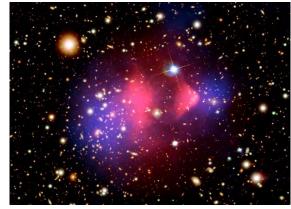
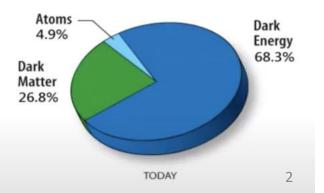
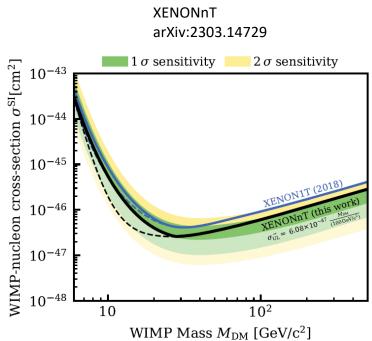

Recent Dark Sector Results from Belle II


Akimasa Ishikawa (KEK)

International Conference on Physics of Two Infinities@Kyoto

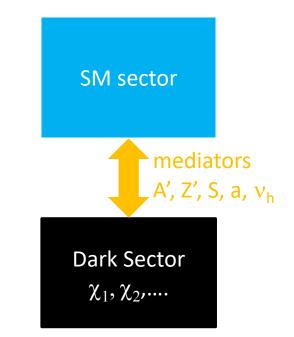

Dark Matter

- Existence of dark matter (DM : χ) had been established in astrophysics.
 - Rotation curve of a disk galaxy
 - Spatial distributions of luminous baryonic matter (with X-ray) and total matter (with gravitational lens) in a collision of galaxy clusters
 - CMB
 - And more
- We know the DM density in the Universe
 - $\Omega h^2 = 0.1188 \pm 0.0010$
 - 27% of total energy
- However there is no DM candidate in the standard model (SM) of particle physics
- Search for DM is a central issue in elementary particle physics

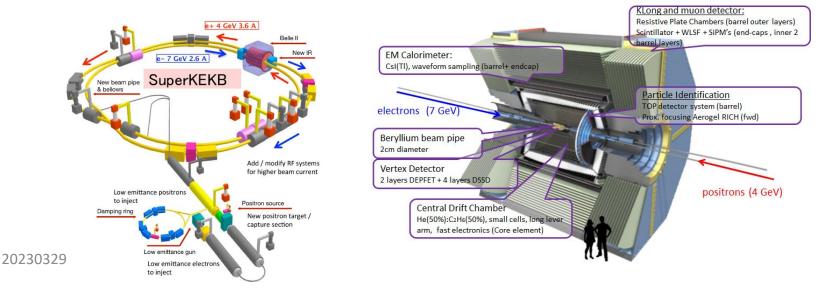


WIMP Miracle and...

- Assuming the thermal relic, WIMP with mass around O(100) GeV can explain the relic density.
- WIMP miracle !!


$$\Omega h^2 \simeq 0.1 \left(\frac{\langle \sigma v \rangle}{10^{-26} \text{ cm}^3/\text{s}} \right)^{-1}$$
$$10^{-26} \text{ cm}^3/\text{s} \simeq 10^{-9} \text{ GeV}^{-2} \sim \frac{g_2^4}{4\pi m_{\text{DM}}^2}$$

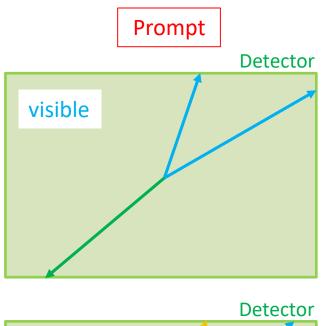
- However, WIMP has not been observed yet at the energy frontier collider, direct and indirect experiments.
- So wide variety of DM scenarios got attention recently.
- Dark sector (DS) is one of the important DM scenarios.

