Recent highlights from the Belle II experiment

Tristan Fillinger

on behalf of the Belle II collaboration

29/03/23

International Conference on the Physics of the Two Infinities

素粒子原子核研究所 Institute of Particle and Nuclear Studies

Beyond the Standard Model

- One of the most successful theory, impressive predicting power
 - 10 Nobel Prizes so far!
- Examples: Fermi constant 9.10⁻⁶ precision Fine structure constant 3.10⁻⁹ precision

• Not the end of the story

....

Examples: Neutrino mass?

Tristan Fillinger

Not enough CP violation to explain matter/antimatter asymmetry? Dark matter/ energy?

- Tensions with predictions (muon g-2, R(D*)...)
- Precision measurements and high statistics needed to discover New Physics

Belle II detector

- Designed to give similar or better • performance than Belle even with lower boost and higher beam backgrounds
- Low track multiplicity

efficiency

Occupancy dominated by machine induced background

Luminosity

Status

- Collected ~ 362 fb⁻¹ at Y(4S) since April 2019
- Record-breaking instantaneous luminosity:
 4.7 x 10³⁴ cm⁻²s⁻¹ (last: LHC 2.14 x 10³⁴ cm⁻²s⁻¹)
- Ramping up toward the target luminosity
- Highest daily integrated luminosity: 2.5 fb⁻¹

Goal: 50 ab⁻¹

L (fb ⁻¹)	Belle	BABAR	total
Y(5S)	121	_	121
Y(4S)	711	433	1144
Y(3S)	3	30	33
Y(2S)	25	14	39
Y(1S)	6	-	6
off-res	100	54	154

Belle II physics program

Belle II physics program

B-factory basics

- e⁺e⁻ collision
 - Collision energy well defined
 - Kinematic well constrained

> Beam-constrained mass (M_{bc}) and energy difference (ΔE)

- Time difference Δt measured thanks to the boost along z
- Signal side fully reconstructed
- Vertexing and <u>Flavor tagger</u> on Tag side
- Continuum suppression (CSMVA) variable trained on BDTs using^{5.2} event shapes variables

Event shapes

Toward $\phi_1\left(\beta ight)$

Toward $\phi_1\left(\beta ight)$

$$B^0 \to K^0_S \ K^0_S \ K^0_S$$

- Complex vertexing
- Reach similar precision as world's best results

$$A_{CP} = 0.07^{+0.15}_{-0.20} \pm 0.02$$
$$S_{CP} = -1.37^{+0.35}_{-0.45} \pm 0.03$$

 $B^0 \to K^0_S \pi^0$

- Challenging vertex reconstruction
- $B^0 \rightarrow J/\psi K_S^0$ as control channel
- Better π^0 reconstruction and CSMVA
- > Competitive precision with world best results

$$A_{CP} = 0.04^{+0.15}_{-0.14} \pm 0.04$$
$$S_{CP} = 0.74^{+0.20}_{-0.23} \pm 0.04$$

To be submitted to PRD

Toward $\phi_2(\alpha)$

HFLAV PDG 2021

0.8

 ϕ_2

 $sin(2\phi_1)$

0.6

0.4

3

0.6

0.4

0.2

• Least known angle of the UT

B
ightarrow
ho
ho and $B^0
ightarrow \pi^0 \pi^0$

- Measurement of BR and A_{cp} of these 3 channels
 - Combined analyses to suppress hadronic unknowns
 - Belle II provides unique access to all inputs

Toward $\phi_3(\gamma)$

To be submitted to

$B^{\pm} \rightarrow D_{CP\pm}K^{\pm}$

- CP eigenstates such as K^+K^- (cp even) or $K_S^0 \pi^0$ (cp odd)
- Belle + Belle II dataset used (711 + 189 fb⁻¹)

$R_{CP+} = 1.164 \pm 0.081 \pm 0.036,$	Parameter	68.3% C.L.	95.4% C.L.
$R_{CP-} = 1.151 \pm 0.074 \pm 0.019,$		[8.7, 20.5]	
$\mathcal{A}_{CP+} = +0.125 \pm 0.058 \pm 0.014$	γ (°)	[83.8, 96.1] [163.4, 173.1]	[4.7, 175.8]
$A_{CP-} = -0.167 \pm 0.057 \pm 0.006.$	r_B	[0.282, 0.489]	[0.069, 0.560

$B^\pm \to D h^\pm$

7 observables (4 CP asymmetries and 3 BR)

