2 1.05 485± 56 1.18 376± 43 12.7± 8.0
3 1.14 15888± 171 1.20 15811± 179 0.24± 0.78
4 1.15 1124± 75 1.08 1151± 76 −1.2± 4.7
5 0.90 21177± 367 1.05 20363± 344 2.0± 1.2

Table 7.3: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region A
for all six bins. Errors are statistical only.

7.3 Asymmetries

Using equation 5.3 and equations 5.10 – 5.15, we calculate the local CP asymmetry in
each bin i from the raw asymmetries in Table 7.3 and Table 7.4. The results are shown in
Table 7.5.

As with AiA and AiB, AiCP ,loc is much more precise in regions of higher statistics. This is
to be expected, given the use of a weighted average to determine Aavg (see Equation 5.2 for
definition). Weighting A∗ibin by the number of events in bin i when calculating Aavg means
we preserve the high precision measurements in high-statistics bins; by contrast, using an
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B D0 D0

AiB (%)
i χ2/n.d.f. niB χ2/n.d.f. n̄iB
0 0.99 985± 83 0.96 923± 127 3.2± 8.1
1 1.10 24443± 218 1.40 24066± 226 0.78± 0.65
2 1.30 1676± 79 1.05 1756± 88 −2.3± 3.4
3 1.20 23228± 208 1.35 23107± 221 0.26± 0.66
4 1.18 3066± 154 1.16 2580± 120 8.6± 3.3
5 1.15 16632± 276 1.09 15719± 332 2.8± 1.3

Table 7.4: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region B
for all six bins. Errors are statistical only.

i AiA (%) AiB (%) A∗ibin (%) Ai
CP,loc (%)

0 17.4± 8.6 3.2± 8.1 10.4± 5.9 8.8± 5.8
1 2.15± 0.93 0.78± 0.65 1.47± 0.58 −0.14± 0.40
2 12.7± 8.0 −2.3± 3.4 5.2± 4.4 3.6± 4.3
3 0.24± 0.78 0.26± 0.66 0.25± 0.51 −1.35± 0.34
4 −1.2± 4.7 8.6± 3.3 3.7± 2.9 2.1± 2.8
5 2.0± 1.2 2.8± 1.3 2.39± 0.90 0.78± 0.62

Table 7.5: Final values for AiCP ,loc in each Dalitz bin. Errors are statistical only. The average
asymmetry across the plot is Aavg = (1.60 ± 0.40)%. AiCP ,loc is calculated by subtracting
Aavg from A∗ibin for each bin.

unweighted average would dilute these more precise measurements by effectively assigning
disproportionate weight to the low-statistics bins.

The results appear to be consistent with zero in all bins except bin 3, where the central
value is almost 4σ from zero. However, one should also carefully consider possible systematic
uncertainties, which we discuss in chapter 8, before assessing significance.
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a) b)

c) d)

Figure 7.1: Fits for a) D0 in bin 0, region A, b) D0 in bin 0, region A, c) D0 in bin 0, region
B, and d) D0 in bin 0, region B.

A B

Param. D0 D0 D0 D0

I0
sig 0.0393± 0.0040 0.0276± 0.0040 0.0690± 0.0058 0.0646± 0.0089

µ0 ( MeV/c2) 145.421± 0.035 145.408± 0.040 145.41± 0.13 145.460± 0.042
σ0 ( MeV/c2) 0.303± 0.031 0.268± 0.048 0.49± 0.29 0.207± 0.080

γ0 – – −0.14± 0.49 0.13± 0.22
δ0 – – 1.7± 1.0 0.84± 0.36

Table 7.6: Signal parameters for all fits in bin 0. µ and σ are shape parameters for both
Gaussian and Johnson’s SU signal functions. δ and γ are parameters only for Johnson’s
SU -distributions. I isig is the normalization parameter from which the yields are calculated
(see Equation 5.6).
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a) b)

c) d)

Figure 7.2: Fits for a) D0 in bin 1, region A, b) D0 in bin 1, region A, c) D0 in bin 1, region
B, and d) D0 in bin 1, region B.

A B

Param. D0 D0 D0 D0

I1
sig 0.845± 0.011 0.810± 0.011 1.711± 0.015 1.685± 0.016

µ1 ( MeV/c2) 145.410± 0.013 145.411± 0.015 145.416± 0.007 145.408± 0.007
σ1 ( MeV/c2) 0.367± 0.023 0.403± 0.026 0.447± 0.012 0.326± 0.012

γ1 −0.092± 0.044 −0.086± 0.049 −0.087± 0.025 −0.097± 0.024
δ1 1.227± 0.073 1.304± 0.082 1.101± 0.038 1.030± 0.035

Table 7.7: Signal parameters for all fits in bin 1. I isig is the normalization parameter from
which the yields are calculated (see Equation 5.6).
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a) b)

c) d)

Figure 7.3: Fits for a) D0 in bin 2, region A, b) D0 in bin 2, region A, c) D0 in bin 2, region
B, and d) D0 in bin 2, region B.

A B

Param. D0 D0 D0 D0

I2
sig 0.0340± 0.0039 0.0264± 0.0030 0.1173± 0.0055 0.1229± 0.0061

µ2 ( MeV/c2) 145.449± 0.043 145.475± 0.028 145.379± 0.062 145.425± 0.078
σ2 ( MeV/c2) 0.355± 0.045 0.214± 0.029 0.44± 0.13 0.51± 0.16

γ2 – – −0.14± 0.23 −0.01± 0.27
δ2 – – 1.54± 0.45 1.64± 0.52

Table 7.8: Signal parameters for all fits in bin 2. µ and σ are shape parameters for both
Gaussian and Johnson’s SU signal functions. δ and γ are parameters only for Johnson’s
SU -distributions. I isig is the normalization parameter from which the yields are calculated
(see Equation 5.6).
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a) b)

c) d)

Figure 7.4: Fits for a) D0 in bin 3, region A, b) D0 in bin 3, region A, c) D0 in bin 3, region
B, and d) D0 in bin 3, region B.

A B

Param. D0 D0 D0 D0

I3
sig 1.112± 0.012 1.107± 0.013 1.626± 0.015 1.617± 0.015

µ3 ( MeV/c2) 145.394± 0.010 145.401± 0.009 145.417± 0.007 145.413± 0.007
σ3 ( MeV/c2) 0.355± 0.017 0.311± 0.014 0.326± 0.012 0.298± 0.011

γ3 −0.149± 0.036 −0.103± 0.031 −0.078± 0.025 −0.093± 0.023
δ3 1.237± 0.057 1.074± 0.045 1.116± 0.039 0.999± 0.034

Table 7.9: Signal parameters for all fits in bin 3. I isig is the normalization parameter from
which the yields are calculated (see Equation 5.6).
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a) b)

c) d)

Figure 7.5: Fits for a) D0 in bin 4, region A, b) D0 in bin 4, region A, c) D0 in bin 4, region
B, and d) D0 in bin 4, region B.

A B

Param. D0 D0 D0 D0

I4
sig 0.0787± 0.0052 0.0805± 0.0053 0.215± 0.011 0.1806± 0.0084

µ4 ( MeV/c2) 145.455± 0.017 145.448± 0.018 145.451± 0.0026 145.380± 0.030
σ4 ( MeV/c2) 0.247± 0.020 0.258± 0.021 0.268± 0.038 0.273± 0.045

γ4 – – 0.06± 0.11 −0.27± 0.13
δ4 – – 0.93± 0.15 1.03± 0.17

Table 7.10: Signal parameters for all fits in bin 4. µ and σ are shape parameters for both
Gaussian and Johnson’s SU signal functions. δ and γ are parameters only for Johnson’s
SU -distributions. I isig is the normalization parameter from which the yields are calculated
(see Equation 5.6).
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a) b)

c) d)

Figure 7.6: Fits for a) D0 in bin 5, region A, b) D0 in bin 5, region A, c) D0 in bin 5, region
B, and d) D0 in bin 5, region B.

A B

Param. D0 D0 D0 D0

I5
sig 1.482± 0.026 1.425± 0.024 1.164± 0.019 1.100± 0.023

µ5 ( MeV/c2) 145.417± 0.007 145.427± 0.008 145.419± 0.008 145.415± 0.009
σ5 ( MeV/c2) 0.276± 0.016 0.290± 0.017 0.267± 0.015 0.275± 0.018

γ5 −0.053± 0.33 −0.008± 0.035 −0.063± 0.036 −0.079± 0.039
δ5 1.233± 0.077 1.265± 0.080 1.157± 0.069 1.174± 0.082

Table 7.11: Signal parameters for all fits in bin 5. I isig is the normalization parameter from
which the yields are calculated (see Equation 5.6).
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Chapter 8

Systematics

The error on the asymmetries presented in chapter 7 is entirely statistical. We also want
to include systematic uncertainties on the final asymmetry values. We identified four main
sources of systematic uncertainty: 1) imperfect cancellation of AFB in Equation 5.4, 2)
imperfect cancellation of Aπs in Equation 5.4, 3) imperfect cancellation of AiD0 from choosing
bins that are symmetric across the m(π±π0)2 symmetry axis, and 4) systematic effects from
the fits used to obtain the signal yield. This chapter details our analysis of each of these
systematic effects in sections 8.2–8.5. In section 8.6, some consistency checks that were
performed are described. Finally, in section 8.7, the results from Table 7.5 are presented
with systematic uncertainties included.

To calculate the uncertainty from the imperfect cancellation of AFB, Aπs , and AiD0 , we
used 400 fb−1 of truth-tagged signal MC (see chapter 4 for full description). We noted in
chapter 5 that the relevant distributions for calculating these asymmetries can have different
shapes for signal and background (see Figures 5.3–5.16), and since we cannot select only
signal events in the data, we rely on truth-tagging in the MC. Since these distributions
exhibit relatively good agreement between data and MC and we are conservative in our
estimates of systematic uncertainties, the truth-tagged signal MC events are an acceptable
proxy for the signal distributions in data.

8.1 Notation

In sections 8.2, 8.3, and 8.4, we use j as a general bin index in a histogram (typically angle
or momentum). Note this is distinct from the use of i in previous chapters as a bin index in
the Dalitz plot. We also use Dalitz bin indices in this chapter, and we will be explicit about
the difference between the two when there might be confusion.

Consider α as an arbitrary asymmetry. nj (n̄j) is the number of particles of one type
(the charge-conjugate type) in bin j. n =

∑
nj and n̄ =

∑
n̄j. The total asymmetry over

all bins is:

α =

∑
nj −

∑
n̄j∑

nj +
∑
n̄j

=
n− n̄
n+ n̄

(8.1)

Note that this is not a simple sum of the bin asymmetries, αj =
nj−n̄j
nj+n̄j

, since the sums are

not global but separate in numerator and denominator. In terms of the bin asymmetries,
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the total asymmetry α can be recast as:

α =
1

n+ n̄

[∑
αj(nj + n̄j)

]
. (8.2)

We can also define normalized bin weights, wj =
nj+n̄j
n+n̄

, so that α can be further simplified
to:

α =
∑

wjαj. (8.3)

Thus, the global asymmetry is a weighted average of the bin asymmetries.

