Hadronic B decays and charm at Belle II

Sagar Hazra (On behalf of the Belle II collaboration)

Tata Institute of Fundamental Research

March 20, 2023 @Moriond EW

Thanks to Infosys for providing the leading edge travel grant

Hadronic B and D decays

Flavor physics: fundamental to test SM and its extensions

- Cabibbo-suppressed (CS) $b \rightarrow u$ trees and $b \rightarrow d, s$ penguins
 - \rightarrow Highly sensitive to non-SM loops
- CKM angle ϕ_3/γ : principal SM gauge for *CP* violation, very reliably predicted
- c → s, and CS c → d, and c → u penguin decays are important to search for new physics

Today's focus

- Test SM using isospin sum rules
- Toward $\phi_2/\alpha = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$ angle
- Determination of ϕ_3/γ
- Novel charm flavor tagger

Signal extraction

Suppress $10^5 \times$ larger $q\bar{q}$ (continuum) background

- Combine several topological variables in multivariate techniques
- $q\bar{q}$ background rejection: $\approx 99\%$, signal retention: $\approx 80\%$

Isospin sum rule: $B \rightarrow K^+\pi^-, K^+\pi^0, K^0\pi^+$

New for Moriond

Isospin sum rule: $K^0\pi^0$ time-integrated asymmetry

- Complementary measurement of $A_{K^0\pi^0}$ using time-integrated analysis
- Requires flavor tagging to tag B^0/\bar{B}^0 , $\epsilon_{tag} = 30.0 \pm 1.2\%$
- $P_{sig}(q) = \frac{1}{2} \cdot (1 + q \cdot (1 2w_r) \cdot (1 2 \cdot \chi_d) \cdot A_{K^0 \pi^0})$, where q: flavor of the B meson, w_r : wrong-tag fraction and χ_d : B^0 mixing parameter

New for Moriond

Signal yield= 502 ± 32

 $\mathscr{B}(B^0 o K^0 \pi^0) = [10.2 \pm 0.6(stat) \pm 0.6(syst)] imes 10^{-6}$ $A_{K^0 \pi^0} = -0.06 \pm 0.15(stat) \pm 0.05(syst)$

(S.Hazra)

March 20, 2023 @Moriond EW 5 / 14

Isospin sum rule: $K^0\pi^0$ time-dependent asymmetry

New for Moriond

- Probing the effective value of $\Delta S_{CP} \equiv S_{CP} \sin 2\phi_1$
- Challenge: No primary charged particles to vertex, poor decay time resolution, need good performance with neutrals
- Fit signal-extraction variables ΔE and M_{bc} , decay time, and continuum background discriminator output in bins of quality of flavor-identification
- Validate on $B^0
 ightarrow J/\psi K^0_S$ with K^0_S only vertex

Isospin sum rule: $K^0\pi^0$ time-dependent asymmetry

New for Moriond

Signal yield =415 \pm 25

 $A_{CP} = 0.04 \pm 0.15(stat) \pm 0.05(syst), S_{CP} = 0.75^{+0.20}_{-0.23}(stat) \pm 0.04(syst)$

- Improved neutrals reconstruction, continuum suppression and event-by-event resolution of proper times
- Achieve precision comparable with world's best result even with smaller sample!

$K\pi$ isospin sum rule: results

New for Moriond

• Combine time-integrated with time-dependent results to enhance sensitivity:

 $egin{aligned} &A_{K^0\pi^0}=-0.01\pm 0.12(\textit{stat})\pm 0.05(\textit{syst})\ &\mathscr{B}(B^0 o K^0\pi^0)=[10.5\pm 0.6(\textit{stat})\pm 0.7(\textit{syst})] imes 10^{-6} \end{aligned}$

• Putting all together, we obtain an overall Belle II isospin test: $I_{K\pi} = -0.03 \pm 0.13(stat) \pm 0.05(syst)$

- Consistent with SM prediction
- \bullet Comparable with world-best result (-0.13 ± 0.11) even with smaller sample

Toward $\alpha/\phi_2: B \to \pi^+\pi^-, \pi^+\pi^0$

New for Moriond

•
$$\alpha/\phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right)$$
 as complementary test

• Unique Belle II capability to study all the $B \rightarrow \pi\pi$ decays to determine the CKM angle α

Determinations of $\phi_3/\gamma: B^{\pm} \to D_{CP\pm}K^{\pm}$

• ϕ_3 is the phase between $b \rightarrow u$ and $b \rightarrow c$ transitions GLW method (Belle + Belle II) New for Moriond

