Tau physics at Belle II

Navid K. Rad (DESY) on behalf of the Belle II collaboration

ALPS 2023 Conference 28.03.2023

an Alpine Particle Physics Symposium

Why Taus?

The odd one in the charged lepton family!

- heaviest of the charged leptons
 - 3500 times more massive than electron
- shortest lifetime
 - 10⁻⁷ times smaller lifetime than muon
- only lepton that decays into hadrons
 - ~ 250 decay modes!

The big question:

- does new physics preferentially couple to the 3rd generation!
- How can we answer this?
 - **precision measurements** of the tau properties
 - tau lepton mass, lifetime, branching ratios
 - deviations from SM: indirect signs of NP
 - searches for **forbidden decays** of tau
 - observation would be direct sign of NP
 - lepton flavor violating (LFV) decays:

•
$$\tau \rightarrow \ell V^0, \tau \rightarrow \ell \ell \ell, \tau \rightarrow \ell \gamma, \ldots$$

• *τ*→ℓα

Tau leptons at B factories

• Experimental requirements:

- good missing energy reconstruction
 - clean and well understood initial state
 - hermetic detector
- excellent vertexing and tracking capabilities
- ability to trigger low-multiplicity event

• These are all met at B factories!

 tau pair production cross section comparable to that of B pairs

 $\sigma(e^+e^- \rightarrow \Upsilon(4S)) = 1.11 \text{ nb}$ $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$

⇒ B Factories are also tau factories!

SuperKEKB and Belle II

• SuperKEKB accelerator

- energy-asymmetric e⁺e[−] collider located in Tsukuba, Japan
- running at (and near) m(Υ(4S))=10.58 GeV
- world record inst. lumi of 4.7×10^{34} cm⁻²s⁻¹

• Belle II detector

- data collected since 2019: 428 fb⁻¹
- currently in long shutdown
- expected to restart by the end 2023

Today:

• Direct searches:

- search for an invisible BSM boson (α) : τ → $\ell\alpha$
- LFV violating decay of tau: $\tau \rightarrow \ell \phi$
- Precision measurement:
 - tau lepton mass

• Direct searches:

- search for an invisible BSM boson (α) : $\tau \rightarrow \ell \alpha$
- LFV violating decay of tau: $\tau \rightarrow \ell \phi$
- Precision measurement:
 - tau lepton mass

search for BSM boson: $\tau \rightarrow \ell \alpha$

$\vec{T} = max\left(\sum_{i} \frac{\vec{p_i} \cdot \hat{T}}{|p_i|}\right)$

• Motivation:

- \circ α could be any invisible spin-0 boson, light ALP, etc..
- current best limits set by ARGUS (476 pb⁻¹)
- Common strategy:
 - split event in two hemispheres based on the thrust axis
 - use 3x1-prong decays (3 track on one side, 1 track on the other)
- tag side: $\tau \rightarrow \pi \pi \pi \nu$:
- signal side: $\tau \rightarrow \ell \alpha$, $\ell = e, \mu$
- Challenge:
 - irreducible background: $\tau \rightarrow \ell \nu \nu$
 - but we can exploit the <u>shape differences</u>:
 3-body decay vs. 2-body decay of signal

$\tau \rightarrow l\alpha$: the "pseudo-rest-frame"

$\tau \rightarrow \ell \alpha$: results

- Using 62.8 fb⁻¹ no signal is observed...
 - 95% CL upper limits are set on $B(\tau \rightarrow \ell \alpha)/B(\tau \rightarrow \ell \nu \nu)$ using asymptotic CLs method.

⇒ Most stringent limits in these channels to date! (2-14 times more constraining than Argus)

• Direct searches:

