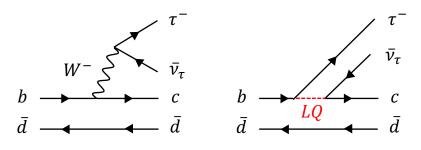
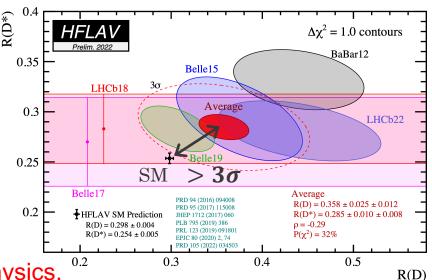


Belle II results related to $b \rightarrow c$ anomalies

Kazuki Kojima (Nagoya University) on behalf of the Belle II Collaboration

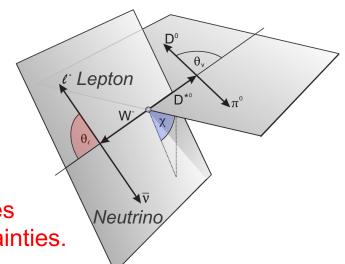

57th Rencontres de Moriond 2023: Electroweak Interactions & Unified Theories


Mar. 20th, 2023

Anomalies in $b \rightarrow c$ Decays

The Standard Model (SM) postulates the universality of the lepton coupling, g_{ℓ} ($\ell = e, \mu, \tau$), to the electroweak gauge bosons.

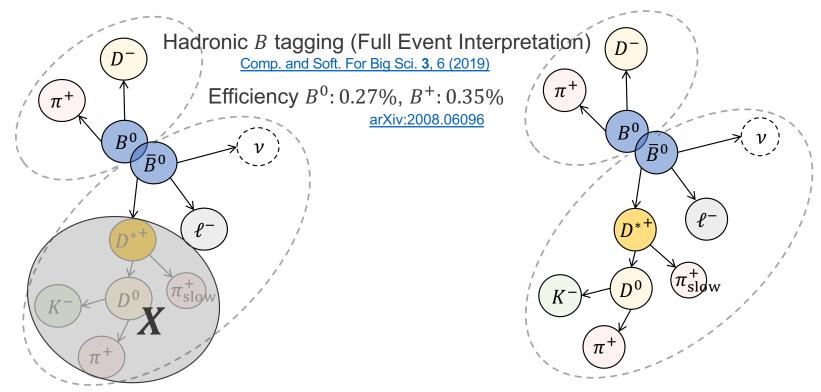
1.
$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}, \ (\ell = e \text{ or } \mu)$$



The tension with the SM could be a sign of New Physics.

2. Angular asymmetries: $\Delta \mathcal{A}_x = \mathcal{A}_x^e - \mathcal{A}_x^{\mu}$

$$\mathcal{A}_{x} = \left[\int_{0}^{1} - \int_{-1}^{0} \right] dx \frac{d\Gamma}{dx} \quad \begin{cases} A_{\text{FB}} : dx = d(\cos \theta_{\ell}) \\ S_{3} : dx = d(\cos 2\chi) \\ \vdots \end{cases}$$


 $\Delta \mathcal{A}_x$ provide theoretically and experimentally clean probes of light-lepton universality by large cancellation of uncertainties.

Data Sets & Reconstruction

We analyzed 189 fb⁻¹ data collected at Belle II by the summer of 2021.