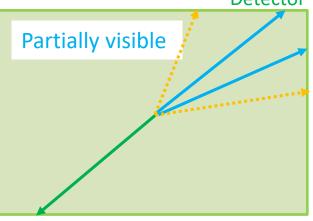

Dark Sector Models

- Particles in the dark sector are SM gauge singlet
- Dark sector and SM sector weakly couple with mediators (portal particles)
- (At least) four types of mediators
 - Scalar portal : Dark Higgs S
 - Pseudo scalar portal : Axion like particles (ALPs) a
 - Vector portal : Dark photon A', Z' in L_{μ} - L_{τ} model
 - Fermion portal : Sterile neutrinos v_h
 - (Tensor portal??)
- The mediators could have mass around MeV-GeV
- Parameter space which can explain thermal relic exists
 - heavy sterile neutrinos in GeV scale could also explain leptogenesis

SuperKEK and Belle II

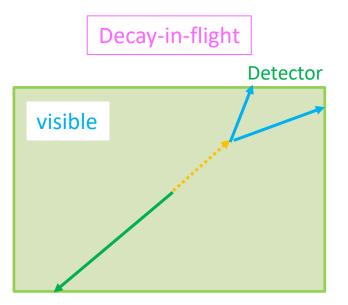
- Belle II@SuperKEKB is a good playground to search for these mediators and DM around MeV-GeV scale
 - Electron positron collider with E_{CM}~10GeV
 - Highest luminosity in the world : 4.7x10³⁴ /cm²/s (Target 6x10³⁵ /cm²/s)
 - Collected : 428fb⁻¹, target : 50ab⁻¹ around 2034
 - $4\pi \times 94\%$ detector \rightarrow 4momentum conservation usable
 - In additions to the usual DS searches with leptons and photons, DS searches with heavy flavor b, τ and c decays possible.
 - $e^+e^- \rightarrow Y(4S) \rightarrow BB$, $e^+e^- \rightarrow \tau\tau$, $e^+e^- \rightarrow cc$
 - Single photon/track trigger enable us to search for dark sector with missing energy

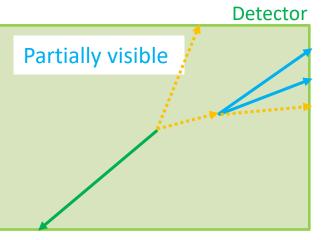

Signatures at e⁺e⁻ Collider


- Mediator can decay to
 - SM particles : visible
 - SM+DS final states : partially visible
 - DS particles : invisible
 - No Decays : invisible
- Decay length

- Prompt (cτβγ << 1mm)
 - Same as SM physics
 - Bump hunting (visible)
 - Recoil or endpoint (partially visible)
- Long lived (Decay-in-flight) (O(1)mm < $c\tau\beta\gamma$ < O(1)m)
 - BG is small thanks to displaced vertex reconstruction
 - $\,$ except for photon conversions, K_{\rm S} and Λ
 - Pointing to IP (visible)
 - No pointing to IP (partially visible)
- Very Long lived (Missing) ($c\tau\beta\gamma >> O(1)m$)
 - Or invisible decays
 - Missing mass from 4-momentum conservation
 - v and misreconstructed events (inefficiency) are the BG sources

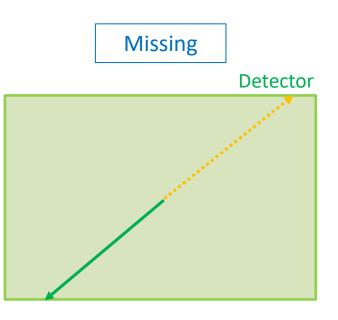
- SM particle from mediator decay
- Mediator or DS particle


Signatures at e⁺e⁻ Collider

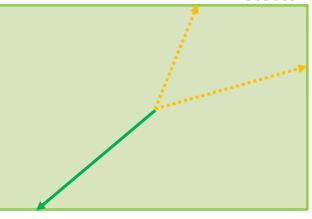

- Mediator can decay to
 - SM particles : visible
 - SM+DS final states : partially visible
 - DS particles : invisible
 - No Decays : invisible
- Decay length