- search for a invisible BSM boson (α) : $\tau \rightarrow \ell \alpha$
- LFV violating decay of tau: $\tau \rightarrow \ell \phi$
- Precision measurement:
 - tau lepton mass

search for LFV decay: $\tau \rightarrow \ell \phi$

- Motivation:
 - highly suppressed in SM (~10⁻⁵⁰)
 - leptoquark models predict BF of up to 10⁻⁸-10⁻¹⁰
- Challenge:
 - keep signal efficiency high while suppressing the bkg
- Signal side: τ→ℓφ
 - $\ell = e, \mu \text{ and } \phi \rightarrow K^{+}K^{-}$ (~50% BF of ϕ)
- Tag side: inclusive (novel approach)
 - everything except for signal: "Rest of Event" (RoE)
 - RoE and signal kinematics in BDT classifier to suppress the continuum backgrounds
- signal efficiency of 6.1% (6.5%) for $e(\mu)$ channel
- The trick: no neutrino in the signal tau decay
 - Inv. mass on the signal side (M_{sig}) is expected to peak at actual tau mass!
 - $\Delta E_{sig} = E_{sig}^* \sqrt{s/2}$ expected to peak at zero for signal

ALPS 2023

search for LFV decay: $\tau \rightarrow \ell \phi$

- Background estimation
 - using data in the reduced sidebands
 - obtain transfer factor from simulation

Result	Region	Mode		
	Region	$e\phi$	$\mu\phi$	
$N_{\mathrm{exp}}^{\mathrm{backgrou}}$	and SR	$0.23^{+0.55}_{-0.21} { m\ stat}$	$0.36^{+0.39}_{-0.23}~{ m stat}$	
$N_{ m obs}$	\mathbf{SR}	$2.0^{+2.6}_{-1.3} m \ stat$	$0.0^{+1.8}_{-0.0}$ stat	

$\tau \rightarrow \ell \phi$: the results

• Direct searches:

- search for a invisible BSM boson (α) : $\tau \rightarrow \ell \alpha$
- LFV violating decay of tau: $\tau \rightarrow \ell \phi$
- Precision measurement:
 - tau lepton mass

tau lepton mass measurement

- The why:
 - lepton masses are fundamental parameters of SM
 - tau mass uncertainty is ~10³ worse than m(μ)
 - tau mass (and lifetime) uncertainties are important for lepton flavor universality (LFU) tests of SM

- energy scan around the tau pair production threshold
- extract the mass from the dependence of cross section on collision energy
- used by BESIII (most precise in the PDG)
- Pseudomass method (used here)

 $\tau \rightarrow \pi \pi \pi \nu$

- developed by ARGUS, and used at BaBar, Belle and Belle II
- exploit the kinematics of the 3π system in the

ALPS 2023

Pseudomass (M_{min}) method

- The challenge:
 - the tau mass cannot be accessed directly due to the presence of the neutrinos...
- The trick:
 - use 3-prong decays of tau: $\tau \rightarrow \pi \pi \pi \nu$
 - make some simple assumptions:
 - $E_{\tau} \approx \sqrt{s/2}$ (true up to ISR/FSR)
 - neutrinos: massless and
 - collinear with the 3π system (this minimizes the tau inv. mass)

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le M_{\tau}$$

- The nice part:
 - This variable has a kinematic edge at the tau mass!
- not so nice:
 - there is a large tail from ISR/FSR and detector resolution
 - we need to extract the mass from the threshold position

extracting the mass

- The method:
 - Use an empirical fit function to extract the mass:

$$F(M_{\min}) = 1 - P_3 \cdot \arctan\left(\frac{M_{\min} - P_1}{P_2}\right) + P_4(M_{\min} - P_1) + P_5(M_{\min} - P_1)^2$$

- \circ P₁: depends on the position of threshold
- P_2 : the slope of the threshold
- $P_3 P_5$: the shape away the threshold

P₁ is an estimator of tau mass!

- This is a biased estimator of 0.40 MeV, determined from simulation samples, with various generated tau masses
- **~3x smaller bias** compare to Belle and BaBar (they had slightly different parameterizations)
- The bias can also depend on the overall shape of the distribution as well

A bit of history:

- Historically, the systematics have been dominated by:
 - momentum scale of the tracks
 - beam energy scale

$$M_{\rm min} = \sqrt{|M_{3\pi}|^2 + 2(\sqrt{s/2} - |E_{3\pi}^*|)(E_{3\pi}^* - P_{3\pi}^*|)}$$

Belle (414 fb⁻¹) <u>arXiv:hep-ex/0608046</u>

TABLE I: Summary of systematic uncertainties

Source of systematics	σ , MeV/ c^2	
Beam energy and tracking system	0.26	
Edge parameterization	0.18	
Limited MC statistics	0.14	
Fit range	0.04	
Momentum resolution	0.02	
Model of $\tau \to 3\pi\nu_{\tau}$	0.02	
Background	0.01	
Total	0.35	
stat:	0.13	MeV

BaBar (423 fb⁻¹) arXiv:0909.3562

TABLE VII: Systematic uncertainties in M_{τ} .