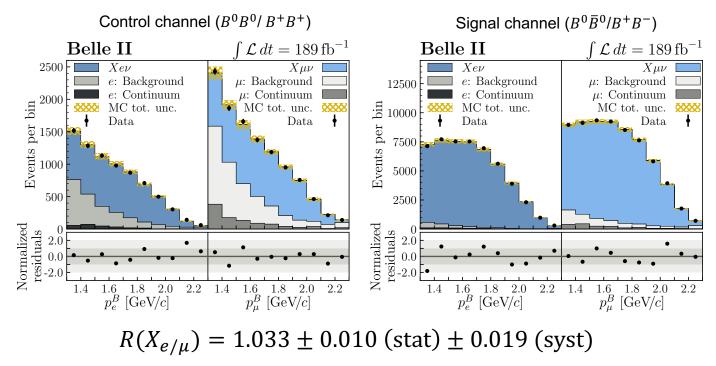
One B meson from $\Upsilon(4S)$ decay is fully reconstructed with hadronic decays to tag $B\bar{B}$ events. The signal semi-leptonic B decays are reconstructed via inclusive or exclusive modes.

1. Inclusive signal *B* modes

Reconstruct other than a lepton inclusively as X.

2. Exclusive signal *B* modes

Reconstruct all *B* daughters through specific channels.


2023/03/20

Light-Lepton Universality Test: $R(X_{e/\mu})$ Measurement

We tested light-lepton universality by
$$R(X_{e/\mu}) = \frac{\mathcal{B}(\bar{B} \to X e^- \bar{\nu}_e)}{\mathcal{B}(\bar{B} \to X \mu^- \bar{\nu}_\mu)}$$
 of

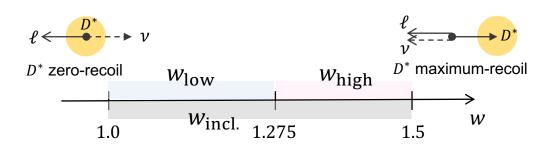
arXiv:2301.08266

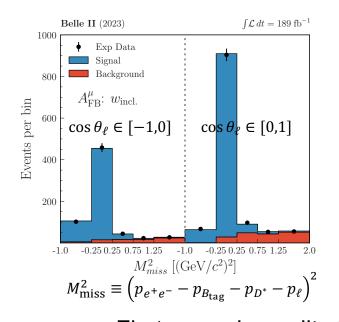
the inclusive signal B modes through a fit on the lepton momentum in the $B_{\rm sig}$ rest frame, p_ℓ^B .

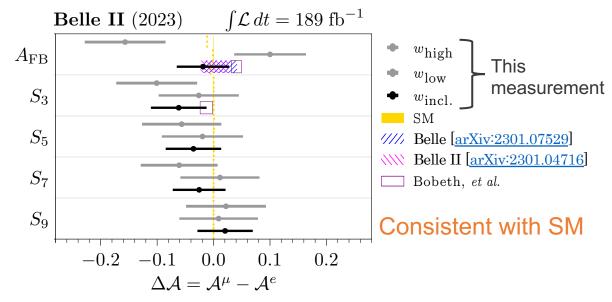
First branching-fraction based e- μ universality test using inclusive semi-leptonic B decays The most precise test of e- μ universality of semi-leptonic B decays

Consistent with SM $R(X_{e/\mu})_{\rm SM}^{[1]}$ by 1.2σ and the exclusive Belle $R(D^*_{e/\mu})^{[2],[3]}$.

[1] J. High Energy Phys. 11, 007 (2022), [2] Phys. Rev. D 100, 052007 (2019), [3] arXiv:2301.07529


Light-Lepton Universality Test: Angular Asymmetry


We tested lepton universality by comparing five angular asymmetries of e and μ , $\Delta \mathcal{A}_{\chi}(w) = \mathcal{A}_{\chi}^{\mu}(w) - \mathcal{A}_{\chi}^{e}(w)$, using exclusive $\bar{B}^{0} \to D^{*+} \ell^{-} \bar{\nu}_{\ell}$ decays.