8.2 Cancellation of AFB

Our justification for the cancellation of AFB is the strong agreement between the distribution
of cos θ∗D∗ in each bin, as seen in Figures 5.3 and 5.4. However, there is still some small bin
dependence in these distributions for which we now calculate a systematic uncertainty. We
start with the general form for the asymmetry:

AFB = AM cos θ∗ (8.4)

a linear form where AM is the maximum asymmetry, occurring at cos θ∗ = ±1 . We will
assume AM ≈ 15%.

Using the result from section 8.1, with α = AFB and x ≡ cos θ∗ for convenience:

AFB =
∑

wj(AMxj) = AM
∑

wjxj = AMxavg (8.5)

where xavg ≡
∑
wjxj is the average value of x based on the distribution of data given by

the weights wj.
We can easily get xavg in the signal MC for the global cos θ∗D∗ distribution and also for

each of the six Dalitz bins. The difference in means between the global distribution and the
distribution in a particular Dalitz bin scaled by AM is the expected shift in the nuisance
asymmetry due to bin dependence.

The values of AFB (for the global distribution and the six separate bins) are small since
the distributions are fairly symmetric, making xavg quite small (< 0.04). The changes in
these AFB are also small.

We also consider the standard error on the means, σi/
√

ni where σi is the RMS of the
cos θ∗D∗ distribution and ni is the total number of events in Dalitz bin i. This error is small
for the high-statistics bins, but not for low-statistics ones. The error on the global mean –
σ/
√
N , where N =

∑
ni – is also taken into account.

For each bin, we first sum in quadrature the error on the mean in a particular Dalitz
bin and the error on the global mean, ignoring correlations (which is conservative). We
then linearly sum this with the difference of the binned vs. global mean. Finally, this total
is multiplied by AM = 0.15 to give the systematic on the production asymmetry for each
Dalitz bin:

Syst. uncert. from AFB for bin i = AM ∗

(
Difference of means +

√
σ2
i

ni
+
σ2

N

)
. (8.6)
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Table 8.1 shows the numbers used in the calculations for each Dalitz bin. It also compares
the systematic uncertainty from this calculation to the statistical error in each bin. The
largest systematic we observe is 0.18% in bin 5, which is still smaller than the statistical
error in that bin (0.62%).

In the future, with higher statistics throughout the Dalitz plot, the error on the mean
will become smaller, and one could correct for the varying means to reduce the systematic
uncertainty.

i Difference of means σi/
√

ni σ/
√
N Syst. uncert. (%) Stat. uncert. (%)

0 +0.00492 0.00419

0.00088

0.14 5.8
1 −0.00265 0.00173 0.069 0.40
2 −0.00122 0.00599 0.11 4.3
3 −0.00890 0.00161 0.16 0.34
4 +0.00224 0.00297 0.080 2.8
5 +0.01014 0.00160 0.18 0.62

Table 8.1: Systematic uncertainty due to imperfect AFB cancellation in each bin, determined
from truth-tagged signal MC. The statistical errors for the results in data (see section 7.3)
are shown for comparison.

8.3 Cancellation of Aπs
Our justification for the cancellation of Aπs is the strong agreement between the distributions
of pπs and cos θπs in each bin, as seen in Figures 5.5 – 5.8. However, there is still some small
bin dependence in these distributions for which we now calculate a systematic uncertainty
to include on our result.

Unlike AFB, we do not have a general form for Aπs . However, we know it is dependent
on pπs and cos θπs , and ultimately we only need an expression for the change between Aπs
in a specific Dalitz bin and Aπs across the whole Dalitz plot. We will call this change ∆iAπs
in Dalitz bin i. Referring back to Equation 8.3, we can write:

∆iAπs =
∑
j

wijβ(xj)−
∑
j

wjβ(xj) (8.7)

where i is a Dalitz bin index and j is a bin index in the histogram x ≡ pπs or x ≡ cos θπs .
The weights wij and wj are calculated for both pπs and cos θπs distributions. The superscript
i indicates wij is calculated in a particular Dalitz bin; wj (no superscript) are the weights for
the global distribution. β(x) is the slow pion detection efficiency asymmetry as a function
of either pπs or cos θπs . Note that β(x) is not dependent on the Dalitz bin, only on x. The
reason Aπs ultimately has some residual bin dependence is because of the difference in the
weights: wij 6= wj for an arbitrary value of j. We can define a weighted average of the
detection efficiency as βavg =

∑
j wjβ(xj) and use this new variable to rewrite Equation 8.7:

∆iAπs =
∑
j

wij (β(xj)− βavg)−
∑
j

wj (β(xj)− βavg) =
∑
j

(wij − wj)(β(xj)− βavg) (8.8)
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We have simply added 0 to the right side of Equation 8.7, in the form of −βavg (
∑

j w
i
j −∑

j wj ). This is 0 because the wij and wj both sum to 1, and βavg is a constant that can be

pulled out of the sums. We treat pπs and cos θπs separately and calculate an error on ∆iAπs
for both distributions. The resulting uncertainties are added in quadrature to obtain the final
systematic uncertainty on this calculation. We could consider both variables simultaneously
by looking at 2-D distributions, but the lower statistics resulting from having many more
bins in a 2-D plot cause large fluctuations that are not actual differences. As a conservative
estimate, we take 5% as a scale for β(xj) − βavg. For the weights, we take the RMS of the
actual wij − wj distributions for 25 bins in pπs and cos θπs separately.

The choice of 25 bins is based on the following considerations: for a large number of bins,
there will be large statistical fluctuations; for too few bins, one may integrate over structure
in the weights or asymmetries. Using 25 bins allows for fairly detailed structures to be seen
without being overwhelmed by statistical fluctuations.

For the final systematic uncertainty calculation, we multiply the RMS in the weight
difference by the asymmetry scale (5%) and by the number of bins (25). If RMSi1 = the
RMS of the wij − wj distribution in pπs for bin i, and RMSi2 = the RMS of the wij − wj
distribution in cos θπs for bin i, then:

Syst. uncert. from Aπs for bin i = (0.05× 25)

√(
RMSi1

)2
+
(
RMSi2

)2
. (8.9)

This assumes complete correlation of the signs of wij − wj and the asymmetries, which is
quite conservative. Table 8.2 shows the numbers used in the calculation of this systematic
asymmetry for each Dalitz bin. It also compares the systematic uncertainty from this calcu-
lation to the statistical error in each bin. The largest RMS and largest systematic we observe
are 0.00240 and 0.42% (respectively), both in bin 2, which has the lowest statistics of any
bin. This is a fairly conservative estimate and is still much smaller than the statistical error
in that bin (4.3%).

i RMSi1 RMSi2 Syst. uncert. (%) Stat. uncert. (%)

0 0.00145 0.00168 0.28 5.8
1 0.00073 0.00064 0.12 0.40
2 0.00231 0.00240 0.42 4.3
3 0.00072 0.00092 0.15 0.34
4 0.00114 0.00105 0.19 2.8
5 0.00124 0.00126 0.22 0.62

Table 8.2: Systematic uncertainty due to imperfect Aπs cancellation in each bin, determined
from truth-tagged signal MC. The statistical errors for the results in data (see section 7.3)
are shown for comparison.

8.4 Cancellation of Ai
D0

Unlike AFB and Aπs , which are largely global asymmetries that we cancel out by subtraction
in Equation 5.4, AiD0 is a bin-specific asymmetry that we cancel out by choosing bins that are
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symmetric across the m(π±π0)2 symmetry axis and then taking an unweighted average of the
asymmetries above and below the axis in each bin (see subsection 5.2.3 for full explanation).
Our justification for why this method corrects for AiD0 is the strong agreement between the
weighted distributions of the momentum and cosine of the like-sign pion as compared to
the unlike-sign pion in each bin, as seen in Figures 5.9 – 5.16. However, there is still some
small disagreement between these distributions for which we now calculate a systematic
uncertainty to include on our result.

The method for calculating this systematic is the same as for calculating the error on the
Aπs cancellation described in the previous section. The major difference is that instead of
comparing a distribution within a specific Dalitz bin to the global distribution, we compare
two different distributions in a specific bin: plike vs. punlike and cos θlike vs. cos θunlike. We
once again choose 25 bins in the momentum and cosine histograms, but we take 3% (instead
of 5%) as the asymmetry scale.

Table 8.3 shows the numbers used in the calculation of this systematic uncertainty for
each Dalitz bin. It also compares the systematic uncertainty from this calculation to the
statistical error in each bin. The largest RMS and largest systematic we observe are 0.00443
and 0.43% (respectively), both in bin 2, which has the lowest statistics of any bin. This is
a fairly conservative estimate and is still much smaller than the statistical error in that bin
(4.3%).

i RMSi1 RMSi2 Syst. uncert. (%) Stat. uncert. (%)

0 0.00239 0.00255 0.26 5.8
1 0.00073 0.00114 0.10 0.40
2 0.00374 0.00443 0.43 4.3
3 0.00265 0.00085 0.21 0.34
4 0.00162 0.00142 0.16 2.8
5 0.00206 0.00088 0.17 0.62

Table 8.3: Systematic uncertainty due to imperfect AiD0 cancellation in each bin, determined
from truth-tagged signal MC. The statistical errors for the results in data (see section 7.3)
are shown for comparison.

8.5 Yield systematics

A bias in our fitting method (described in subsection 5.2.4 and section 7.1) could introduce
systematic effects into our calculations of AiCP ,loc. To investigate the scale of these effects,
we vary the fitting and yield calculation methods in several ways and redo the analysis on
data with these new methods.

Each yield systematic requires 24 new fits. We perform four different systematic varia-
tions, for a total of 96 new fits. Rather than show all 96 of these plots, which will not add
much to the information already given in the tables below, we choose region A of bin 1 as an
example. Figure 8.3 (Figure 8.4) shows the four variations on the D0 (D0) fit in that region.
The results in other regions are similar.
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8.5.1 Vary signal shape

The first variation is to change the signal function in fits using a Johnson’s SU -distribution.
We change the signal function to either a single or double Gaussian for each of these fits
(depending on which variation still provides good fit quality) and redo the analysis. Table 8.4
(Table 8.5) summarizes the new fit functions used in region A (B) to determine signal yield.
Note that in region A of bins 0, 2, and 4, we could not modify the signal function because a
single Gaussian was already being used. This is the simplest possible signal function, used
in these regions because the statistics are not high enough to support additional parameters.
Any variation would require introducing more parameters to the signal function and was not
feasible in these three cases.

i Signal function Background function

0 Single Gaussian

3/2-power threshold function
1 Double Gaussian
2 Single Gaussian
3 Double Gaussian
4 Single Gaussian

5 Double Gaussian Single Gaussian and 3/2-power threshold function

Table 8.4: Fit functions for fits to D0 and D0 ∆M plots in data in region A for all six
bins. Functions in bold have been changed from those described in Table 7.1 as a systematic
check.

i Signal function Background function

0 Single Gaussian

3/2-power threshold function
1 Double Gaussian
2 Single Gaussian
3 Double Gaussian
4 Single Gaussian

5 Double Gaussian Single Gaussian and 3/2-power threshold function

Table 8.5: Fit functions for fits to D0 and D0 ∆M plots in data in region B for all six
bins. Functions in bold have been changed from those described in Table 7.2 as a systematic
check.