Source	Uncertainty (MeV)
Momentum Reconstruction	0.39
CM Energy	0.09
MC Modeling	0.05
MC Statistics	0.05
Fit Range	0.05
Parameterization	0.03
Total	0.41
stat:	0.12 MeV

⇒ Challenge for Belle II: improve the understanding of these effects and squeeze the systematics! (also... only 190/fb used here!)

ALPS 2023

Tau mass systematics: momentum scale

- Momentum of the 3π 's is an important ingredient in the M_{min} !
- We use $D^0 \rightarrow K\pi$ as a standard candle!
 - get scale factors (SF) for K and π based on difference in peak position and PDG value of D⁰
 - phase-space dependent SFs: as a function of charge and cos(θ) of the tracks
 - various systematic effects included for the SF's:
 - m(D⁰) PDG uncertainty
 - peak position modelling
 - additional kinematical dependence
 - detector misalignment
- Use other mass peaks as cross check: $D^0 \rightarrow K\pi\pi\pi$, $J/\psi \rightarrow \mu\mu$, $K_s^0 \rightarrow \pi\pi$, $D^{\pm} \rightarrow K\pi\pi_{\Gamma}^1$

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)}$$

⇒ impact on tau mass: 0.06 MeV

Tau mass systematics: energy scale

Navid K. Rad

Tau mass measurement: results

Source	$\frac{\text{Uncertainty}}{[\text{ MeV}/c^2]}$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01
Total	0.11

Tau mass measurement: results

⇒ With less than half data size as Belle and BaBar we have better statistical precision!

Source	$\frac{\text{Uncertainty}}{\left[\text{MeV}/c^2\right]}$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01
Total	0.11

Tau mass measurement: results

⇒ With less than half data size as Belle and BaBar we have better statistical precision! PDG Average (2022) 1776.86 ± 0.12

tau lepton mass!

Navid K. Rad

Summary

• Tau physics can provide a window into new physics

- directly via searches for forbidden/highly suppressed decay modes
- indirectly via precision measurements of tau properties
- Belle II and superKEKB provide a near-ideal environment for studying the tau leptons!
- Direct searches for new physics signature already getting competitive or better than previous results!
 - search for a new scalar: $\tau \rightarrow \ell \alpha$
 - world's most stringents limit
 - search for LFV decay: $\tau \rightarrow \ell \phi$
 - successful application of inclusive tagging, with only half of the on-tape data
- World's most precise measurement for the tau lepton mass!
 - Precision measurement capabilities are proven!

Thank You!

Al's (DALL-E's) interpretation of "doing physics in the ALPS"

BACKUP

Trigger performance

• essential for dark-sector and tau physics

- typical signatures include low-multiplicity of tracks, and energy deposits in EM calorimeter
- large background from radiative Bhabha and two-photon processes

• some of the dedicated low-multiplicity triggers:

- single muon
 - combine drift chamber and muon detector information
- single track:
 - neural-net based hardware trigger
- single photon:
 - high efficiency for E(γ) > 1 GeV

$\tau \rightarrow \ell \alpha$: comparison with ARGUS

⇒ Most stringent limits in these channels to date!

$\tau \rightarrow \ell \phi$: the results

TABLE I: 90% confidence level upper limits on $\tau \to \ell \phi$ branching fractions obtained by BaBar (451 fb⁻¹) and Belle (854 fb⁻¹) [4, 5].