- Prompt (cτβγ << 1mm)
 - Same as SM physics
 - Bump hunting (visible)
 - Recoil or endpoint (partially visible)
- Long lived (Decay-in-flight) (O(1)mm < $c\tau\beta\gamma$ < O(1)m)
 - BG is small thanks to displaced vertex reconstruction
 - except for photon conversions, Ks and Λ
 - Pointing to IP (visible)
 - No pointing to IP (partially visible)
- Very Long lived (Missing) ($c\tau\beta\gamma >> O(1)m$)
 - Or invisible decays
 - Missing mass from 4-momentum conservation
 - v and misreconstructed events (inefficiency) are the BG sources

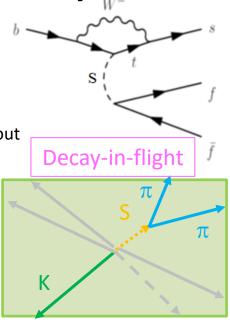
- SM particle from mediator decay
- Mediator or DS particle

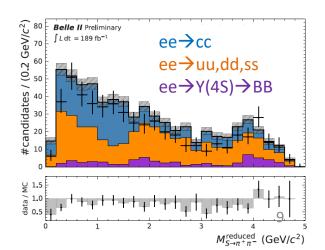

Signatures at e⁺e⁻ Collider

- Mediator can decay to
 - SM particles : visible
 - SM+DS final states : partially visible
 - DS particles : invisible
 - No Decays : invisible
- Decay length


- Prompt (cτβγ << 1mm)
 - Same as SM physics
 - Bump hunting (visible)
 - Recoil or endpoint (partially visible)
- Long lived (Decay-in-flight) (O(1)mm < $c\tau\beta\gamma$ < O(1)m)
 - BG is small thanks to displaced vertex reconstruction
 - except for photon conversions, Ks and Λ
 - Pointing to IP (visible)
 - No pointing to IP (partially visible)
- Very Long lived (Missing) ($c\tau\beta\gamma >> O(1)m$)
 - Or invisible decays
 - Missing mass from 4-momentum conservation
 - v and misreconstructed events (inefficiency) are the BG sources

- SM particle from mediator decay
- Mediator or DS particle



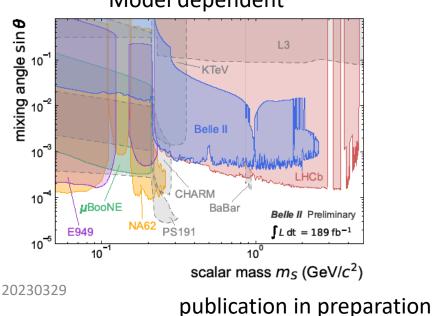


New Long-lived Dark Scalar in B Decays

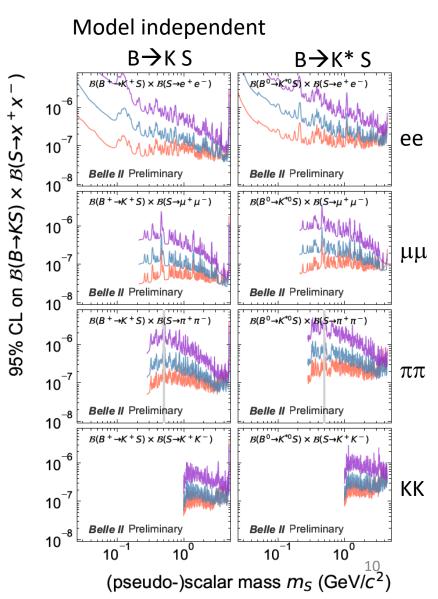
- Dark scalar particles S
 - M_s < 2M_{χ}
 - region where $S \rightarrow \chi \chi$ could explain the relic density already ruled out
 - Can mix with SM Higgs with the mixing angle θ
 - Yukawa coupling larger for heavier fermion
 - long-lived if θ is small
- $B \rightarrow K^+ S$ and $B \rightarrow K^{*0} S$ decays
 - S is radiated off from internal top quark in b \rightarrow s decays
 - S→ee, μμ, ππ, KK
 - $K^{*0} \rightarrow K^+ \pi^-$
 - In total, 8 decay modes
- Search for B decaying to long-lived S
 - Clean displaced vertex signature
 - Dominant backgrounds are combinatorial
 - ee \rightarrow cc, ee \rightarrow uu,dd,ss , ee \rightarrow Y(4S) \rightarrow BB
 - Long-lived K_s⁰ is a good control sample

Particles from the other B

189fb⁻¹ data

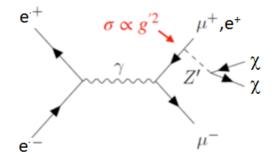

New !!