The raw yields and fit quality (i.e., χ2/n.d.f.) from this variation on the nominal analysis
are listed in Table 8.6 (Table 8.7) for region A (B). The final asymmetries, including a
comparison to the nominal result from section 7.3, are shown in Table 8.8.

8.5.2 Vary background shape

The second variation is to change the background function in the fits. We replace the 3/2-
power threshold function with a 5/2-power threshold function in all fits, which adds one
additional background shape parameter to each fit.
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A D0 D0

AiA (%)
i χ2/n.d.f. niA χ2/n.d.f. n̄iA
0 1.26 561± 57 1.11 394± 57 17.4± 8.6
1 1.19 12293± 186 1.13 11653± 166 2.7± 1.0
2 1.05 485± 56 1.18 376± 43 12.7± 8.0
3 1.10 15974± 178 1.25 15678± 174 0.94± 0.79
4 1.15 1124± 75 1.08 1151± 76 −1.2± 4.7
5 0.94 20535± 308 1.00 20669± 320 −0.3± 1.1

Table 8.6: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region A
for all six bins with the signal function changed as a systematic.

B D0 D0

AiB (%)
i χ2/n.d.f. niB χ2/n.d.f. n̄iB
0 0.99 945± 60 0.97 799± 55 8.4± 4.6
1 1.22 24255± 215 1.39 24045± 226 0.43± 0.65
2 1.32 1596± 62 1.07 1659± 62 −1.9± 2.7
3 1.20 23251± 212 1.33 23296± 234 −0.10± 0.68
4 1.32 2622± 83 1.29 2310± 80 6.3± 2.3
5 1.08 16628± 254 1.07 15332± 287 4.1± 1.2

Table 8.7: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region B
for all six bins with the signal function changed as a systematic.

i AiA (%) AiB (%) A∗ibin (%) AiCP ,loc (%) Diff. from nominal

0 17.4± 8.6 8.4± 4.6 12.9± 4.9 11.4± 4.8 2.6
1 2.7± 1.0 0.43± 0.65 1.55± 0.61 0.05± 0.43 0.192
2 12.7± 8.0 −1.9± 2.7 5.4± 4.2 3.9± 4.1 0.3
3 0.94± 0.79 −0.10± 0.68 0.42± 0.52 −1.08± 0.35 0.27
4 −1.2± 4.7 6.3± 2.3 2.6± 2.6 1.1± 2.5 −1.0
5 −0.3± 1.1 4.1± 1.2 1.86± 0.81 0.36± 0.56 −0.43

Table 8.8: Final values for AiCP ,loc in each Dalitz bin with the signal function varied as
a systematic. The average asymmetry across the plot is Aavg = (1.50 ± 0.37)%. AiCP ,loc is
calculated by subtracting Aavg from A∗ibin for each bin. The rightmost column is the difference
between the central value of AiCP ,loc in this table and AiCP ,loc from Table 7.5.

The raw yields and fit quality (i.e., χ2/n.d.f.) from this variation on the nominal analysis
are listed in Table 8.9 (Table 8.10) for region A (B). The final asymmetries, including a
comparison to the nominal result from section 7.3, are show in Table 8.11.

8.5.3 Widen M(π+π−π0) signal region

The third variation is to widen the M(π+π−π0) signal region, defined in subsection 4.2.7.
This effectively increases the amount of background under the ∆M peak, so it tests how
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A D0 D0

AiA (%)
i χ2/n.d.f. niA χ2/n.d.f. n̄iA
0 1.19 610± 61 1.07 434± 64 16.9± 8.7
1 1.17 12188± 175 1.14 11600± 164 2.5± 1.0
2 1.02 520± 60 1.16 399± 45 13.7± 7.9
3 1.15 15862± 177 1.20 15909± 191 −0.15± 0.82
4 1.05 1193± 79 1.03 1209± 81 −0.7± 4.7
5 0.87 20919± 368 1.03 20122± 386 1.9± 1.3

Table 8.9: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region A
for all six bins with the background function changed as a systematic.

B D0 D0

AiB (%)
i χ2/n.d.f. niB χ2/n.d.f. n̄iB
0 0.97 1061± 108 0.96 1076± 305 −1± 15
1 1.10 24357± 224 1.41 24090± 239 0.55± 0.68
2 1.30 1731± 191 1.05 1805± 100 −2.1± 3.8
3 1.19 23150± 214 1.34 23003± 229 0.32± 0.68
4 1.12 3354± 220 1.10 2812± 185 8.8± 4.6
5 1.09 16448± 525 1.07 15568± 195 2.7± 1.7

Table 8.10: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region B
for all six bins with the background function changed as a systematic.

i AiA (%) AiB (%) A∗ibin (%) AiCP ,loc (%) Diff. from nominal

0 16.9± 8.7 −1± 15 8.1± 8.7 6.5± 8.6 −2.3
1 2.5± 1.0 0.55± 0.68 1.51± 0.61 −0.05± 0.43 0.09
2 13.7± 7.9 −2.1± 3.8 5.8± 4.4 4.3± 4.3 0.7
3 −0.15± 0.82 0.32± 0.68 0.09± 0.53 −1.48± 0.36 −0.13
4 −0.7± 4.7 8.8± 4.6 4.1± 3.3 2.5± 3.1 0.4
5 1.9± 1.3 2.7± 1.7 2.3± 1.1 0.78± 0.75 −0.01

Table 8.11: Final values for AiCP ,loc in each Dalitz bin with the background function varied
as a systematic. The average asymmetry across the plot is Aavg = (1.56± 0.45)%. AiCP ,loc is
calculated by subtracting Aavg from A∗ibin for each bin. The rightmost column is the difference
between the central value of AiCP ,loc in this table and AiCP ,loc from Table 7.5.

sensitive our yield fits are to the background level. None of the fit functions from Table 7.1
or Table 7.2 are changed, but the M(π+π−π0) signal region over which the ∆M distribution
is plotted is widened from 1.83 GeV/c2 < M(π+π−π0) < 1.89 GeV/c2 to 1.815 GeV/c2 <
M(π+π−π0) < 1.905 GeV/c2 (i.e., the width is increased by 50%). Figure 8.1 shows the
global M(π+π−π0) and ∆M plots with this new signal region in MC; compare to Figure 4.7.
Figure 8.2 shows the data–MC comparisons of the mass plots for this wider signal region;
compare to Figure 4.8. As in subsection 4.2.7, we observe good data–MC agreement between
the background levels in both plots but a discrepancy in the signal peak.
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Figure 8.1: Signal-enhanced M(π+π−π0) and ∆M plots of candidates in MC retained after
all selection criteria are applied. The dotted vertical lines indicate the signal regions. The
M(π+π−π0) signal region is 50% wider than in Figure 4.7, which effectively increases the
background in the ∆M plot.

Figure 8.2: Signal-enhanced M(π+π−π0) and ∆M plots of candidates in MC and data over
a wider M(π+π−π0) signal region.

The raw yields and fit quality (i.e., χ2/n.d.f.) from this variation on the nominal analysis
are listed in Table 8.12 (Table 8.13) for region A (B). The final asymmetries, including a
comparison to the nominal result from section 7.3, are show in Table 8.14.

8.5.4 Use finer ∆M binning

The fourth and final yield systematic we perform is to use a finer binning (i.e., increase the
number of bins) in the ∆M histograms (this is different from the Dalitz plot bins – those
remain unchanged). Since the yield fits we perform are binned log-likelihood fits, if the
binning in the ∆M histograms is too wide, it could impact fit quality, especially in terms of
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A D0 D0

AiA (%)
i χ2/n.d.f. niA χ2/n.d.f. n̄iA
0 1.28 600± 69 0.99 427± 64 16.8± 9.2
1 1.05 13629± 193 1.12 12917± 184 2.7± 1.0
2 1.12 508± 60 1.15 443± 53 6.8± 8.4
3 1.06 17356± 198 1.16 17304± 209 0.15± 0.83
4 0.97 1131± 86 1.17 1205± 90 −3.2± 5.3
5 1.08 22093± 390 1.11 20529± 221 3.7± 1.0

Table 8.12: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region A
for all six bins with M(π+π−π0) signal region widened as a systematic.

B D0 D0

AiB (%)
i χ2/n.d.f. niB χ2/n.d.f. n̄iB
0 1.04 1052± 85 1.00 1020± 148 1.5± 8.3
1 1.07 27805± 261 1.35 27440± 277 0.66± 0.69
2 1.10 1940± 105 1.01 2019± 113 −2.0± 3.9
3 1.16 25832± 245 1.10 25629± 264 0.39± 0.70
4 1.12 3169± 166 1.14 2666± 145 8.6± 3.7
5 1.29 17282± 322 1.02 16326± 401 2.8± 1.5

Table 8.13: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region B
for all six bins with M(π+π−π0) signal region widened as a systematic.

i AiA (%) AiB (%) A∗ibin (%) AiCP ,loc (%) Diff. from nominal

0 16.8± 9.2 1.5± 8.3 9.2± 6.2 7.4± 6.1 −1.4
1 2.7± 1.0 0.66± 0.69 1.67± 0.61 −0.14± 0.42 0.00
2 6.8± 8.4 −2.0± 3.9 2.4± 4.6 0.6± 4.5 −3.0
3 0.15± 0.83 0.39± 0.70 0.27± 0.54 −1.54± 0.36 −0.19
4 −3.2± 5.3 8.6± 3.7 2.7± 3.3 0.9± 3.2 −1.2
5 3.7± 1.0 2.8± 1.5 3.26± 0.93 1.45± 0.66 0.66

Table 8.14: Final values forAiCP ,loc in each Dalitz bin with M(π+π−π0) signal region widened
as a systematic. The average asymmetry across the plot is Aavg = (1.81± 0.41)%. AiCP ,loc is
calculated by subtracting Aavg from A∗ibin for each bin. The rightmost column is the difference
between the central value of AiCP ,loc in this table and AiCP ,loc from Table 7.5.

the signal width. To check that these binning effects are not present, we decrease the bin
width from 0.07 MeV/c2 to 0.05 MeV/c2 and repeat the analysis.