• *CP* eigenstates such as K^+K^- (*CP* even) or $K_S^0\pi^0(CP \text{ odd})$

Signal yield=476(Belle) + 107(Belle II) $\mathcal{A}_{CP+} = (12.5 \pm 5.8 \pm 1.4)\%$ $\mathcal{R}_{CP+} = (1.16 \pm 0.08 \pm 0.04)$ Signal yield=541(Belle) + 145(Belle II) $\mathcal{A}_{CP-} = (-16.7 \pm 5.7 \pm 0.6)\%$ $\mathcal{R}_{CP-} = (1.15 \pm 0.07 \pm 0.02)$

Results are not competitive

Determinations of $\phi_3/\gamma: B^{\pm} \to Dh^{\pm}$

GLS method (Belle + Belle II) New for Moriond

• Cabibbo-suppressed channels $B^{\pm} \rightarrow D(\rightarrow K_{S}^{0}K^{\pm}\pi^{\mp})h^{\pm}$ (same sign); $B^{\mp} \rightarrow D(\rightarrow K_{S}^{0}K^{\pm}\pi^{\mp})h^{\mp}$ (opposite sign)

Results

$$\begin{split} \mathcal{A}^{DK}_{SS} &= -0.089 \pm 0.091 \pm 0.011 \\ \mathcal{A}^{DK}_{OS} &= 0.109 \pm 0.133 \pm 0.013 \\ \mathcal{A}^{D\pi}_{SS} &= 0.018 \pm 0.026 \pm 0.009 \\ \mathcal{A}^{D\pi}_{OS} &= -0.028 \pm 0.031 \pm 0.009 \end{split}$$

$$\begin{split} \text{Signal yield} =& 2209(\text{Belle}) + 1210(\text{Belle II}) \\ \mathcal{R}^{DK/D\pi}_{SS} = 0.122 \pm 0.012 \pm 0.004 \\ \mathcal{R}^{DK/D\pi}_{OS} = 0.093 \pm 0.013 \pm 0.003 \\ \mathcal{R}^{D\pi}_{SS/OS} = 1.428 \pm 0.057 \pm 0.002 \end{split}$$

• Results are not competitive, but sensitivity greatly improved over Belle

The charm flavor tagger

- Identifying D^0 or $\overline{D^0}$ plays a crucial role in charm CPV/mixing
- Typically use D^* tag: high purity but reduced sample size
- BDT to recover additional flavor info from extra charged particles

- Calibrated dilution shows good agreement with the true dilution
- Effectively double sample size for CPV/mixing measurements and improve purity of *D*^{*} tagged signals

Summary

- Hadronic *B* decays and charm physics play an important role in sharpening flavor picture
- Belle II has unique access to channels that offer key tests of the SM
- Five results new for this conference:
 - \to CP violation in $B^0\to K^0\pi^0$ that probes isospin sum rule with world leading precision
 - \rightarrow Precise measurements of various two body decays relative for α \rightarrow Joining forces with Belle sample to offer most up-to date information on γ from GLW and GLS analyses
 - \rightarrow Novel neutral charm tagger that nearly doubles the tagged sample size

Thank You

SuperKEKB and Belle II Detector

- Asymmetric collider: e[−] to 7 GeV and e⁺ to 4 GeV → clean experimental environment
- \bullet World record peak luminosity: $4.7\times 10^{34} cm^{-2} s^{-1}$
- New tracking system and improved vertexing
- Improved particle identification

Currently:

• 424 ${\rm fb}^{-1}$ data (partly energy scan) are collected

Long-shutdown activity and plans

Belle II stopped taking data in Summer 2022 for a long shutdown

- replacement of beam-pipe
- replacement of photomultipliers of the central PID detector (TOP)
- installation of 2-layered pixel vertex detector
- improved data-quality monitoring and alarm system
- completed transition to new DAQ boards (PCle40)
- O accelerator improvements: injection, non-linear collimators, monitoring
- replacement of aging components
- O additional shielding and increased resilience against beam bckg

Currently working on pixel detector installation:

==> shipping to KEK in ~mid March

==> final tests at KEK scheduled in April

On track to resume data taking next winter with new pixel detector 1

GLW

We measure CP asymmetries,

$$\mathcal{A}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) - \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)},\tag{1.1}$$

and the branching ratios for decays with D decaying to the CP-eigenstate K^+K^- for D_{CP+} and $K_S^0 \pi^0$ for D_{CP-} . We measure the latter relative to the branching ratio for decays with the D decaying to a flavor-specific final state $K^-\pi^+$,

$$\mathcal{R}_{CP\pm} \equiv \frac{\mathcal{B}(B^- \to D_{CP\pm}K^-) + \mathcal{B}(B^+ \to D_{CP\pm}K^+)}{\mathcal{B}(B^- \to D_{\text{flav}}K^-) + \mathcal{B}(B^+ \to D_{\text{flav}}K^+)} \approx \frac{R_{CP\pm}}{R_{\text{flav}}},$$
(1.2)

where

$$R_X \equiv \frac{\mathcal{B}(B^- \to D_X K^-) + \mathcal{B}(B^+ \to D_X K^+)}{\mathcal{B}(B^- \to D_X \pi^-) + \mathcal{B}(B^+ \to D_X \pi^+)}.$$
(1.3)

 $^{1}\phi_{3}$ is also called γ .

$$\mathcal{R}_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos \delta_B \cos \phi_3,$$
$$\mathcal{A}_{CP\pm} = \pm 2r_B \sin \delta_B \sin \phi_3 / \mathcal{R}_{CP\pm}.$$

GLW

	\mathcal{R}_{CP+}	\mathcal{R}_{CP-}	\mathcal{A}_{CP+}	\mathcal{A}_{CP-}
PDF parameters	0.012	0.014	0.002	0.002
PID parameters	0.009	0.010	0.003	0.005
$B\overline{B}$ -background yields	0.033	0.002	0.013	
Efficiency ratio	0.001	0.001	0.000	0.000
commonality of ΔE modes	-0.005	-0.006	0.000	0.000
Total systematic uncertainty	0.036	0.019	0.014	0.006
Statistical uncertainty	0.081	0.074	0.058	0.057

 Table 1. Systematic and statistical uncertainties.

GLS

Parameters of Interests (4 Acp and 3 Ratios)

· 2 Acp for DK: (plus 2 similar Acp for Dpi)

$$\begin{split} A_{SS}^{DK} &\equiv \frac{N_{SS}^{-} - N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}, \\ A_{OS}^{DK} &\equiv \frac{N_{OS}^{-} - N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \end{split} \qquad \begin{array}{l} A_{SS}^{DK} &= \frac{2r_{B}r_{D}\kappa\sin(\delta_{B} - \delta_{D})\sin\phi_{3}}{1 + r_{B}^{2}r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} - \delta_{D})\cos\phi_{3}}, \\ A_{OS}^{DK} &\equiv \frac{2r_{B}r_{D}\kappa\sin(\delta_{B} + \delta_{D})\sin\phi_{3}}{r_{B}^{-} + r_{D}^{2} + 2r_{B}r_{D}\kappa\cos(\delta_{B} + \delta_{D})\cos\phi_{3}}, \end{split}$$

· 3 Ratios:

$$\begin{split} R_{SS}^{DK/D\pi} &\equiv \frac{N_{SS} + N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}, \\ R_{OS}^{DK/D\pi} &\equiv \frac{N_{OS}^{-} + N_{SS}^{+}}{N_{OS}^{-} + N_{SS}^{+}}, \\ R_{OS}^{DK/D\pi} &\equiv \frac{N_{OS}^{-} + N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \\ R_{OS}^{DK/D\pi} &\equiv \frac{N_{OS}^{-} + N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \\ R_{SS/OS}^{DK} &\equiv \frac{N_{SS}^{-} + N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{1 + r_B^2 r_D^2 + 2r_B r_D \kappa \cos(\delta_B - \delta_D) \cos \phi_3}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{OS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{1 + r_B^2 r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{OS}^{-} + N_{OS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{1 + r_B^2 r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{1 + r_B^2 r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{1 + r_B^2 r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{N_{SS}^{-} + N_{SS}^{+}}, \\ R_{SS/OS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS}^{D\pi} &\equiv \frac{N_{SS}^{-} + N_{SS}^{+}}{r_B^2 + r_D^2 + 2r_B r_D \kappa \cos(\delta_B' - \delta_D) \cos \phi_3}, \\ R_{SS$$

