

SEMILEPTONIC *B*-MESON DECAYS INCLUDING $b \rightarrow c$ ANOMALIES AT BELLE II

Henrik Junkerkalefeld* on behalf of the collaboration

* = junkerkalefeld@physik.uni-bonn.de

ERSITÄT

NN

Belle 1

|V_{cb}| & |V_{ub}| MEASUREMENTS

 V_{cb}

- SL *B* decays are studied to determine the CKM elements $|V_{cb}|$ and $|V_{ub}|$
 - $|V_{xb}|$ are limiting the global constraining power of UT fits
 - Important inputs in predictions of the SM rates for ultrarare decays such as $K \rightarrow \pi \nu \nu$

EXPERIMENTAL STATUS $|V_{cb}|$ AND $|V_{ub}|$

Theoretically clean

March 28, 2023 | Henrik Junkerkalefeld

B-MESON FLAVOR TAGGING

$|V_{cb}|: B^0 \to D^{*-} \ell^+ \nu \text{ UNTAGGED}$

• Challenging due to lack of clean kinematic signatures and for Moriond missing knowledge of the B_{sig} direction

Signal Side

 R^0

 e^+

 $\checkmark \gamma(4S)$

e

Untagged

 $|V_{cb}|: B^0 \rightarrow D^{*-} \ell^+ \nu \text{ UNTAGGED}_{\mathbf{F}}$ NEW

 Challenging due to lack of clean kinematic signatures and for Moriond missing knowledge of the B_{sig} direction

 $\frac{|V_{cb}| \text{ extraction and decay parametrization}}{d^4 \Gamma}$ $\frac{d^4 \Gamma}{dw \ d\cos \theta_\ell \ d\cos \theta_V \ d\chi} \propto \frac{|V_{cb}|^2 \times F^2(w, \cos \theta_\ell, \cos \theta_\ell, \chi)}{\sqrt{2}}$ 3 form factors as functions of wparametrize the non-perturbative physics

 e^+

 $\cdots \Upsilon(4S)$

е

Untagged

Signal Side

 $|V_{ch}|: B^0 \to D^{*-} \ell^+ \nu \text{ UNTAGGED}$ NEW

 Challenging due to lack of clean kinematic signatures and for Morione missing knowledge of the B_{sig} direction

 $\frac{|V_{cb}| \text{ extraction and decay parametrization}}{d^4 \Gamma} \xrightarrow{d^4 \Gamma} |V_{cb}|^2 \times F^2(w, \cos \theta_\ell, \cos \theta_V, \chi)}$ 3 form factors as functions of wparametrize the non-perturbative physics

The **B**_{sig} direction is estimated in a novel approach using

- The known **angle** $\cos \theta_{BY}$ between the B_{sig} and the $Y = D^* + \ell$ $\cos \theta_{BY} = \frac{2E_B^{\text{c.m.}} - m_F^2 c^4 - m_Y^2 c^4}{2|\vec{p}_B^{\text{c.m.}}||\vec{p}_Y^{\text{c.m.}}|c^2}$
- inclusive information of the untagged event side
- the **angular distribution** of $\Upsilon(4S) \rightarrow B\overline{B}$ w.r.t. the beam axis

 $\cdots \Upsilon(4S)$

е

Untagged

Signal Side

 $|V_{ch}|: B^0 \rightarrow D^{*-} \ell^+ \nu$ UNTAGGED

Bi

In good agreement with exclusive and inclusive world averages

BGL truncation order determined by Nested Hypothesis Test

FNAL/MILC predictions^[1] of form factors beyond zero recoil probed but found to be in tension with fits at exp. favored BGL order. Suggested |V_{cb}| value only shifts slightly.
 [1] = Eur. Phys. J. C 82, 1141 (2022)

$$|V_{ub}|: B^0 \to \pi^- \ell^+ \nu \text{ UNTAGGED}$$

- Challenging due to low branching ratios, large backgrounds and lack of clean kinematic signatures
- Backgrounds suppressed using BDTs, B_{sig} direction derived inclusively
- The differential rates in 6 bins of q^2 are determined in a fit to M_{bc} vs. ΔE