Angular observable

Angular observable
$$\mathcal{A}_{\chi}(w) = \left(\frac{d\Gamma}{dw}\right)^{-1} \left[\int_{0}^{1} - \int_{-1}^{0} dx \frac{d^{2}\Gamma}{dwdx}\right] \qquad \qquad D^{*} \text{ zero-recoil}$$

$$w = \frac{m_{B}^{2} + m_{D}^{2} - (p_{B} - p_{D^{*}})^{2}}{2m_{B}m_{D^{*}}} : \text{recoil parameter} \qquad 1.0$$

First e- μ universality test of differential angular observables in wNo evidence of lepton universality violation with at least p-values of 0.12

Summary

The experimental results indicate deviations from the Standard Model by $> 3\sigma$. New Physics could contribute to the lepton universality violations.

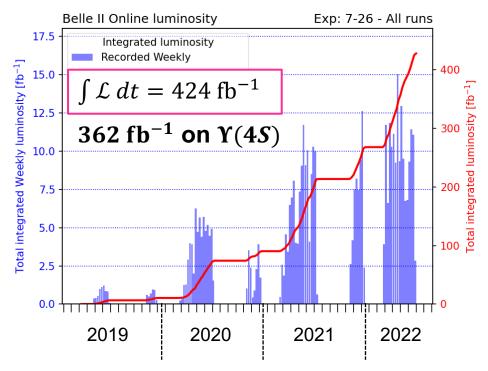
The Belle II experiment performed two light-lepton universality tests.

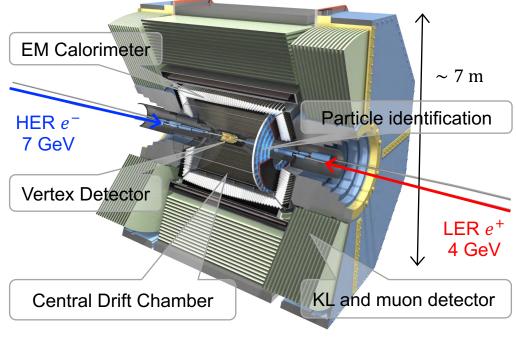
1.
$$R(X_{e/\mu}) = 1.033 \pm 0.010 \text{ (stat)} \pm 0.019 \text{ (syst)}$$

2.
$$\Delta A_{FB}(w)$$
, $\Delta S_3(w)$, $\Delta S_5(w)$, $\Delta S_7(w)$, $\Delta S_9(w)$

Both tests are world-leading/first results and are consistent with the SM expectation.

Appendix


SuperKEKB/Belle II Experiment


Electron-positron collider at a center of mass energy of the $\Upsilon(4S)$ resonance or around.

The world's highest instantaneous luminosity:

 $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

(KEKB record: $2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$)

Belle II detector

positron damping ring

HER e^-

Systematic Uncertainties on $R(X_{e/\mu})$

Table I: Statistical and systematic uncertainties on the value of $R(X_{e/\mu})$ from the most significant sources.

Source	Uncertainty [%]
Sample size	1.0
Lepton identification	1.9
$X_c \ell \nu$ branching fractions	0.1
$X_c \ell \nu$ form factors	0.2
Total	2.2

The modeling of charmed D meson decays by varying the branching ratio of each decay $D \to K^+$ anything within its uncertainty while fixing the total event normalization. The effect is negligible.

χ^2 Tests of Angular Asymmetries

In the full w region, w_{incl} :

Angular observables	$\chi^2/N_{ m dof}$	<i>p</i> -value		
${\mathcal A}$	15.0/10	0.13		
$\Delta A_{\mathrm{FB}}(w)$, $\Delta S_3(w)$, $\Delta S_5(w)$	2.1/3	0.56		
$\Delta S_7(w), \Delta S_9(w)$	0.6/2	0.32		

In the sub-w region, $w_{high} \& w_{low}$:

Angular observables	$\chi^2/N_{ m dof}$	p-value		
${\mathcal A}$	27.7/20	0.12		
$\Delta A_{\mathrm{FB}}(w)$, $\Delta S_3(w)$, $\Delta S_5(w)$	10.2/6	0.12		
$\Delta S_7(w), \Delta S_9(w)$	1.1/4	0.89		

Uncertainties on Angular Asymmetries

The systematic uncertainties are dominated by the sample size of MC statistics.

