Suppressing Beam Background and Fake Photons at Belle II using BDTs

Privanka Cheema on behalf of the Belle II Collaboration

School of Physics, University of Sydney, Australia

pche3675@uni.sydney.edu.au

1. Introduction

The residual energy in the electromagnetic calorimeter (ECL), called $E_{\rm ECL}$, is a key background-suppression tool for decays with missing energy (neutrinos). The power of $E_{\rm ECL}$ degrades when **beam background clusters** and **fake photons** are included in the residual energy calculation. To remove these photon contributions from E_{ECL} , and improve its signal-background separation, two separate classifiers have been built to identify beam background and fake photons. The framework used is FastBDT [1] - a stochastic gradient boosted decision tree (BDT). The two BDTs presented are useful for experiments using crystal calorimeters with near- 4π coverage such as BES-III and KLOE. The BDTs are used in the Belle II analyses of: $B \to D^* \ell \nu, B \to \pi \ell \nu, B \to \tau \nu, B \to \tau \ell, B \to \tau \tau, \Upsilon(4S) \to \eta h_b(1P)$ and inclusive R(D)

2. Belle II Detector

Belle II is located at the **SuperKEKB asym**-

3. Background Photons

Beam background clusters originate from beam interactions like Touschek scattering, Bhabha scattering and beam-gas scattering. **Fake photons** are calorimeter energy deposits that are split into multiple clusters during the reconstruction process, for example due to hadronic split-offs. Photon samples for the BDT training were sourced from Monte-Carlo sim**ulated data**. True photons from the $\Upsilon(4S)$ decay are labelled **class 1** while beam background and fake photons are **class 0**.

metric e^+e^- collider in Tsukuba, Japan. The collider operates at the CMS energy of $\sqrt{s} = 10.58$ GeV. This corresponds to the $\Upsilon(4S)$ resonance. The $\Upsilon(4S)$ meson decays almost exclusively to a **pair of** B mesons i.e. $e^+e^- \to \Upsilon(4S) \to B\overline{B}$. Since operation began in 2018, Belle II has recorded an integrated luminosity of $\int Ldt = 428 \text{ fb}^{-1}$. Belle II has a **near-** 4π coverage of the interaction point, so full **reconstruction** of the event can be achieved.

4. **BDT Features**

Important features were determined using the **total information gain** of each feature in BDT.

Beam Background BDT Features

- **Energy**, **timing** and **polar angle** of the cluster
- Output of a separate MVA that characterises **cluster shapes**
- Output of a separate MVA that uses **pulse-shape information** from activated ECL crystals, where class 0 = hadronic showers and class 1 = electromagnetic showers [2]

6. Testing On $B^0 \to D^* \ell \nu$

Cuts used on the BDT outputs: beam background BDT > 0.6 and fake photon BDT >**0.7**. A two-template fit (signal and combined background) to $E_{\rm ECL} < 0.8$ GeV can be used to get the signal yield S, with fit uncertainty $\sigma(S)$.

Fake Photon BDT Features - all the beam background BDT features plus

• Distance between the cluster and its **nearest track**

5. Classifier Performance

The optimal hyperparameters were chosen using **holdout** with results below:

# Trees	Max Depth	Shrinkage	Test AUC Score
---------	-----------	-----------	----------------

Beam Background BDT	100	3	0.1	0.998
Fake Photon BDT	300	3	0.1	0.944

Output of beam background/fake photon BDT gives **probability of being class 1** (signal photon)

7. References

[1] T. Keck. FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradientboosted decision trees for multivariate classification. 2016.

CsI(Tl) pulse shape discrimina- $\lfloor 2 \rfloor$ S. Longo et al. tion with the Belle II electromagnetic calorimeter as a novel method to improve particle identification at electron-positron colliders. NIM A, 982:164562, 2020.