The raw yields and fit quality (i.e., χ2/n.d.f.) from this variation on the nominal analysis
are listed in Table 8.15 (Table 8.16) for region A (B). The final asymmetries, including a
comparison to the nominal result from section 7.3, are show in Table 8.17.
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A D0 D0

AiA (%)
i χ2/n.d.f. niA χ2/n.d.f. n̄iA
0 1.25 555± 58 1.08 396± 58 16.7± 8.7
1 1.08 12087± 163 1.03 11562± 156 2.22± 0.95
2 1.07 486± 56 1.15 380± 43 12.2± 8.0
3 1.07 15094± 172 1.08 15803± 179 0.32± 0.78
4 1.06 1129± 75 0.98 1154± 76 −1.1± 4.7
5 0.97 21099± 355 1.04 20333± 352 1.8± 1.2

Table 8.15: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region A
for all six bins with the number of ∆M histogram bins increased as a systematic.

B D0 D0

AiB (%)
i χ2/n.d.f. niB χ2/n.d.f. n̄iB
0 0.96 989± 83 1.02 930± 130 3.1± 8.1
1 1.04 24439± 217 1.19 24076± 226 0.75± 0.65
2 1.23 1678± 79 0.96 1758± 87 −2.3± 3.4
3 1.12 23240± 209 1.32 23137± 222 0.22± 0.66
4 1.09 3070± 154 1.01 2573± 120 8.8± 3.4
5 1.12 16563± 288 1.10 15783± 342 2.4± 1.4

Table 8.16: Fit results and raw asymmetries from fits to D0 and D0 ∆M plots in region B
for all six bins with the number of ∆M histogram bins increased as a systematic.

i AiA (%) AiB (%) A∗ibin (%) AiCP ,loc (%) Diff. from nominal

0 16.7± 8.7 3.1± 8.1 9.9± 6.0 8.4± 5.9 −0.4
1 2.22± 0.95 0.75± 0.65 1.48± 0.58 −0.05± 0.40 0.095
2 12.2± 8.0 −2.3± 3.4 5.0± 4.3 3.4± 4.2 −0.2
3 0.32± 0.78 0.22± 0.66 0.27± 0.51 −1.26± 0.35 0.09
4 −1.1± 4.7 8.8± 3.4 3.9± 2.9 2.3± 2.7 0.2
5 1.8± 1.2 2.4± 1.4 2.13± 0.92 0.60± 0.64 −0.19

Table 8.17: Final values forAiCP ,loc in each Dalitz bin with the number of ∆M histogram bins
increased as a systematic. The average asymmetry across the plot is Aavg = (1.53± 0.40)%.
AiCP ,loc is calculated by subtracting Aavg from A∗ibin for each bin. The rightmost column is
the difference between the central value of AiCP ,loc in this table and AiCP ,loc from Table 7.5.

8.5.5 Summary

Table 8.18 compares the results from the four yield systematics to the nominal result. Ta-
ble 8.19 explicitly compares the rightmost columns from Tables 8.8, 8.11, 8.14, and 8.17
and gives the final systematic uncertainty: the differences in the central values of AiCP ,loc

between the nominal analysis and the four variations in each bin are added in quadrature.
In all cases, this is a conservative estimate of the error from our fitting method, since it does
not take into account the direction of the difference in the central values.
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AiCP ,loc (%)

i
Nominal
result

Vary signal
function

Vary bkg.
function

Wider signal
region

Smaller bins

0 8.8± 5.8 11.4± 4.8 6.5± 8.6 7.4± 6.1 8.4± 5.9

1 −0.14± 0.40 0.05± 0.43 −0.05± 0.43 −0.14± 0.42 −0.05± 0.40

2 3.6± 4.3 3.9± 4.1 4.3± 4.3 0.6± 4.5 3.4± 4.2

3 −1.35± 0.34 −1.08± 0.35 −1.48± 0.36 −1.54± 0.36 −1.26± 0.35

4 2.1± 2.8 1.1± 2.5 2.5± 3.1 0.9± 3.2 2.3± 2.7

5 0.78± 0.62 0.36± 0.56 0.78± 0.75 1.45± 0.66 0.60± 0.64

Table 8.18: Comparison of AiCP ,loc from systematic variations in yield calculation methods.
Uncertainties are all statistical only.

AiCP ,loc (%) Diff. from nominal AiCP ,loc (%)

i
Nominal
result

Vary sig.
function

Vary bkg.
function

Wider sig.
region

Smaller
bins

Syst. un-
cert. (%)

0 8.8± 5.8 +2.6 −2.3 −1.4 −0.4 3.8

1 −0.14± 0.40 +0.19 +0.09 0.00 +0.095 0.23

2 3.6± 4.3 +0.3 +0.7 −3.0 −0.2 3.1

3 −1.35± 0.34 +0.27 +0.13 +0.19 +0.09 0.37

4 2.1± 2.8 −1.0 +0.4 −1.2 +0.2 1.6

5 0.78± 0.62 −0.43 +0.01 +0.66 −0.19 0.81

Table 8.19: Calculation of systematic uncertainty from variations in yield calculation meth-
ods. Uncertainties on the nominal results are statistical only.

8.6 Consistency checks

We perform several checks on our method for which a systematic uncertainty is not assigned.
These studies are to check for aberrations in our data sample rather than to assess systematic
uncertainties in our fitting method.

8.6.1 Analyze two pieces of dataset separately

As described in section 4.1, the 362 fb−1 used for the analysis in this thesis can be naturally
split into two subsets, one that is 187 fb−1 and the other that is 175 fb−1. We performed
the analysis procedure from chapter 5 on each of these subsets separately and compared the
values for AiCP ,loc to the result in Table 7.5. The comparisons are shown in Table 8.20. As
expected, the asymmetries in the two smaller subsets differ. The variation in the central
values is greater in bins with lower statistics, and the error on the central values is higher in
the two smaller subsets than in the combined sample. Only in bin 4 is the difference between
the central values in the two subsets not consistent with zero; this may be due to the low
statistics in that bin which made it difficult to achieve a reasonable fit in the two smaller
subsets independently.
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a) b)

c) d)

Figure 8.3: D0 fits in bin 1, region A for a) double Gaussian signal function (instead of
Johnson’s SU -distribution), b) 5/2-power threshold background (instead of 3/2), c) wider
M(π+π−π0) signal region, and d) 0.05 MeV/c2 ∆M bin width (instead of 0.07 MeV/c2).

AiCP ,loc (%)

i
Nominal
result

Result from
187 fb−1 subset

Result from
175 fb−1 subset

Difference

0 8.8± 5.8 14.3± 6.0 8.5± 7.9 5.8± 9.9

1 −0.14± 0.40 −0.58± 0.55 0.08± 0.59 −0.66± 0.81

2 3.6± 4.3 −2.9± 6.0 10.7± 5.7 −13.6± 8.3

3 −1.35± 0.34 −1.32± 0.48 −1.45± 0.50 0.13± 0.69

4 2.1± 2.8 11.4± 4.1 −8.8± 4.2 20.2± 5.9

5 0.78± 0.62 0.30± 0.82 1.48± 0.99 −1.2± 1.3

Table 8.20: Comparison of AiCP ,loc in 362 fb−1 dataset vs. 187 fb−1 and 175 fb−1 subsets. The
rightmost column is the difference between the asymmetries in each of the subsets.
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a) b)

c) d)

Figure 8.4: D0 fits in bin 1, region A for a) double Gaussian signal function (instead of
Johnson’s SU -distribution), b) 5/2-power threshold background (instead of 3/2), c) wider
M(π+π−π0) signal region, and d) 0.05 MeV/c2 ∆M bin width (instead of 0.07 MeV/c2).

8.6.2 Randomly assign tagged charge

Other than performing the analysis on MC (results shown in chapter 6), another way to
verify that our method does not give false positive results is, rather than separate the sig-
nal candidates based on the charge of the slow pion (the “tagged charge”), separate them
randomly. Effectively, instead of performing fits to D0 and D0 candidates separately, we
perform fits to one randomly selected half of the dataset and the corresponding half. Assign-
ing the tagged charge this way should remove all asymmetries, nuisance asymmetries and
potentially real CPV, from all parts of the analysis. We expect to see AiA, AiB, A∗ibin, Aavg,
and AiCP ,loc all consistent with zero.

As a proxy for randomness, we assign candidates based on whether their event number
is odd or even. Event number is a preassigned property of our data and is obviously not
random, but importantly there are almost exactly the same number of even event numbers
as odd ones, and event number is not correlated with tagged charge. Additionally, using a
preassigned variable has a key advantage over generating a new random number, which is
that candidates will be assigned to the same subset every time.
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Table 8.21 shows AiA, AiB, A∗ibin, Aavg, and AiCP ,loc from performing the analysis on this
randomly assigned dataset. As expected, all asymmetries are consistent with zero. Note
in particular that here Aavg = (−0.50 ± 0.41)%, while in the nominal analysis Aavg =
(1.60 ± 0.40)%, which is 4σ from zero. Aavg includes multiple nuisance asymmetries: we
would not expect it to be zero under normal circumstances, but randomly assigning the
tagged charge should remove all nuisance asymmetries. Since we observe Aavg and all other
asymmetries to be consistent with zero, we conclude that all nuisance asymmetries have
been removed, and we take this check as further evidence that our method does not give
false positive results.

i AiA (%) AiB (%) A∗ibin (%) AiCP ,loc (%)

0 −4.5± 8.2 7.1± 7.8 1.3± 5.6 1.8± 5.6
1 0.22± 0.95 −0.43± 0.65 −0.11± 0.58 0.39± 0.40
2 −9.9± 8.0 −0.5± 3.4 −5.2± 4.3 −4.7± 4.3
3 −0.99± 0.78 −0.57± 0.65 −0.78±−0.51 −0.28± 0.34
4 −2.8± 4.6 −1.2± 3.4 −2.0± 2.9 −1.5± 2.8
5 −0.4± 1.2 −0.08± 1.55 −0.23± 0.98 0.27± 0.68

Table 8.21: Results from randomly assigning tagged charge. Aavg = (−0.50±0.41)%. AiCP ,loc

is calculated by subtracting Aavg from A∗ibin for each bin.

8.6.3 Vary yield calculation method

In our nominal analysis, we calculate the signal yield by using the signal normalization
parameter from the fit (see subsection 5.2.4 for description of relevant parameters and calcu-
lation). Another way to calculate signal yield would be to use the total number of events in
the histogram minus the background yield, calculated from the background function in the
fit. Table 8.22 shows the results using this variation on the yield calculation method. The
central values move almost undetectably from the nominal analysis, indicating our fits are
correctly modeling the entire histogram range. The difference in the central values could be
taken as a systematic uncertainty, but the difference is negligible.