Signal Side

 π^{-}

 B^0

 e^+

 $\Upsilon(4S)$

е

Untagged

• Experimental uncertainties dominated by $e^+e^- \rightarrow q\overline{q}$ and $B \rightarrow \rho \ell \nu$ modeling

BELLE II'S RECENT $|V_{cb}| \& |V_{ub}|$ SUMMARIZED

LIGHT LEPTON UNIVERSALITY

- The universality of the lepton coupling, g_{ℓ} ($\ell = e, \mu, \tau$), to the electroweak gauge bosons can be probed
 - Lepton universality (LU) is challenged by several current measurements. Deviations would be a clear sign of BSM physics

V

LU: ANGULAR ASYMMETRIES 🚣

Light lepton universality tested by measuring a complete set of five angular asymmetries of e and μ , $\Delta \mathcal{A}_{x} = \mathcal{A}_{x}^{e} - \mathcal{A}_{x}^{\mu}$ using $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ decays. $\mathcal{A}_{FB}(w): dx = d(\cos \theta_{\ell})$ $\mathcal{A}_{x}(w) = \left(\frac{d\Gamma}{dw}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0}\right] dx \frac{d^{2}\Gamma}{dwdx}$ $S_{3}(w) : dx = d(\cos 2\chi)$

 The simultaneous determination of all asymmetries in different w ranges is performed

March 28, 2023 | Henrik Junkerkalefeld

LU: INCLUSIVE $R(X_{e/\mu}) =$

- Challenging to model & control miscellaneous backgrounds
- Same flavor *B* pair used as background-enriched control sample, high momentum cut to suppress backgrounds
- Signal extracted in simultaneous fit on the **lepton** momentum in the B_{sig} rest frame, p_{ℓ}^{B} .

arXiv:2301.08266

Signal Side

LU: INCLUSIVE $R(X_{e/\mu})$

- Challenging to model & control miscellaneous backgrounds
- Same flavor *B* pair used as background-enriched control sample, high momentum cut to suppress backgrounds
- Signal extracted in simultaneous fit on the **lepton** momentum in the B_{sig} rest frame, p_{ℓ}^{B} .

Preliminary

 $R(X_{e/\mu}) = 1.033 \pm 0.010^{\text{stat}} \pm 0.019^{\text{syst}}$

- Most precise BF based lepton universality test in semileptonic *B*-meson decays to date
- First inclusive measurement
- Syst. unc. dominated by lepton ID

March 28, 2023 | Henrik Junkerkalefeld

Consistent with SM^[1] within 1.2 σ = JHEP **11**, 007 (2022)

ormalized

 $p_{\ell}^{B} > 1.3 \text{ GeV}!$

SUMMARY AND CONCLUSION

- Belle II's full coverage + constrained BB production enables unique kinematic control of semileptonic B-meson decays despite the neutrino(s)
- The long-standing discrepancy between exclusive and inclusive determinations of $|V_{cb}| \& |V_{ub}|$ limits our understanding of these fundamental parameters
- Belle II is trying to resolve the situation by
 - Probe existing analyses on independent data sets with improved experimental tools
 - Addressing potential issues in previous analyses like form factor dependence or slow pion tracking
- Lepton universality is challenged by several measurements
 - Already with half its current dataset, Belle II is able to provide world-leading and unique measurements to probe LU

BACKUP

FORM FACTORS AND LATTICE CONSTRAINTS

LQCD input only used for normalization at zero recoil (w = 1):

FNAL/MILC Phys. Rev. D 89, 114504

BGL truncation order determined by Nested Hypothesis Test Phys. Rev. D **100**, 013005