Obs.	w bin	Total	Stat.	MC stat.	LID	$\pi_{ m slow}$	<i>-</i>	-	-	-	-
$\overline{A_{\mathrm{FB}}^e}$	$\overline{w_{\mathrm{low}}}$	0.047	0.044	0.015	0.004	0.001					
īБ	$w_{ m high}$		0.049	0.017	0.004						
	$w_{\rm incl.}$	0.034		0.011	0.004						
$A_{ m FB}^{\mu}$	$w_{ m low}$		0.041	0.013	0.001						
ГБ	$w_{ m high}$	0.050		0.016	0.002						
	$w_{ m incl.}$	0.032		0.010	0.001						
$\Delta A_{ m FB}$	$w_{ m low}$		0.060	0.020	0.004						
—гр	$w_{ m high}$	0.072		0.024	0.004						
	$w_{ m incl.}$	0.046		0.015	0.004						
S_3^e	$w_{ m low}$		0.050	0.018	0.000			S_7^e	$S_7^e \qquad w_{ m low}$	$S_7^e w_{\text{low}} 0.052 0.049$	$S_7^e w_{\text{low}} 0.052 0.049 0.018$
~ 3	$w_{ m high}$		0.048	0.018	0.000			·	$w_{ m high}$	0 0 10 0 0 10	0.040.0040.004
	$w_{ m incl.}$	0.036		0.012		0.000			$w_{ m incl.}$		8
S_3^μ	$w_{ m low}$		0.045	0.012		0.000		S_7^μ	$S_7^\mu \qquad w_{ m low}$	11101.	ilici.
~ 3	$w_{ m high}$	0.050		0.016		0.000		,	$w_{ m high}$		
	$w_{ m incl.}$		0.032	0.010		0.000			$w_{ m incl.}$	111611	gii
ΔS_3	$w_{ m low}$	0.071		0.024		0.000		ΔS_7	$\Delta S_7 - w_{ m low}$	11101.	
$\Delta \mathcal{O}_3$		0.071		0.024 0.025		0.000		~ [$w_{ m high}$	0.000.0004	0.000.00040000
	$w_{ m high}$	0.012		0.025 0.017		0.000			$w_{ m incl.}$	mgn	mgn
S_5^e	$w_{\mathrm{incl.}}$		0.040	0.017	0.001			S_9^e	$S_9^e \qquad \stackrel{ m w_{low}}{w_{ m low}}$	αP	
\mathcal{D}_5	$w_{ m low}$	0.053		0.013 0.017	0.001			~ 9	$w_{ m high}$	0.071.0.010	0.071.0.0100.010
	$w_{ m high}$	0.036		0.017 0.012		0.000			$w_{ m incl.}$		8
S_5^μ	$w_{\mathrm{incl.}}$		0.034 0.045	0.012 0.016	0.001			S_9^μ	$S_9^\mu \qquad \stackrel{ m w_{low}}{w_{ m low}}$	11101.	ilici.
\mathcal{D}_5	$w_{ m low}$	0.049		0.016	0.001			~ 9	$v_{ m high}$		
	$w_{ m high}$		0.040 0.032	0.010 0.011		0.000			$w_{ m incl.}$	6	
ΔS_5	$w_{\mathrm{incl.}}$		0.032 0.068	0.011 0.024		0.000		ΔS_0	$\Delta S_9 - w_{ m low}$	11101.	A C
ΔD_5	$w_{ m low}$	0.072 0.070		0.024 0.023		0.000		—~ 9	$w_{ m high}$		
	$w_{ m high}$	0.070		0.023 0.016	0.001				$w_{ m incl.}$	****8**	mg.
	$w_{\rm incl.}$	0.049	0.040	0.010	0.001	0.000			™inci.	wincl. 0.010 0.010	wincl. 0.010 0.010 0.011