 \Rightarrow not yet competitive with Belle/BaBar, but a successful first application of inclusive tagging at Belle II

ALPS 2023

$\tau \rightarrow \ell \phi$: signal region and side bands

ALPS 2023

$\tau \rightarrow \ell \phi$: yields

Result	Region	Mode		
		$e\phi$	$\mu\phi$	
Signal efficiency $\varepsilon_{\ell\phi}$	\mathbf{SR}	$(6.1\pm0.9~{ m sys})\%$	$(6.5\pm0.6~{ m sys})\%$	
$r_{ m MC}$	SR / RSB	$0.23^{+0.16}_{-0.10} { m \ stat}$	$0.12^{+0.07}_{-0.04}~{ m stat}$	
$N_{ m data}$	RSB	$1.0^{+2.3}_{-0.8} { m \ stat}$	$3.0^{+2.9}_{-1.6} m \ stat$	
$N_{ m exp}$	SR	$0.23^{+0.55}_{-0.21} { m\ stat}$	$0.36^{+0.39}_{-0.23}~{ m stat}$	
$N_{ m obs}$	\mathbf{SR}	$2.0^{+2.6}_{-1.3} m \ stat$	$0.0^{+1.8}_{-0.0}$ stat	

tau mass uncertainties at Belle II

• Statistical precision with 190fb⁻¹: 0.08 MeV

- even with roughly half the data as Belle and BaBar (0.13 MeV), we have better precision!
 - inclusive tagging (Belle and BaBar use the leptonic tag only)
- Improved tracking resolution also helps!
 - better resolution => steeper threshold
 => more precise determination of mass
- the dominant systematics: momentum and energy scales!
 - Various other effects are also considered:
 - detector misalignments
 - uncertainty in the bias, fit function, fit window
 - mismodeling of material budget
 - generator mismodellings

Source	$\frac{\text{Uncertainty}}{[\text{ MeV}/c^2]}$
Knowledge of the colliding beams:	
Beam energy correction	0.07
Boost vector	≤ 0.01
Reconstruction of charged particles:	
Charged particle momentum correction	0.06
Detector misalignment	0.03
Fitting procedure:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	≤ 0.01
Imperfections of the simulation:	
Detector material budget	0.03
Modeling of ISR and FSR	0.02
Momentum resolution	≤ 0.01
Neutral particle reconstruction efficiency	≤ 0.01
Tracking efficiency correction	≤ 0.01
Trigger efficiency	≤ 0.01
Background processes	≤ 0.01

Let's get the mass....

• Use conservation of momentum and energy in the $T \rightarrow v 3\pi$ decay and solve for m_r:

$$\mathcal{P}_{\tau}^{2} = (\mathcal{P}_{\nu} + \mathcal{P}_{3\pi})^{2}$$

$$\Rightarrow m_{\tau}^{2} = m_{\nu}^{2} + m_{3\pi}^{2} + 2(E_{\nu} \ E_{3\pi} - \vec{p_{\nu}} \cdot \vec{p_{3\pi}}) \qquad (1)$$

$$= m_{\nu}^{2} + m_{3\pi}^{2} + 2(E_{\nu} \ E_{3\pi} - p_{\nu}p_{3\pi}\cos\theta)$$

$$E_{\nu} = E_{\tau} - E_{3\pi}, and$$

$$p_{\nu} = \sqrt{E_{\nu}^2 - m_{\nu}^2} = E_{\nu} = E_{\tau} - E_{3\pi}$$
(2)

To get:

- What are the knowns?
- What are the unknowns?
- Which unknowns can we maybe "sweep under the rug"?

$$m_{\tau}^{2} = m_{3\pi}^{2} + 2\left((E_{\tau} - E_{3\pi}) \ E_{3\pi} - (E_{\tau} - E_{3\pi}) p_{3\pi} \cos \theta_{\nu,3\pi} \right)$$
(3)
= $m_{3\pi}^{2} + 2(E_{\tau} - E_{3\pi})(E_{3\pi} - p_{3\pi} \cos \theta_{\nu,3\pi})$

ALPS 2023

...the pseudomass....

$$M_{\tau}^{2} = M_{3\pi}^{2} + 2(E_{\tau} - E_{3\pi})(E_{3\pi} - P_{3\pi}\cos\theta_{\nu,3\pi})$$
(4)

In the center of mass frame:

$$E_{\tau} = E_{beam} = \sqrt{s/2} \tag{5}$$

Also the equation will have a minimum when $\cos \theta_{\nu,3\pi} = 1$.