GLS

	$A_{\rm SS}^{DK}$	$A_{\rm OS}^{DK}$	$A_{\rm SS}^{D\pi}$	$A_{\rm OS}^{D\pi}$	$R_{\rm SS}^{DK/D\pi}$	$R_{ m OS}^{DK/D\pi}$	$R^{D\pi}_{ m SS/OS}$
full D phase space							
PID	0.38	0.56	0.19	0.14	0.05	0.06	0.09
$\epsilon_{DK}/\epsilon_{D\pi}$	0.00	0.03	0.00	0.00	0.04	0.03	0.02
Model	0.62	0.78	0.02	0.02	0.30	0.22	0.07
$\epsilon_{K^0_SK^-\pi^+}/\epsilon_{K^0_SK^+\pi^-}$	0.82	0.83	0.82	0.83	0.01	0.01	0.02
Total syst. unc.	1.10	1.30	0.90	0.90	0.40	0.30	0.20
Stat. unc.	9.10	13.30	2.60	3.10	1.20	1.30	5.70
K^* region							
PID	0.37	0.61	0.17	0.15	0.03	0.08	0.13
$\epsilon_{DK}/\epsilon_{D\pi}$	0.02	0.02	0.01	0.01	0.03	0.04	0.04
Model	1.04	0.97	0.20	0.03	0.46	0.49	0.61
$\epsilon_{K^0_SK^-\pi^+}/\epsilon_{K^0_SK^+\pi^-}$	1.60	0.80	1.60	0.80	0.10	0.10	1.70
Total syst. unc.	2.00	1.40	1.60	0.90	0.50	0.60	1.90
Stat. unc.	11.90	18.40	2.90	4.60	1.20	2.00	13.20

Table 2. Systematic and statistical uncertainties in percent.

$K\pi$

Source	$B^0 \to K^+ \pi^-$	$B^0 \to \pi^+\pi^-$	$B^+ \to K^+ \pi^0$	$B^+ \to \pi^+ \pi^0$	$B^+ \to K^0_{\scriptscriptstyle S} \pi^+$	$B^0 \to K^0_S \pi^0$
Tracking	0.5	0.5	0.2	0.2	0.7	0.5
$N_{B\bar{B}}$	1.5	1.5	1.5	1.5	1.5	1.5
f^{+0}	2.5	2.5	2.4	2.4	2.4	2.5
π^0 efficiency	-	-	5.0	5.0	-	5.0
K_S^0 efficiency	-	-	-	-	2.0	2.0
CS efficiency	0.2	0.2	0.7	0.7	0.5	1.7
PID correction	0.1	0.1	0.1	0.2	-	-
ΔE shift and scale	0.1	0.2	1.2	2.0	0.3	0.2
$K\pi$ signal model	0.1	0.2	0.1	< 0.1	< 0.1	0.1
$\pi\pi$ signal model	< 0.1	0.1	< 0.1	< 0.1	-	-
$K\pi$ CF model	< 0.1	0.1	< 0.1	0.1	-	-
$\pi\pi$ CF model	0.1	0.2	< 0.1	0.1	-	-
$K^0_S K^+$ model	-	-	-	-	0.1	-
$B\overline{B}$ model	-	-	0.3	0.5	< 0.1	0.3
Multiple candidates	< 0.1	< 0.1	1.0	0.3	0.1	0.3
Total	3.0	3.0	6.0	6.2	3.6	6.4

TABLE III. Summary of the fractional systematic uncertainties (%) on the branching ratios.

 $B^+ \to K^+ \pi^- \ B^+ \to K^+ \pi^0 \ B^+ \to \pi^+ \pi^0 \ B^+ \to K^0_{\rm S} \pi^+ \ B^0 \to K^0_{\rm S} \pi^0$ Source ΔE shift and scale < 0.0010.001 0.002 0.001 0.003 $K^0_S K^+$ model 0.001- $B\overline{B}$ background asymmetry 0.046 $q\overline{q}$ background asymmetry 0.024-Fitting bias 0.007 0.006 Instrumental asymmetry 0.0070.0050.0040.004-Total 0.007 0.005 0.008 0.007 0.052

TABLE IV. Summary of the absolute systematic uncertainties on the CP asymmetry.

 $K_S^0 \pi^0$

Source	$\delta {\cal A}_{CP}$	δS_{CP}
Flavor tagging	0.013	0.011
Resolution function	0.014	0.022
$B\overline{B}$ background asymmetry	0.030	0.018
$q\overline{q}$ background asymmetry	0.028	< 0.001
Signal modelling	0.004	0.003
Background modelling	0.006	0.018
Fit bias	0.005	0.011
Best candidate selection	0.005	0.010
$ au_{B^0}$ and Δm_d	< 0.001	< 0.001
Tag-side interference	0.006	0.011
VXD misalignment	0.004	0.005
Total	0.047	0.040