AiCP ,loc (%)

i
Nominal
result

Result from changing
calculation method

0 8.8± 5.8 8.7± 5.1

1 −0.14± 0.40 −0.14± 0.10

2 3.6± 4.3 3.6± 3.3

3 −1.35± 0.34 −1.353± 0.082

4 2.1± 2.8 2.1± 2.2

5 0.78± 0.62 0.79± 0.51

Table 8.22: Comparison of AiCP ,loc in nominal results versus using the histogram integral
and background function to calculate yield.
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8.7 Results with systematic uncertainties

To obtain one number per bin for the systematic uncertainty, we add in quadrature the
uncertainties determined in sections 8.2, 8.3, 8.4, and 8.5. Table 8.23 summarizes the sources
of systematic uncertainty and the final result, using σ[source] as a shorthand for “the systematic
uncertainty on our results associated with a particular source.” Table 8.24 presents the
results previously shown in Table 7.5 but with full statistical and systematic uncertainties.

i σAFB
σAπs σAi

D0
σyield Total syst. uncert.

0 0.14 0.28 0.26 3.8 3.8
1 0.069 0.12 0.10 0.23 0.29
2 0.11 0.42 0.43 3.1 3.2
3 0.16 0.15 0.21 0.37 0.48
4 0.080 0.19 0.16 1.6 1.8
5 0.18 0.22 0.17 0.81 0.88

Table 8.23: Summary of all sources of systematic uncertainties. The right-most column is
the sum in quadrature of the previous four columns.

i Ai
CP,loc (%)

0 8.8± 5.8± 3.8
1 −0.14± 0.40± 0.29
2 3.6± 4.3± 3.2
3 −1.35± 0.34± 0.48
4 2.1± 2.8± 1.8
5 0.78± 0.62± 0.88

Table 8.24: Final values for AiCP ,loc in each Dalitz bin. The first uncertainty is statistical,
the second is systematic. See Table 7.5 for detailed calculations of central values.

Taking into account systematic as well as statistical uncertainties, all results are consistent
with zero. We have used conservative estimates for the systematic uncertainties. In most
bins, we observe the systematic uncertainty to be lower than the statistical one. Only in bins
3 and 5 is the systematic uncertainty higher. Many of the systematic uncertainties are based
on data such that they would decrease with a larger sample size. For example, changes in the
central value as a result of modifying the yield calculation method (currently the dominant
contribution to the systematic uncertainty) are smaller for bins 1, 3, and 5, i.e., the higher
statistics bins. This suggests that in future iterations of this analysis done with higher
statistics (and perhaps a different binning choice to maximize the signal-to-background ratio
in every bin) the systematic uncertainty in each bin would be lower.
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Chapter 9

Summary and Outlook

This final chapter will summarize the main points of this thesis and look ahead to how the
analysis we performed could be expanded in the future.

In chapter 1 and chapter 2, we provided an overview of the field of particle physics and its
decades-long search for charge-parity violation (CPV) as well as a discussion of how Dalitz
analyses have been used in the past. Searching for CPV beyond the Standard Model (SM)
is one of the main research goals of the Belle II physics program [27], and Dalitz analyses
like the one described in this thesis are one avenue for these studies. More detail on Dalitz
analyses is provided in Appendix A.

In chapter 3, we described the SuperKEKB accelerator and the Belle II detector with
which the data used for this analysis was collected. SuperKEKB is an upgrade to the KEKB
accelerator, and Belle II is similarly an upgrade to Belle. The physics program that Belle II
aims to undertake, including the analysis described in this thesis, relies on the excellent
performance of the Belle II detector and its many components.

In chapter 4 and chapter 5, we discussed our procedure for event selection on the signal
mode D0 → π+π−π0 and described in detail our analysis methodology. The methodology
allows us to calculate local CPV in a particular region of a Dalitz plot while carefully ac-
counting for nuisance asymmetries. This method uses yield fits to allow for asymmetry
measurements even in the presence of non-negligible or peaking background. Dalitz analysis
techniques used in the past are often dealing with relatively low background levels, so they
do not need to use fits to account for them. They are also sometimes cavalier about how nui-
sance asymmetries, particularly the internal D0 asymmetry, may bias their measurements.
Additionally, many types of Dalitz analyses are unavoidably model-dependent or rely heavily
on simulated data for some aspect of their results. Our method is entirely data-driven except
for some calculations of systematic uncertainties, and thus it complements the work done by
other experiments. Appendix A and Appendix B discuss other types of Dalitz analyses in
detail and contrast them with the methodology used in this thesis.

In chapter 6, we tested our analysis methodology on simulated Monte-Carlo data (MC)
to verify that we did not see false-positive results. Since Belle II MC contains no CPV in
the decay D0 → π+π−π0, all asymmetries in the MC are nuisance asymmetries, and our final
result for the asymmetry due to CPV should be consistent with zero. As shown in Table 6.5,
all results in MC are consistent with the no-CPV hypothesis, indicating that our method
effectively cancels all nuisance asymmetries and does not lead to false positives.
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In chapter 7 we performed our analysis on 362 fb−1 of Belle II data collected at the
Υ(4S) resonance between 2019 and 2022, and in chapter 8 we calculated the systematic
uncertainties to include on the results. Table 8.24 shows the final asymmetry results with
both statistical and systematic uncertainties included. All asymmetries are consistent with
the no-CPV hypothesis.

Given the relatively small dataset we were working with and the fact that other collabo-
rations working with similarly sized datasets have never observed CPV in this mode [38–40],
it was very unlikely we would be able to achieve high enough sensitivity to observe CPV
with this analysis at this stage in Belle II data-taking. However, the purpose of this analysis
is not to be the final word on D0 → π+π−π0 studies at Belle II : the purpose is to start the
analysis of this mode with early Belle II data and to develop a methodology that can be
adapted and scaled up as the experiment continues. The goal of the experiment is to collect
50 ab−1 of data by the end of its run [29]; this is a more than 100-fold increase in the size
of the data sample compared to this thesis. Both the statistical and systematic uncertainty
associated with the final asymmetry measurements in this analysis are expected to decrease
as the amount of data increases. Additionally, in Appendix C, we propose some possible
techniques for analyses that could supplement the one in this thesis by providing information
about average CPV that is not localized to a particular Dalitz bin.

The Belle II experiment is still relatively new, having been taking physics data only since
2019. It has published several physics results already, but the fact remains that, for some
analyses, more data is required before a reasonable result can be achieved. That is the case
for the analysis described in this thesis. A larger dataset could improve the precision on
our results considerably, but with the current dataset, we were still able to develop a novel,
data-based Dalitz plot analysis method that will scale up as Belle II collects more data and
be a valuable part of the Belle II physics program.
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Appendix A

Dalitz Plots

A.1 History

The eponymous R.H. Dalitz pioneered the technique now known as Dalitz plot analysis in the
1950s [31, 32]. Although modern analyses use the invariant mass squared of pairs of decay
products as axes, Dalitz’s original methodology used a ternary plot with the dimensionless
variables x and y. Consider a three-body decay of a particle A with mass mA. B, C, and D
are spin-0 particles of masses mB, mC , and mD, respectively. The kinetic energies of B, C,
and D are written TB, TC , and TD. Dalitz then defined x and y as:

x =

√
3(TB − TC)

E

y =
2TD − TC − TB

E

(A.1)

where E is the energy released in the decay. If the rest frame of the parent A is used to
calculate the kinetic energies of the daughters, then:

TB =
m2
A +m2

B −m2
CD

2mA

−mB (A.2)

and similarly for TC and TD. Equation A.2 is derived from treating the decay A→ B C D
as a two-body decay into B (mB) and the CD system (mCD).

Equation A.2 is a Lorentz invariant quantity, even though it is calculated in a specific rest
frame, and therefore it and Equation A.1 can be used even for relativistic analyses. However,
if the invariant masses squared of pairs of decay products are used as axes instead, then it
is easier to determine the mass of any intermediate resonance, which is usually a major goal
of Dalitz analyses [34]. This is the main reason analysts moved away from Dalitz’s original
ternary plot and towards plots using invariant pair masses squared as the axes.

Figure A.1 shows the first Dalitz plot, used to model the 3π decay of a kaon, then called a
τ meson. Since the kinetic energies of the particles in the decay Dalitz was considering could
not exceed 50 MeV, he did not use a relativistic description of the decay. It was Fabri who
published the relativistic corrections in 1954 [34, 61]. Researchers continued to use Dalitz’s
technique mostly to analyze τ meson (kaon) decays for almost two decades after Dalitz’s
initial paper. Only in the 1970s, did Dalitz techniques become more widely used.
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Figure A.1: The first description of a Dalitz plot, using the variables x and y to visualize a
kaon (at the time known as a τ meson) decay [31, 32].

A.2 Types of Dalitz analyses

As mentioned in chapter 2, several types of Dalitz analyses are common in studies of multi-
body decays. The two “traditional” types of Dalitz analyses are a binned analysis [39] and
an amplitude analysis (also called an amplitude model or isobar model) [36, 38, 42, 44, 46].
(Two “non-traditional” types of Dalitz analyses are discussed in Appendix B.)

A binned analysis is in principle straightforward: the Dalitz plot is divided into many,
usually O(100) or greater, bins, and a fractional asymmetry is calculated directly in each
bin. Usually bins are efficiency-corrected and background-subtracted before the fractional
asymmetry is calculated. Efficiency-corrected means that the reconstruction efficiency across
the Dalitz plot has been calculated (using MC) and efficiency effects are removed from
(divided out of) the data. Background-subtracted means the number of events in each bin
has been corrected for background contamination. One way to do this is by looking at a
sideband region in the plot of the decaying particle’s mass, where only background events are
expected to occur, and subtracting the number of events in the sideband from the number of
events in the signal region. (This is also aptly called “sideband-subtraction.”) Note that this
method of correcting for background contamination only works if the background is linear
and there is no peaking background underneath the signal that does not occur in the mass
sidebands.

An amplitude analyses is not as straightforward as a binned analysis, but it is required
if the goal is to measure the amplitude and phase of resonances in the decay. A Dalitz
decay typically involves several intermediate resonances. For example, the D0 → π+π−π0

decay discussed in this thesis is dominated by three intermediate ρ resonances, where we
observe D0 → ρ(ππ)π (all possible ρπ charge combinations occur) instead of D0 → π+π−π0

directly. Other resonances are also present. Rather than calculating an asymmetry in each
bin, an amplitude analysis involves performing a 2-D fit to the Dalitz plot and calculating
the amplitude and relative phase of each resonance plus a non-resonant component. Fit
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fractions for the resonances can then be determined. A fit fraction is similar to a branching
fraction but for a resonance in a Dalitz plot. The fit fraction FFi for amplitude i is given by

FFi =

∫
|ciAi|2 dΦ∫
|
∑

j cjAj|2 dΦ
(A.3)

where ci is a complex amplitude, Ai contains kinematic dependencies for amplitude i (e.g.,
Breit-Wigner resonance shapes and spin factors), and dΦ indicates phase space. Impor-
tantly, the sum of the FFi is not one due to the presence of interference cross-terms in the
denominator.