if we set $\cos \theta_{\nu,3\pi} = 1$, then we can write:

$$M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi}) \le M_{\tau}^2$$

So then we can define a new variable:

$$M_{min} = \sqrt{M_{3\pi}^2 + 2(E_{beam} - E_{3\pi})(E_{3\pi} - P_{3\pi})} \le M_{\tau} \quad (7)$$

This is called the <u>pseudomass</u>

- defined in this way, the distribution has a kinematic edge around the tau mass
- the edge can be exploited to extract the mass
- first used by ARGUS in 1992, later by Opal, Belle and now by Bellell

Navid K. Rad

(6)

Tau mass measurement: threshold production

- exploit dependance of xsec on CM energy (near the tau pair production threshold)
- use a likelihood fit to extract the mass
- laser + optical system to accurately measure the beam energy

positron

6.0m

HPGe

1.5m

o.

1.8m

R2IAMB

but this wouldn't work in Bellell ...

R1IAMB

Tau lifetime, teaser

• at Belle:

- the 3x3 tau decays
- o 700/fb

• at Bellell:

- Factor 5 gain in stat. by using 3x1 instead of 3x3
- With 200/fb already statistically compatible with Belle results
- Systematics still to be studied... but, proper time resolution already 2x better than Belle!

Physics at Belle II

- Not *just* a B-factory!
 - τ , c, and b pairs have similar cross sections at $\sqrt{s} = 10.58$ GeV

 $\sigma(e^+e^- \rightarrow \Upsilon(4S)) = 1.11 \text{ nb}$ $\sigma(e^+e^- \rightarrow c\overline{c}) = 1.3 \text{ nb}$ $\sigma(e^+e^- \rightarrow \tau^+\tau^-) = 0.92 \text{ nb}$

- Wide physics program
 - precision measurements of time-dependent CPV and CKM parameters
 - searches for lepton flavor/universality/number violations
 - dark-sector searches
 - and many more

SuperKEKB

• energy-asymmetric e⁺e⁻ collider in Tsukuba, Japan

- collision energy (mostly) at Υ (4S) \sqrt{s} =10.58 GeV
- target:

KEKB e⁺/e⁻

E (GeV): 3.5/8.0

- instantaneous lumi: 6x10³⁵cm⁻²s⁻¹
 30 larger than KEKB
- improvement achieved via the nanobeam scheme (20x smaller beam spot) and higher beam current

SuperKEKB and the Bellell detector

• SuperKEKB

- energy-asymmetric e⁺e⁻ collider in Tsukuba, Japan
- center-of-mass energy at (and near) $m(\Upsilon(4S))=10.58 \text{ GeV}$
- Target:
 - instantaneous lumi of 6x10³⁵cm⁻²s⁻¹ (30 larger than KEKB)
 - integrated lumi: 50 ab⁻¹ (50 times larger than KEKB)
- improvement achieved via the nanobeam scheme

Bellell detector

- upgraded Belle for higher luminosities (and its challenges)
- inner track detectors system (VXD) fully replaced
 - 2 (currently 1+2/12) new layers of DEPFET pixel detector (PXD)
 - 4 layers of double-sided silicon strip detector
- new drift chamber (CDC) within the 1.5 T magnet
- upgraded electronic readouts for the EM calorimeter (ECL)
- Cherenkov detectors for particle ID (PID) (TOP and ARICH)
- K_L and muon detector (KLM)

ALPS 2023

SuperKEKB designed machine parameters

2017/September/1	LER	HER	unit	
E	4.000	7.007	GeV	
I	3.6	2.6	А	
Number of bunches	2,5	2,500		
Bunch Current	1.44	1.04	mA	
Circumference	3,016.315		m	
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current
Coupling	0.27	0.28		includes beam-beam
βx*/βy*	32/0.27	25/0.30	mm	
Crossing angle	83		mrad	
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴		
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current
Vc	9.4	15.0	MV	
σz	6(4.7)	5(4.9)	mm	():zero current
Vs	-0.0245	-0.0280		
v_x/v_y	44.53/46.57	45.53/43.57		
Uo	1.76	2.43	MeV	
τ _{x,y} /τ _s	45.7/22.8	58.0/29.0	msec	
ξ _× /ξ _γ	0.0028/0.0881	0.0012/0.0807		
Luminosity	8×10 ³⁵		cm ⁻² s ⁻¹	

Machine Parameters