Charm physics at Belle II

Λ_c^+ and Ω_c^0 lifetimes

- World most precise measurements of the Λ_c^+ , D^0 and D^+ lifetimes
- Consistent with world average (Λ_c^+, D) and LHCb result (Ω_c^0) that challenged earlier determinations and HQE expectations
- Few per-mill accuracy establishes the excellent performance of our detector

τ Physics at Belle II

• High production allow high-precision measurements

 $au^+
ightarrow \pi^+ \pi^- \pi^+
u$

- Using 1-prong and 3-prong events for tag side
 - Crucial knowledge of beam-energy and its resolution (ARGUS method)

$$M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le M_{\tau}$$

Belle II (2023)

1774

 $1777.09 \pm 0.08 \pm 0.11$

1775

1776

 M_{τ} [MeV/c²]

1777

1778

Quarkonium at Belle II

- $e^+e^- \rightarrow \omega \chi_{b1,b2}(1P)$
 - In 2021, SuperKEKB ran above $\Upsilon(4S)$ resonances

- Measurement of cross-section peak, consistent with $\Upsilon(10753)$ state
- First observation of $\omega \chi_{bJ}(1P)$ signal at $\sqrt{s} = 10.745$ GeV

Summary

- Belle II experiment has collected a sample that matches the size of BaBar's and is half the size of Belle's.
- With the help of an improved detector and refined analysis, we have already achieved results that compete with previous measurements and some results that are exclusive to us.
- Only a selection of the ongoing analyses were presented today
- We plan to resume data collection next winter after preparing the detector and machine to operate at maximum capacity.

Thank you for your attention

Tristan Fillinger

29/03/23

International Conference on the Physics of the Two Infinities

素粒子原子核研究所 Institute of Particle and Nuclear Studies

Belle II physics program

17

SuperKEKB collider and Belle II

- Electron (7 GeV) Positron (4 GeV) collider
- KEKB upgrade:
 - x 1.5 currents
 - x 1/20 vertical beam size (Nanobeam scheme)
 - \rightarrow Target up to 30 x higher \mathcal{L}_{inst}
 - Higher beam backgrounds
- Build to run on high Υ masses (from Υ (3S) to Υ (6S))
- On-resonance data:
 - Around $\sqrt{s} = 10.58 \text{ GeV}$
 - $\rightarrow \Upsilon(4S)$ resonance $\rightarrow B\overline{B}$
 - \rightarrow Clean B sample
- Off-resonance data:
 - 60 MeV below Y(4S) resonance
 - $e^+e^- \rightarrow q\overline{q}, \tau^+\tau^-, e^+e^-$ where q = (u, d, s, c)
 - \rightarrow Control sample for continuum background

Belle II detector

 Designed to give similar or better performance than Belle even under higher backgrounds

DAQ and trigger systems upgraded

Background types

Machine background

 $R_{Tou} \propto \frac{1}{\sigma E^3 n_b} I_{beam}^2$ Touschek scattering: single Coulomb scattering event between two particles of the same bunch, that are lost. Beam-gas scattering: Coulomb elastic scattering or $R_{bg} \propto IP$ bremsstrahlung with residual gas atoms. Synchrotron Radiation (SR): photon emission from $W_{SR} \propto \frac{E^4}{\rho^2}$ beam particles when subject to acceleration. Injection background: injected bunch performing betatron oscillation around the stored bunch, resulting $R_I \propto R_{inj}$ in particle losses especially in the interaction region.

Luminosity background

an Radiative Bhabha: neutron production from emitted photons (shields used for mitigation); off-energy primary particles lost in final focus magnets. Two photons process Two photons process: low momentum electron-positron pairs that can generate multiple hit in the VerteX Detector.

Luminosity projection

Projection of integrated luminosity delivered by SuperKEKB to Belle II

Target scenario: extrapolation from 2021 run including expected improvements.

Base scenario: conservative extrapolation of SuperKEKB parameters from 2021 run

- We start long shutdown I (LSI) from summer 2022 for 15 months to replace VXD. There will be other maintenance/improvement works of machine and detector.
- We resume physics running from Fall 2023.
- A SuperKEKB International Taskforce (aiming to conclude in summer 2022) is discussing additional improvements.
- An LS2 for machine improvements could happen on the time frame of 2026-2027

CP violation type

 $B \rightarrow D^{(*)}\pi$

- Decay with high-yield and low background benchmark
 - Using half of Belle II dataset (200M $B^0\overline{B^0}$)
 - Statistically limited
- Fundamental inputs for CP asymmetry measurements
 - Δt resolution (around 0.7 ps)
 - Flavor tagging (efficiency around 30%), on-par with best Belle performance

 $\Delta m_d = (0.516 \pm 0.008 \pm 0.005) \,\mathrm{ps}^{-1}$