Amplitude analyses have also been used to search for CP asymmetries: a 2-D fit is per-
formed separately to the Dalitz plot of a particle and its charge-conjugate, and the amplitudes
and phases of the resonances are compared. A significant difference in either for any indi-
vidual resonance would be evidence for CPV. However, the unavoidable model dependence
of this method has been criticized as making it a poor choice for CP asymmetry studies,
since using an amplitude model forces the analyst to make particular assumptions about the
resonances present in a decay [41]. In addition to model dependence, the commonly-used
“sum-of-Breit-Wigners” treatment, often referred to as an isobar analysis, violates unitarity.
The K-matrix formalism restores two-body unitarity, but model dependence remains [33].

Recently, new types of Dalitz analyses, including a variation on a binned analysis referred
to as the “Miranda method” and a novel approach called the “energy test” have been used
in several studies [41, 62]. These new methods are discussed in detail in Appendix B.
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Appendix B

Miranda Method and Energy Test
Discussion

Analyses of D0 → π+π−π0 in the last fifteen years have made use of two novel techniques for
Dalitz analyses: the Miranda method and the energy test. This appendix discusses each of
these techniques in more detail, including their advantages and limitations. In section B.3,
these techniques are compared to the analysis method used in this thesis.

B.1 Miranda method

The “Miranda method” was introduced by Bediaga et al. in a 2009 paper [62]. Taking a
lesson from astronomers, the authors proposed analyzing the significance rather than the
fractional asymmetry to determine whether a CP asymmetry is present in a Dalitz plot and,
if it is, where it occurs. For a bin i with N(i) events of one type and N̄(i) charge-conjugate
events, the fractional asymmetry is defined as:

∆(i) ≡ N(i)− N̄(i)

N(i) + N̄(i)
(B.1)

and the significance is defined as:

SCP (i) ≡ N(i)− N̄(i)√
N(i) + N̄(i)

(B.2)

where the denominator in Equation B.2 is the standard deviation of the numerator. Equa-
tion B.1 is the quantity most traditional binned analyses calculate, and what we use in this
thesis. Dividing the Dalitz plot into a large number of bins, limited by the (reasonable but
arbitrary) requirement that each bin contain at least 20 entries, SCP (i) is calculated for each
bin. The distribution of this variable is plotted for all bins and fit to a Gaussian; if an
acceptable fit to a Gaussian cannot be achieved, this is evidence for the presence of CPV.
This procedure can be repeated for subdomains of the Dalitz plot to isolate the region in
which CPV occurs. Bediaga et al. test this procedure on toy MC samples of B± → K±π+π−

and D± → π±π+π− decays, with and without CPV. They demonstrate that this procedure
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does not give false positives yet is sensitive to CPV as small as a 3.6◦ phase difference in the
ρ0 resonance in the decay D± → π±π+π− [62]. Figure B.1 shows these findings. The shape
of the SCP (i) distributions is clearly not well-represented by a Gaussian (overlaid on each
SCP (i) plot), indicating the presence of CPV.

Figure B.1: Dalitz plot of D± → π±π+π− (top left) in a model with a 1% (3.6◦) phase
difference in the ρ0 amplitude and SCP (i) distributions for the whole plot (top right), region
I (bottom left), and region II (bottom right). This figure is taken from Bediaga et al. (2008),
and the misplaced x-axis label on the top-left plot is present in the original [62].

The first practical application of the Miranda method was an analysis of D0 → π+π−π0

and D0 → K−K+π0 done by BaBar in 2008 [38]. The authors used four different methods,
including a modified version of the Miranda method, to search for CPV. (The three additional
methods are an analysis of angular moments, a traditional amplitude analysis, and a Dalitz-
integrated analysis that looks for global CPV.) The Miranda method is modified in two
ways. First, a slightly different version of the significance is calculated in order to account
for different reconstruction efficiencies across the Dalitz plot as well as for global asymmetries,
such as the production asymmetry in the detector. The new formula for the significance is:

SCP,new(i) ≡ N(i)− αN̄(i)√
N(i) + α2N̄(i)

(B.3)

where α = N/N̄ , or the ratio of the total number of events type N to the total number of
charge-conjugate events N̄ , across the whole Dalitz plot. Second, rather than compare the

91



distribution of the significances to a Gaussian, the authors calculate a reduced χ2:

χ2/ν =

∑ν
i=1(SCP,new(i))2

ν
(B.4)

where ν = the number of degrees of freedom, i.e., the number of Dalitz plot bins. (The
authors use 1,429 bins for D0 → π+π−π0 and 726 bins for D0 → K−K+π0.) They then
compare the result of Equation B.4 in data to the mean of the distribution of this variable
for a large number of MC simulations with no CPV. From testing on MC simulations with
CPV, if the data contained a 1% difference in amplitude or a 1◦ phase change for any of
the main Dalitz resonances, they would expect to find a χ2/ν value about 2σ away from the
MC mean. They find no evidence for CPV with this method (or with any of the other three
methods they use).

In two papers from LHCb, the Miranda method is applied to D+ → K−K+π+ [47] and
D+ → π−π+π+ [48]. As in the BaBar paper, the authors of both of these papers use MC
samples with and without CPV to assess the sensitivity of the method, and they perform
the analysis on Cabibbo-favored (CF) control modes and sideband regions in the signal
mode to determine whether asymmetries from non-CPV sources (such as a forward-backward
production asymmetry) would cause false-positive results. The “mirandized” analysis of
D+ → K−K+π+ is performed with four different binning schemes, each expected to be
sensitive to CPV occurring in either amplitude or phase differences between the resonances.
The analysis of D+ → π−π+π+ uses the Miranda method with a single binning scheme
and compares the results to an unbinned analysis using the kth nearest neighbor technique
(this is similar to the energy test method, discussed below). Both the D+ → K−K+π+ and
D+ → π−π+π+ analyses use the same modified SCP,new(i) value defined in Equation B.3,
and for each binning scheme they fit the significances to a Gaussian with zero mean and unit
width. All distributions are consistent with a normal Gaussian. They also perform the same
reduced χ2 test used by BaBar and calculate a p-value for each distribution. All p-values
are consistent with the no-CPV hypothesis. In the unbinned analysis of D+ → π−π+π+,
results are also consistent with the no-CPV hypothesis.

B.1.1 Advantages

Unlike an amplitude analysis, the Miranda method is model-independent, which is an ad-
vantage when the goal is to look for CPV. Additionally, the Miranda method is expected to
be more sensitive to CPV than either an amplitude analysis or a traditional binned analy-
sis. The modified version of the Miranda method used by BaBar and LHCb also has the
advantage that global nuisance asymmetries can be taken into account without having to
calculate them explicitly. Testing the sensitivity of the method and its susceptibility to false
positives is also straightforward using MC simulations.

B.1.2 Limitations

Perhaps the most significant limitation of the Miranda method is that although it can iden-
tify if CPV is present in a Dalitz decay, it cannot give a number for the CP asymmetry.
(One could calculate an asymmetry for a selected region based on where outlier values of
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SCP,new(i) occur, but the choice of region would be biased by the previous results.) The
best it can do is, using MC simulations, determine the lower bound for the CPV sensitivity.
A separate analysis using a different method would need to be performed if evidence for
CPV in a particular region was found. Compounding this problem, MC simulations are not
model-independent. Since one of the main advantages of the Miranda method is its model-
independence, it is unfortunate that model-dependence is required in order to quantify the
level of CPV the analysis could reasonably detect.

Another disadvantage is the lack of detailed consideration for background contamination.
If the background levels in the Dalitz plot are negligible or if they are flat and able to be
accounted for via sideband-subtraction, then the Miranda method is able to account for
them, but there is no provision for non-negligible peaking background that necessitates a
fit to determine the signal yield. There is similarly no way to account explicitly for fake
asymmetries within the background; the best that can be achieved is to test the method’s
sensitivity to potential false positives using CF control modes and sideband regions in the
signal mode.

Although the modified version of the Miranda method used by BaBar and LHCb can
account for fake global asymmetries via the parameter α (see Equation B.3), another limita-
tion of this method is that it cannot account for fake asymmetries that may vary bin-to-bin
(such as an internal D0 asymmetry coming from the decay products’ differing momentum
spectra). Again, control modes must be used to demonstrate a lack of sensitivity to these
potential asymmetries, rather than accounting for them explicitly.

B.2 Energy test

The energy test was proposed by Williams in 2011 as an alternative to traditional Dalitz
analyses, including the Miranda method version of a binned analysis [41]. Williams demon-
strates that the energy test is expected to be more sensitive to CPV than either a binned
analysis or an amplitude model analysis. Table B.1 shows Williams’ observation of what
fraction of CP -violating datasets (from toy, Dalitz-model MC) are found to exhibit CPV at
the one, two, and three σ significance levels using the energy test as compared to a binned χ2

test. The energy test is demonstrated to be more reliable than a binned χ2 test at detecting
CPV .

test 1σ(%) 2σ(%) 3σ(%)
χ2 38± 5 3± 2 0± 1

energy 87± 3 52± 5 13± 3

Table B.1: Percentage of CP -violating datasets in which CPV is detected at the one, two,
and three σ significance levels with a binned χ2 test as compared to the energy test [41].

Figure B.2 shows the results from the Miranda method; the distribution of SCP,new(i)
values is consistent with a Gaussian even for Williams’ toy models that contain CPV. Only
the energy test is sensitive enough to reliably detect CPV at the level present in the toy
model (∼ 2% in terms of the integrated direct CP asymmetry).
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Figure B.2: SCP,new(i) distribution for the same datasets analyzed with a binned χ2 and the
energy test in Table B.1 [41].

The actual procedure for performing the energy test is similar to the modified Miranda
method used by BaBar [38]. In both cases, a test statistic is calculated in data and
compared to a distribution of that statistic in an ensemble of MC datasets that do not
contain CPV. In the modified Miranda method, that statistic is the reduced χ2/ν from
Equation B.4. In the energy test, the test statistic is:

T ≈ 1

n(n− 1)

n∑
i,j>i

ψ(∆~xij) +
1

n̄(n̄− 1)

n̄∑
i,j>i

ψ(∆~xij)−
1

nn̄

n,n̄∑
i,j

ψ(∆~xij) (B.5)

where ∆~xij = |~xi − ~xj| is the difference between the position of two points in the Dalitz
plot1 and n (n̄) is the number of events of one type (the charge conjugate type) over the
whole Dalitz plot. This is also similar to a kth nearest neighbor technique, except instead
of considering only nearest neighbors, every point in the Dalitz plot is compared to every
other point. The ≈ in Equation B.5 (as opposed to an =) indicates the method is developed
for a continuous distribution; summing over a finite number of points, albeit a very large
number of finite points, is an approximation. Williams suggests multiple ways to define the
weighting function ψ(∆~xij). The one that is later used by LHCb is:

ψ(∆~xij) = exp(−(∆~xij)
2/2σ2) (B.6)

where σ is a tunable parameter of the order of the mean distance to the kth nearest neighbor.
Equation B.5 compares every point in the Dalitz plot to every other point in the Dalitz plot

1For a decay into three particles of masses m1, m2, and m3, the two Dalitz plot axes are chosen from
m2

12, m2
23, and m2

13. To avoid an arbitrary choice of axis, one may define ~x = (m2
12,m

2
23,m

2
13) [40].
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and to every point in the Dalitz plot of the charge-conjugate decay. It requires no binning
and is not model-dependent.