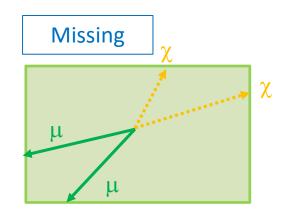
Limit on $B \rightarrow K^{(*)} S$

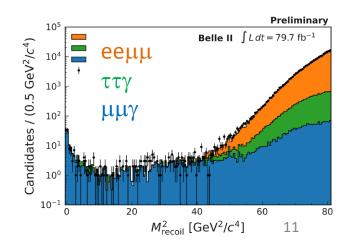

cτ =100cm

 $c\tau = 10 cm$ $c\tau = 1 cm$

- Model independent limit on BF
 - As functions of $c\tau$ and mass.
 - For 8 decay modes
 - First limit on S decaying to hadrons
- Model dependent limit on m_s vs. $sin\theta$
 - Dark Higgs mixing with the SM Higgs Filimonova, Schäfer, Westhoff, Phys. Rev. D 101, 095006

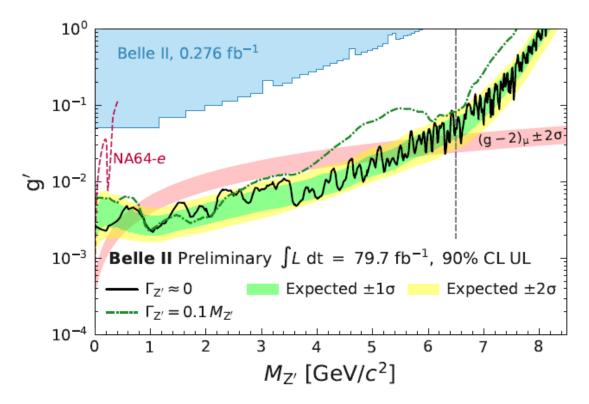



Model dependent



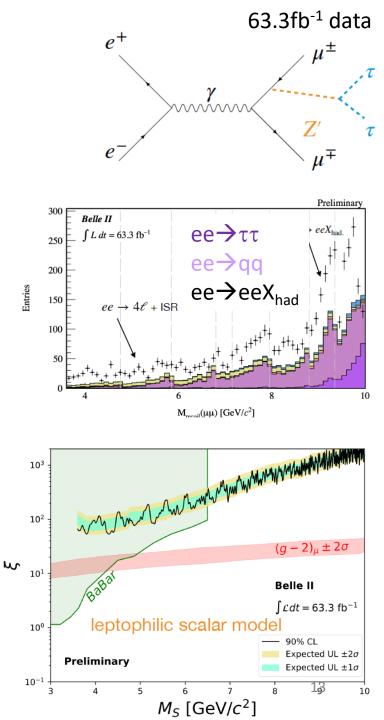
Invisible Z' in L_{μ} - L_{τ} model

- Z' only couples to particles with 2nd and 3rd lepton family numbers : μ , τ , ν_{μ} , and ν_{τ}
 - Two parameters : m_z, and g'
 - If DM χ carries the 2nd or 3rd lepton family numbers, invisible BF is almost 1 if kinematically allowed.
 - Can access to $m_{Z'} < 2m_{\mu}$
- Can explain the muon g-2 anomaly
- Signature at Belle II
 - $e^+e^- \rightarrow \mu^+\mu^- Z' \rightarrow \mu^+\mu^- \chi \chi$
- Search
 - Dominant backgrounds
 - ee→eeμμ, ττγ, μμγ
 - Recoil mass and θ_{Recoil} to identify the signal



Limit on invisible Z'