Prelimina	ry Values		χ^2/ndf			
$\tilde{a}_0 \times 10^3$	0.89 ± 0.05	1.00	0.26	-0.27	0.07	
$\tilde{b}_0 \times 10^3$	0.54 ± 0.01	0.26	1.00	-0.41	-0.46	40/21
$\tilde{b}_1 \times 10^3$	-0.44 ± 0.34	-0.27	-0.41	1.00	0.56	40/31
$\tilde{c}_1 \times 10^3$	-0.05 ± 0.03	0.07	-0.46	0.56	1.00	

$$|V_{cb}| = 40.9 \pm 1.2$$

FORM FACTORS AND LATTICE CONSTRAINTS

LQCD input only used for normalization at zero recoil (w = 1):

FNAL/MILC Phys. Rev. D 89, 114504

BGL truncation order determined by Nested Hypothesis Test Phys. Rev. D 100, 013005

Prelimina	ry Values		χ^2/ndf			
$\tilde{a}_0 \times 10^3$	0.89 ± 0.05	1.00	0.26	-0.27	0.07	
$\tilde{b}_0 \times 10^3$	0.54 ± 0.01	0.26	1.00	-0.41	-0.46	40/21
$\tilde{b}_1 \times 10^3$	-0.44 ± 0.34	-0.27	-0.41	1.00	0.56	40/31
$\tilde{c}_1 \times 10^3$	-0.05 ± 0.03	0.07	-0.46	0.56	1.00	

FNAL/MILC predictions of h_{A_1} at w = 1.03, 1.10, 1.17: Preliminary ______ Eur. Phys. J. C 82, 1141 (2022)

0.1

0.12 - 0.03

0.1 - 0.13

0.11 - 0.13

-0.9

1

-0.070.11

	Values						
$ V_{cb} \times 10^3$	40.4 ± 1.2	1	-0.31	-0.57	-0.1	0.02	-0.26
$a_0 \times 10^3$	22.0 ± 1.4	-0.31	1	0.27	0.1	-0.18	0.31
$b_0 imes 10^3$	13.2 ± 0.2	-0.57	0.27	1	-0.18	0.13	-0.12
$b_1 imes 10^3$	9.0 ± 14.5	-0.1	0.1	-0.18	1	-0.88	0.52
b_2	-0.5 ± 0.4	0.02	-0.18	0.13	-0.88	1	-0.36
$c_1 \times 10^3$	-0.7 ± 0.8	-0.26	0.31	-0.12	0.52	-0.36	1