In 2015, LHCb applied the energy test to a Dalitz analysis of D0 → π+π−π0 [40]. Their
results are consistent with the no-CPV hypothesis with a p-value of (2.6 ± 0.5)%. Their p-
value is defined as the fraction of MC simulations that exhibit a T value larger than the one
observed in data; a very low p-value would be evidence for CPV. As part of their analysis,
the authors compare the sensitivity of the energy test to that of the Miranda method. They
find that the relative improvement in sensitivity depends on the selection efficiency across
phase space. In regions where the efficiency is especially low, the energy test is comparable
to the Miranda method, but in regions where the selection efficiency is higher, the energy
test outperforms the Miranda method.

B.2.1 Advantages

The energy test has several advantages over both an amplitude analysis and a binned analysis.
Notably, Williams demonstrates that the energy test is expected to be more sensitive to
CPV than either of these two more common methods. LHCb confirms this in an actual
analysis that used this method, although they stipulate that the degree of improvement
depends on the reconstruction efficiency. Like the Miranda method, the energy test is model-
independent, which is an advantage when trying to detect CPV. The test statistic given in
Equation B.5 does not account for background asymmetries and efficiency differences, but
the method can be adapted to account for known asymmetries and differences in detector
efficiencies using weighting functions.

B.2.2 Limitations

The energy test has some of the same limitations as the Miranda method, including that
while it can predict if CPV is present in a decay, it cannot give a number for the asymmetry
and must rely on other methods to fully quantify any observed CPV or to put a limit on the
method’s sensitivity. However, the major limitation of the energy test is not in the results
but in the method itself: since every point in the Dalitz plot must be compared to every
other point both in its own Dalitz plot and in the charge-conjugate plot, the energy test is
enormously computationally expensive. Additionally, the computing cost scales quadrati-
cally with the amount of data. This means that the available computing power plays a larger
role in determining whether the energy test is feasible than it does for a binned or amplitude
analysis, and it means it may be difficult to scale up this method as an experiment gathers
more data. In addition to the computing power required to calculate T , this method requires
many, O(1000), MC simulations be generated in order to get a precise p-value. Generating
these simulations and calculating the distribution against which to compare the test statistic
in data requires even more computing power. LHCb cites the available computing time as a
limiting factor for future, higher-statistics analyses [40].

Another limitation is that the modified method to account for asymmetries and differ-
ences in detector efficiencies depends on such differences being known. There may be cases
where it is known that there is a fake asymmetry that must be accounted for, but an exact
number for this asymmetry is more difficult to determine.
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B.3 Discussion

The method used for the analysis described in this thesis, described in detail in chapter 5,
is partly inspired by the modified versions of the Miranda method that use the factor α to
remove global asymmetries from consideration. Our method also relies on differentiating
between local CPV and CPV that is constant across the Dalitz plot (i.e., average or global
CPV), rather than between “real” and “fake” CPV explicitly; the fact that most of the “fake”
CPV is global makes this distinction very useful. However, there are some key differences
between our dataset and the data used by BaBar and LHCb that meant we could not rely
on the Miranda method entirely. For one, we observe peaking backgrounds in our signal
region which could not be accounted for with sideband subtraction. This means we need
to perform a fit to separate the signal from the background. Performing a fit requires more
events per bin than simply counting the signal events would, so we cannot use the more than
100 bins that BaBar and LHCb use.

As for the energy test, the limiting factor of available computing power is a serious
downside for our purposes. Since the analysis in this thesis is meant to be just the first step
in a more complete analysis on this mode with a much larger dataset, an analysis technique
that is difficult to scale up is not as useful as one that scales more easily. Additionally, LHCb
analyzed the mode we are looking at, D0 → π+π−π0, with the energy test already, so there
is little value added by Belle II repeating the same analysis. Instead, we use an entirely
different technique to complement LHCb and other studies, rather than duplicate them.

It is worth noting that both the Miranda method and the energy test rely on comparisons
to MC to detect CPV. While this technique has some advantages, it may be limited by how
well the MC mimics the data. Thus, it is useful to have a method of analysis that does not
rely on MC at all to use as a crosscheck. Our analysis uses the MC for background studies
and for some systematic uncertainties, but all of the calculations for the central values of
the asymmetries and the statistical uncertainties come from the data itself.
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Appendix C

Dalitz-Integrated Analysis

The binned Dalitz analysis described in this thesis determines the local CP asymmetry
in each bin (AiCP ,loc), defined as the deviation of the asymmetry present in the bin (A∗ibin)
from the average asymmetry across the Dalitz plot (Aavg). This definition removes nuisance
asymmetries that are constant across the Dalitz plot, specifically AFB and Aπs , as well as
the bin-specific nuisance asymmetry AiD0 . However, as a result, this method is insensitive to
real CPV that either is antisymmetric across the m(π±π0)2 symmetry axis or occurs across
the entire phase space of the decay (ACP ,avg). The former issue can be greatly reduced by
using a larger number of bins, which would be possible with more data. The latter can be
addressed by supplementing the results of the binned analysis with an analysis that is able
to detect ACP ,avg, and hence AiCP . It is interesting to explore how a future analysis might
accomplish this, and this appendix discusses two such methods. In section C.1, we discuss
some preliminary work on these methods using different decay modes. In section C.2, we
discuss how to determine Aπs and AFB explicitly, which would provide the missing informa-
tion we need to determine AiCP and ACP ,avg. In section C.3, we discuss a modified analysis
method that removes the need to calculate AFB explicitly.

C.1 Preliminary work

We performed a preliminary analysis on D∗-tagged and untagged D0 → K−π+ as part of our
investigation into a possible Dalitz-integrated analysis. The dataset used for this analysis
was the same 400 fb−1 of MC described in section 4.1. The basf2 release used to analyze it
was light-2205-abys, and ROOT v6.24/06 was used to analyze the final, selected events.
Table C.1 (Table C.2) summarizes the cuts used to select events in the tagged (untagged)
modes; they are very similar to the cuts described in Table 4.1 with some changes made to
account for 1) the presence of a kaon in the final state, 2) the absence of a π0 in the final
state, 3) the absence of a D∗+ in the untagged decay, and 4) a much lower percentage of
events containing multiple candidates. Specifically, considering point 3, in order to maintain
consistency between the tagged and untagged modes, we move the center-of-mass (CM)
momentum cut from the D∗+ to the D0 candidate. Considering point 4, since both the
tagged and untagged Kπ decays have a lower percentage of events with multiple candidates
than the π+π−π0 mode (∼1%, rather than ∼18%), we remove all events containing multiple
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candidates instead of using a ranking algorithm to determine the best candidate in these
events. After the cuts in Table C.1 and Table C.2 are applied, the signal region is defined as
1.852 GeV/c2 < M(K−π+) < 1.878 GeV/c2 (for both the tagged and untagged modes) and
144.8 MeV/c2 < ∆M < 146.2 MeV/c2 (for the tagged mode only), and only events from the
signal regions are retained. Plots in this appendix use truth-tagging and show only true
signal events within the signal region.

Particle Selection criteria

π+
s , π+ dr < 0.5 cm and |dz| < 2.0 cm

in CDC acceptance

K−
dr < 0.5 cm and |dz| < 2.0 cm
in CDC acceptance
binaryPID(K, π) > 0.6

D0

1.65 GeV/c2 < M(π+π−π0) < 2.08 GeV/c2

p∗ > 2.3 GeV/c
flightSig > 0 (applied after vertex fit)

D∗+ ∆M < 0.155 GeV/c2

Vertex
fitting

Perform one fit with TreeFitter on full decay chain:
with ipConstraint, require chiProb > 0.001

Other Remove events with multiple candidates

Table C.1: Cuts for a preliminary analysis of D∗+ → D0(K−π+)π+
s (i.e., D∗-tagged D0 →

K−π+) in MC only.

Particle Selection criteria

π+ dr < 0.5 cm and |dz| < 2.0 cm
in CDC acceptance

K−
dr < 0.5 cm and |dz| < 2.0 cm
in CDC acceptance
binaryPID(K, π) > 0.6

D0

1.65 GeV/c2 < M(π+π−π0) < 2.08 GeV/c2

p∗ > 2.3 GeV/c
flightSig > 0 (applied after vertex fit)

Vertex
fitting

Perform one fit with TreeFitter on full decay chain:
with ipConstraint, require chiProb > 0.001

Other Remove events with multiple candidates

Table C.2: Cuts for a preliminary analysis of untagged D0 → K−π+ in MC only.

C.2 Determining Aπs and AFB

The key part of the binned analysis that prevents us from determining ACP ,avg is that, per
Equation 5.4, Aπs and AFB are never explicitly determined. Rather, they are demonstrated
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to be constant across the Dalitz plot (plus or minus some systematic uncertainty) and then
cancelled in the final subtraction. To determine ACP ,avg with our current analysis, we need
to determine both of these nuisance asymmetries explicitly. There are a few possible ways
to accomplish this.