- Excluding parameter space explaining muon g-2 anomaly
 - $0.8 < M_{Z'} < 4.5 GeV$



arxiv: 2212:03066 submitted to PRL

$\tau\tau$ Resonance

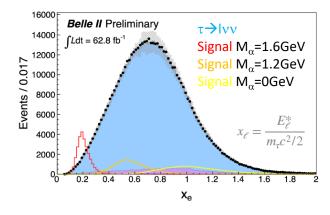
- Signature based searches
 - ee→μμττ
 - τ decays to one-prong and neutrals → 4 charged
 final states
- Search
 - Loose muon ID
 - M_{4track} <9.5GeV
 - Multi layer perception to suppress backgrounds
 - Recoil mass against dimuons
 - Dominant backgrounds
 - ee→ττ
 - Continuum ee→qq
 - Two photon $ee \rightarrow eeX_{had}$
- Interpretation
 - Z' in L_µ-L₇ model, leptophilic S, ALP a
 - Best sensitivity for M_s>6.5GeV

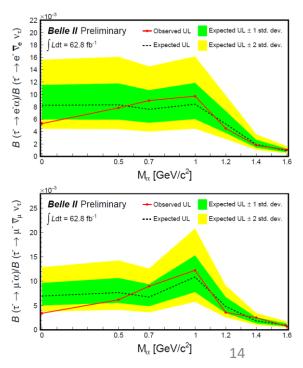
To be submitted soon

Invisible Boson in Lepton Flavor Violating τ Decays

 $-\vec{P}_{3\pi}$

α


- Signature
 - $ee \rightarrow \tau_{sig} \tau_{tag}$
 - $\tau_{sig} \rightarrow \mu \alpha$, $e\alpha : \alpha$ is the invisible boson

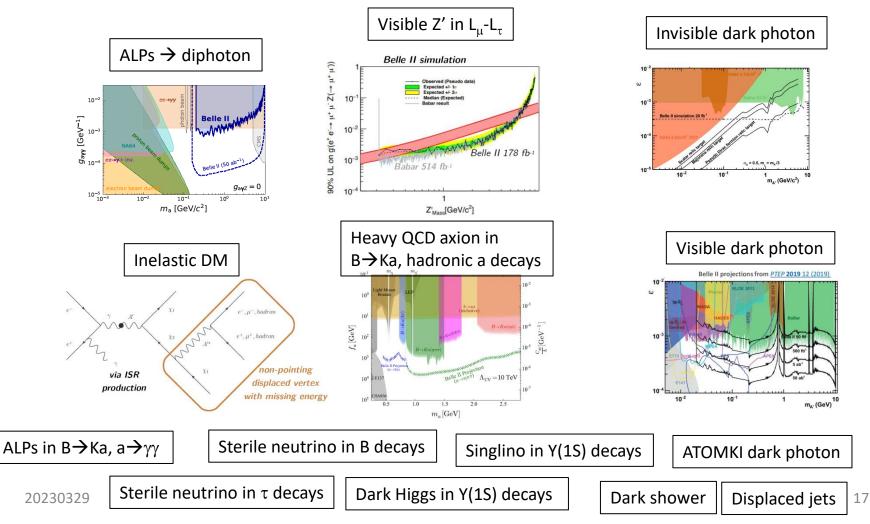

 $\vec{P}_{3\pi}$

- $-\tau_{tag} \rightarrow 3\pi v$
- Long-lived ALPs, etc contribute the decays.
- Reconstruction
 - τ_{tag} momentum direction from 3π
 - Pseudo rest frame of τ_{sig}
 - Normalized lepton energy

$$x_{\ell} \equiv \frac{E_{\ell}^*}{m_{\tau}c^2/2}$$

- Dominant background
 - Michel decays $\tau \rightarrow Ivv$
- Limit on BF ratio as a function of M_{α}
 - New since ARGUS results in 1995.
 - The improvement is from 2-fold to 14-fold dependent on the mass of $\boldsymbol{\alpha}$

arxiv:2212.03634, accepted by PRL


Summary

- Dark sector scenarios are very interesting
- Belle II is a good playground for dark sector searches
- Several searches has been performed with limited statistics
 - Dark Scalar in B decays
 - Invisible Z'
 - $-\tau\tau$ resonance
 - Dark boson in τ decays
- World best limits has been obtained.
- Many searches are possible at Belle II and are in pipeline with more data
 - If found, calculate relic density together with theorists
- Stay tuned

backup

Other Dark Sector Searches

• Many searches are possible at Belle II and are in pipeline with more data