 $28.3 \pm 1.0 - 0.16 \quad 1 \quad -0.08 - 0.19$

 $-5.8 \pm 2.5 \ -0.09 \ -0.19 \ -0.85$

 $13.3 \pm 0.2 \ -0.61 \ 0.17 \ -0.04$

 $-3.2 \pm 1.4 - 0.17 \quad 0.12 - 0.07$

1

 59.1 ± 31.1 0.1 -0.03 0.11 -0.13 -0.13 -0.9

Correlations

-0.16 0.02 -0.09 -0.61 -0.17

0.1

0.1

0.17

0.1

0.11

-0.85 - 0.04

Preliminary

 $|V_{cb}| \times 10^{3}$

 $a_0 \times 10^3$

 $a_{1} \times 10^{3}$

 a_2

 $b_0 \times 10^3$

 $c_1 \times 10^{\circ}$

 $c_{2} \times 10^{3}$

Values

 40.0 ± 1.2 1

 $-31.5 \pm 66.6 \quad 0.02 \quad -0.08$

$$|V_{cb}| = 40.4 \pm 1.2$$

1.0

1.1

1.2

1.3

w

1.4

1.5

Belle II Preliminary

 $\int \mathcal{L} dt = 189.3 \, \text{fb}^{-1}$

$|V_{xb}|$: UNTAGGED: EXPERIMENTAL UNCERTAINTIES

 $B^0 \rightarrow D^{*-} \ell^+ \nu$

Relative uncertainty (%)		Preliminary					
	\tilde{a}_0	$ ilde{b}_0$	${ ilde b}_1$	\tilde{c}_1			
Statistical	3.3	0.7	44.8	35.4			
Finite MC samples	3.0	0.7	39.4	33.0			
Signal modelling	3.0	0.4	40.0	30.8			
Background subtraction	1.2	0.4	24.8	18.1			
Lepton ID efficiency	1.5	0.3	3.1	2.5			
Slow pion efficiency	1.5	1.5	18.4	22.0			
Tracking of K, π, ℓ	0.5	0.5	0.6	0.5			
$N_{B\overline{B}}$	0.8	0.8	1.1	0.8			
$f_{+-}/f00$	1.3	1.3	1.7	1.3			
$\mathcal{B}(D^{*+} \to D^0 \pi^+)$	0.4	0.4	0.5	0.4			
$\mathcal{B}(D^0 \to K^- \pi^+)$	0.4	0.4	0.5	0.4			
B^0 lifetime	0.1	0.1	0.2	0.1			
Total	6.1	2.5	78.3	64.1			

 $B^0 \rightarrow \pi^- \ell^+ \nu$

Pı	reliminary		Systematic uncertainties on the yields (%)										
	Source		В	$^{0} \rightarrow c$	$\pi^- e^+$	ν_e			B^{0}	$^{)} \rightarrow \tau$	$\tau^-\mu^+$	$ u_{\mu}$	
		q1	q2	q3	q4	q5	q6	q1	q2	q3	q4	q5	q6
	Detector	1.2	1.0	1.1	1.4	2.3	2.4	2.3	3.2	3.3	1.2	1.9	3.8
MC sample size		4.0	2.0	2.4	2.8	3.9	5.6	3.9	2.0	2.3	2.7	3.4	4.8
	Continuum	13.1	5.5	4.4	7.8	10.5	33.9	53.3	8.8	3.2	4.5	8.0	11.4
	$B o ho \ell \nu$	9.5	12.5	9.7	6.9	3.4	12.9	8.7	11.6	8.6	6.3	3.3	14.3
	$B\to X_u\ell\nu$	3.3	1.9	2.1	2.1	1.8	3.7	3.4	2.3	2.0	2.3	2.1	6.0
	$B\to X_c\ell\nu$	2.3	3.0	1.1	0.8	0.5	2.4	2.4	1.5	1.5	0.8	0.5	2.2
	Total syst.	17.2	14.3	11.2	11.1	12.0	37.0	53.4	15.2	10.3	8.7	9.7	20.3
	Stat.	10.2	6.01	6.86	8.08	10.3	13.2	10.4	6.0	6.4	7.8	9.7	13.4
	Total	20.2	15.5	13.2	13.7	15.9	39.2	54.5	16.4	12.2	11.6	13.7	24.3

March 28, 2023 | Henrik Junkerkalefeld

March 28, 2023 | Henrik Junkerkalefeld

Signal Side

LU: ANGULAR ASYMMETRIES

- Light lepton universality tested by measuring a complete set of five angular asymmetries of e and μ , $\Delta \mathcal{A}_x = \mathcal{A}_x^e - \mathcal{A}_x^\mu$ using $B^0 \to D^{*-} \ell^+ \nu$ decays.
- $\mathcal{A}_{x}(w) = \left(\frac{\mathrm{d}\Gamma}{\mathrm{d}w}\right)^{-1} \left[\int_{0}^{1} \int_{-1}^{0} \right] \mathrm{d}x \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}w\mathrm{d}x}$ $A_{\rm FB}(w): dx = d(\cos \theta_{\ell})$ $S_3(w)$: dx = d(cos 2 χ) Highly sensitive to lepton universality violation $S_5(w)$: dx = d(cos $\chi \cos \theta_V$) $S_{7}(w) : dx = d(\sin \chi \cos \theta_{V})$ $S_{9}(w) : dx = d(\sin 2\chi)$ Less sensitive or insensitive to NP. Control tests of the analysis method