C.2.1 Determining Aπs with D0 → K−π+

One way to determine Aπs would be to analyze a non-self-conjugate, Cabibbo-favored (CF)
D0 decay where we expect no real CPV to be present. The only asymmetries we expect to
see in decays of this type are the nuisance asymmetries due to detector effects. One possible
decay we could examine is D0 → K−π+. Since this decay is not self-conjugate, we do not
need to rely on D∗-tagging to determine the flavor of the D meson. (Because the doubly
Cabibbo-suppressed (DCSD) decay D0 → K+π− also occurs, we do not know for sure 100%
of the time that the flavor of of the D0 meson is correct. Since we are trying to measure
an asymmetry rather than a branching fraction, and since the DCSD decay occurs the same
amount of time for D0 as it does for D0, this ultimately is irrelevant for this analysis.) We
can therefore calculate an asymmetry in untagged D0 → K−π+ (AKπuntag) and an asymmetry
in tagged D∗+ → D0(K−π+)πs (AKπtag ). Since any internal D0 asymmetry present in this
decay will mostly cancel in the subtraction, the difference between these two asymmetries is
the slow pion asymmetry:

Aπs = AKπtag −AKπuntag. (C.1)

Complicating factors

There are a few complications to this approach which at first glance seems straightforward.
For one, asymmetries due to detector effects are dependent on the kinematics of the decay.
The spectrum and angular distribution of the D0 and its decay products in the tagged
and untagged modes are not exactly the same. This means that, in particular, AFB and the
internalD0 asymmetry may not exactly cancel in the subtraction in Equation C.1. Figure C.1
shows the cos θ∗D0 distributions (the asterisk on θ indicates this variable is measure in the
CM frame) in the tagged and untagged decays. Clearly these distributions do not agree.
Figure C.2 (Figure C.3) shows that the same problem occurs in the angular distribution
of the kaon (pion). It is to be expected that these distributions are not the same, since
the full signal decay chains for tagged vs. untagged decays are different. However, it is
important they be comparable in order for AFB and any internal D0 asymmetry to cancel
out in Equation C.1. In theory, one way to address the former would be to account for
AFB separately in the tagged and untagged modes, rather than relying on the subtraction
to cancel it. This is common in many analyses, and it is done by binning the data according
to cos θ∗D0 and taking an unweighted average of the asymmetries in opposing bins. However,
it turns out this method presents some additional complications in this case and is not
appropriate for our analysis, as we now discuss.
AFB is assumed to be antisymmetric in cos θ∗D0 , which is why binning in this variable

effectively cancels the asymmetry. However, it is important to note that this approach
also cancels the antisymmetric part of any other asymmetry that is present, including Aπs .
This presents a problem if we want our results to complement the binned analysis we have
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already performed. The asymmetries determined from the binned analysis include both the
symmetric and antisymmetric parts, since we have not done any binning in cos θ∗D0 . This
means that simply cancelling AFB in the analysis used to calculate Aπs is not sufficient, as
this would leave us with only the symmetric part of Aπs . We need both the symmetric and
anytisymmetric parts to plug into Equation 5.4.

Figure C.1: Comparison of the cos θ∗D0 distribution in tagged and untagged D0 → K−π+ in
truth-tagged signal MC. Both histograms are normalized to unit area, so this is a comparison
of the shape of the distributions rather than the efficiency.

In addition to agreement between the tagged and untagged modes, we also have to
consider how well the slow pion spectrum in tagged D0 → K−π+ agrees with the slow
pion spectrum in tagged D0 → π+π−π0. Since we ultimately want to determine the slow
pion asymmetry in the D0 → π+π−π0 decay, we need to be confident that the slow pion
in tagged D0 → K−π+ behaves the same way, as the particle kinematics will affect this
detector-induced asymmetry. Figure C.4 shows a comparison of the slow pion kinematics
in tagged D0 → K−π+ and D0 → π+π−π0. Due to the different momentum cuts and
the different number of D0 decay products in these two decays, it is expected that these
distributions will differ. However, it is important they be comparable in order for the value
of Aπs determined by analyzing D0 → K−π+ to be applicable to our analysis of D0 →
π+π−π0. While the momentum spectra agree fairly well, the angular distribution of the slow
pion is noticeably different in the K−π+ and π+π−π0 modes. This is likely partly due to the
different momentum cuts used in these analyses. In our analysis of D0 → π+π−π0, there is
a cut on p∗(D∗+) > 2.5 GeV/c (see Table 4.1); however, in tagged D0 → K−π+, in order to
be consistent with the untagged analysis, we instead make a cut on p∗(D0) > 2.3 GeV/c (see
Table C.1 and Table C.2). Since the momenta of the D∗+ and the D0 are highly correlated,
these cuts are similar, but they are not exactly the same, so we expect to observe some
difference in the kinematic distributions for the D∗+, D0, and π+

s particles.
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a) b)

Figure C.2: Comparison of a) p(K) and b) cos θK in tagged and untagged D0 → K−π+ in
truth-tagged signal MC. All histograms are normalized to unit area, so these are comparisons
of the shapes of the distributions rather than the efficiencies.

a) b)

Figure C.3: Comparison of a) p(π) and b) cos θπ in tagged and untagged D0 → K−π+ in
truth-tagged signal MC. All histograms are normalized to unit area, so these are comparisons
of the shapes of the distributions rather than the efficiencies.

It is also possible that the presence of a π0 in the π+π−π0 mode plays a role in the
discrepancy in Figure C.4. While at the level of production, how the D0 decays cannot
affect the kinematics of D∗+ → D0π+

s , in the detection and reconstruction, it is possible for
the number and charge of the D0 decay products to influence the efficiency as a function of
the D0 polar angle (and by extension the π+

s polar angle as well).

If key distributions are not in agreement between tagged and untagged D0 → K−π+

or between tagged D0 → K−π+ and D0 → π+π−π0, we can weight events to bring the
distributions into agreement. The degree to which this is necessary and the accompanying
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systematic uncertainties depend on the level of deviation observed and the expected precision
of the result.

Other CF decays could also be considered for this analysis. In particular, D0 → K−π+π0

is an option if the presence of a π0 affects relevant kinematic distributions in the tagging
decay.

a) b)

Figure C.4: Comparison of a) p(πs) and b) cos θπs in tagged D0 → K−π+ and D0 →
π+π−π0 in truth-tagged signal MC. All histograms are normalized to unit area, so these are
comparisons of the shapes of the distributions rather than the efficiencies.

C.2.2 Determining Aπs with D0 → K−K+

Another approach to determining Aπs is, rather than studying a mode where we expect
no real CPV to be present, to study a mode where we do expect CPV to be present but
the CPV from real sources is already well-measured. This removes the need to compare a
tagged and untagged version of the decay; instead we can determine the raw asymmetry
in the tagged decay, subtract off the known CP asymmetry, and what remains will be the
slow pion effect. A two-body, self-conjugate decay is best for this, since this type of decay
has no internal D0 asymmetry due to the symmetry of the final state. One possible mode
is D0 → K−K+. The most recent and precise measurement of the CP asymmetry in this
mode is AKKCP = (0.068± 0.054± 0.016)%, where the first error is statistical and the second
is systematic [63]. This value has an associated error that is much smaller than our expected
precision of O(1%), so it would be sufficient for our analysis. Defining AKKraw as the raw
asymmetry in D∗+ → D0(K−K+)π+

s , we have:

Aπs +AFB = AKKraw −AKKCP . (C.2)

Complicating factors

While using D0 → K−K+ has the advantage that we do not need to compare the kine-
matics of tagged and untagged samples, it has a similar issue as the K−π+ mode regarding
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accounting for AFB. AFB does not cancel out in Equation C.2, so it must be either de-
termined explicitly or cancelled by binning in cos θ∗D∗ (we use D∗+ rather than D0, since
there is no untagged analysis with this method) and averaging. As already mentioned in
subsection C.2.1, the latter is incompatible with our existing binned analysis, so this means
we must determine AFB explicitly if we used D0 → K−K+ to calculate Aπs :

Aπs = AKKraw −AKKCP −AFB. (C.3)

In theory this is fine, but since these two measurements now cannot be decoupled, relevant
kinematic distributions must agree between tagged D0 → K−K+ and whatever mode is used
to determine AFB.

Additionally, we need to consider imperfect cancellation due to disagreement between key
kinematic distributions in D0 → K−K+ compared to D0 → π+π−π0. Based on the analysis
of tagged D0 → K−π+, it is likely the distribution of cos θπs for D0 → K−K+ will also not be
in agreement with that distribution in the π+π−π0 mode. Substantial disagreement between
these distributions would again possibly require event weighting so that we can be confident
the value of Aπs we determine with Equation C.3 is applicable to our D0→ π+π−π0 analysis.

C.2.3 Determining AFB

As alluded to in subsection C.2.1, most analyses at Belle II with the goal of measuring an
asymmetry never measure AFB directly. Instead, they take advantage of the fact that AFB

is antisymmetric in cos θ∗ and calculate the raw asymmetry in bins of cos θ∗. In principle
though, it is possible to determine AFB explicitly. To do so, one would need to plot the raw
asymmetry for a particular mode in bins of cos θ∗ and fit a line to the resulting distribution.
The slope of the line is partially AFB. However, in order for this to work, one would need
non-trivial information about Aπs because it also has a slope with respect to cos θ∗ (along
with higher order contributions) and thus contaminates the measurement of AFB. Figure C.5
shows the raw asymmetry in truth-tagged signal MC for the decay D∗+ → D0(K−π+)π+

s

in bins of cos θ∗D∗ . Clearly, the shape of this distribution is not well-described by a linear
function, and even if it were, the slope of that line would be a combination of Aπs and
AFB. (We expect to see a similar shape in data.) This makes extracting AFB by itself more
complicated.

C.3 Modified analysis

In the previous section, we discuss determining Aπs and AFB explicitly to supplement our
binned analysis and allow for determination of ACP ,avg. However, there is a way in which we
could avoid having to calculate AFB. It requires some modification to our already existing
analysis.

The need to calculate AFB explicitly arises because we do not account for AFB in our
measurements of A∗ibin and rather use Equation 5.4 to cancel it. But in principle, we could
account for AFB the same way we account for AiD0 : in addition to dividing the Dalitz bins
along the m(π±π0)2 symmetry axis, we could also divide each bin into regions of cos θ∗D∗ and
average over fits in opposing regions of this variable in addition to over the regions A and B
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Figure C.5: Asymmetry vs. cos θ∗D∗ bin in tagged D0 → K−π+ in signal MC. There are 10
equal-size (width 0.2) bins of cos θ∗D∗ .

we already use. Assuming we use 10 cos θ∗D∗ bins, this means that now each Dalitz bin needs
to accommodate 10× 4 = 40 separate fits, rather than just the 4 fits we currently perform.
This means that substantially more data would need to be collected in order to increase the
per-bin statistics before this would be a reasonable modification, but it would be possible in
a future version of this analysis.

Another option would be to perform a true Dalitz-integrated analysis that does not rely
on dividing the Dalitz plot into bins. In a Dalitz-integrated analysis, dividing the data into
regions of cos θ∗D∗ does not overly dilute the statistics. However, the advantage of our binning
scheme is to account for AiD0 ; an integrated analysis that did not rely on binning would need
another way to account for this nuisance asymmetry, and the result would be independent
of (rather than complementary to) the binned analysis.

C.4 Summary

One of the advantages of the binned analysis described in this thesis is that it fully accounts
for nuisance asymmetries without having to calculate them directly. However, this feature
of the analysis becomes less straightforward when we start asking how to go from AiCP ,loc to
AiCP and ACP ,avg more generally.

One of the reasons binned Dalitz analyses are attractive is that if we observe CPV in
a multi-body decay, we expect the CPV to occur in a particular region of phase space,
not across the entire Dalitz plot. Binning the data makes an analysis more sensitive to
regional CPV. It is extremely unlikely that CPV is completely independent of location in
the Dalitz plot, so an analysis that only captures AiCP ,loc is still a valid and useful approach.
Determining ACP ,avg would be nice though, and as presented in this appendix there are
various ways future analyses may attempt to do so.
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