

Belle II 実験189 fb⁻¹における ハドロニックタグを用いた*R*(*D**)測定結果

名大理^A,名大KMI^B,名大YLC^C,KEK素核研^D

<u>児島一輝</u>^A, 飯嶋 徹^{A,B,D}, 周 啓東^{B,C}, 松岡 広大^{A,D}, 古賀 太一朗^D, 中村 克朗^D, 原 康二^D 他 Belle II Collaboration

日本物理学会 2023年春季大会 2023年3月22日

レプトンフレーバー普遍性

標準模型ではレプトンとゲージ粒子の結合定数 g_ℓ ($\ell = e, \mu, \tau$)はフレーバーによらない.

 $\rightarrow W/Z$ ボソンや K/π 崩壊, τ/μ 崩壊で無矛盾な結果が確認されている.

(A. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41-85; ATLAS Collaboration, Nature Physics 17 (2021) 813-818)

B中間子のセミレプトニック崩壊ではBaBar, Belle, LHCb実験における測定の世界平均が 3σ を超える有意度で標準模型から予想される理論値からの乖離を示している.

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \quad (\ell = e \text{ or } \mu)$$

レプトンフレーバー普遍性

標準模型ではレプトンとゲージ粒子の結合定数 g_ℓ ($\ell = e, \mu, \tau$)はフレーバーによらない.

 $\rightarrow W/Z$ ボソンや K/π 崩壊, τ/μ 崩壊で無矛盾な結果が確認されている.

(A. Pich, Prog. Part. Nucl. Phys. 75 (2014) 41-85; ATLAS Collaboration, Nature Physics 17 (2021) 813-818)

B中間子のセミレプトニック崩壊ではBaBar, Belle, LHCb実験における測定の世界平均が 3σ を超える有意度で標準模型から予想される理論値からの乖離を示している.

SuperKEKB/Belle II 実験

重心系エネルギー \sqrt{s} = 10.58 GeVの電子陽電子衝突実験

世界最高ルミノシティでの衝突データ収集を実現 4.7×10³⁴ cm⁻²s⁻¹

(KEKBの最高ルミノシティ: 2.1×10³⁴ cm⁻²s⁻¹)

SuperKEKB/Belle II 実験

重心系エネルギー \sqrt{s} = 10.58 GeVの電子陽電子衝突実験.

世界最高ルミノシティでの衝突データ収集を実現 4.7×10³⁴ cm⁻²s⁻¹

(KEKBの最高ルミノシティ: 2.1×10³⁴ cm⁻²s⁻¹)

2021年夏までに取得した189 fb⁻¹のデータを使用して $R(D^*)$ 測定を目指す

Belle II 検出器

電子陽電子衝突点に置かれた7つの検出器群からなる汎用粒子測定器.

本研究における $\overline{B} ightarrow D^* au^- \overline{ u}_{ au}$ 崩壊の再構成

ハドロニックタグ手法とτ粒子がレプトニック崩壊するモードを使用した解析を行う.

- ・ 片方のB中間子のすべての終状態粒子を再構成
 → *τ*粒子の崩壊で複数のニュートリノを含む信号側の再構成で力学的制約に有用
- $R(D^*)$ 測定の基準モードとなる $\bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell$ と共通の荷電レプトン選別条件

→ 実験的な再構成効率に関する系統誤差の削減が可能

arXiv:2008.06096

	<u></u>	ツク効率	
/ ハドロニックタグ手法	B^+	0.30%	
(π^+)	B^0	0.23%	
B^0			
\overline{B}^0	再構成モード	崩壊分岐比	
	$B^- \to D^{*0} \tau^- \bar{\nu}_{\tau}$	1.39%	
D^{*+}	$\bar{B}^0 \to {D^*}^+ \tau^- \bar{\nu}_\tau$	1.30%	
$\pi^+_{\rm slow}$ ℓ^-	$D^{*+} \rightarrow D^0 \pi^+ / D^+ \pi^0$	~98%	
K-C D CIT	$D^{*0} \rightarrow D^0 \pi^0$	~65%	
π^+ レプトニック τ 崩壊	D+ (3モード)	~12%	
	D ⁰ (8モード)	~36%	
余分な飛跡や π^0 が存在しないことを要求	$\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau$	~35%	

$R(D^*)$ 測定解析手法

信号モード $\overline{B} \rightarrow D^* \tau^- \overline{v_\tau}$ と基準モード $\overline{B} \rightarrow D^* \ell^- \overline{v_\ell}$ の収量を2次元フィットで同時に決定して $R(D^*)$ を測定する

欠損質量
$$M_{\text{miss}}^2 \equiv \left(p_{e^+e^-} - p_{B_{\text{tag}}} - p_{D^*} - p_{\ell}\right)^2$$

• 信号モード $\overline{B} \rightarrow D^* \tau^- \overline{v_\tau}$ では複数のニュートリノを 含むため大きな欠損質量をもつ

電磁カロリメータの残存エネルギー和 E_{ECL}

- 正しく再構成された $\bar{B} \rightarrow D^* \tau^- \bar{\nu}_\tau \geq \bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell$ は0にピーク
- 背景事象では再構成に使われなかった π^0 や γ のエネルギーで大きくなる ($\bar{B} \rightarrow D^{**} \ell^- \bar{\nu}_{\ell}, D^{**} \rightarrow D^* \pi^0$ に由来する背景事象など)

フィット変数*E*^{extra}の分解能の改善

 $E_{\rm ECL}^{\rm extra}$ として残存するのはハドロンが電磁カロリメータと相互作用して生成した γ が支配的. → ハドロン相互作用に由来するγを除くため飛跡との最小距離が20 cmより大きいことを要求

飛跡との最小距離に対する選別条件なし

フィット手法

分類した9つの候補カテゴリーごとにMC分布から2次元のヒストグラムPDFを作成し、 $D^{*+} \rightarrow D^0 \pi^+ / D^+ \pi^0 \ge D^{*0} \rightarrow D^0 \pi^0 03$ つの D^* 中間子崩壊モードで同時フィットを行う.

 $D^{*^+} \rightarrow D^0 \pi^+$ モードの2次元ヒストグラムPDF $E_{\text{ECL}}^{\text{extra}} \text{ vs } M_{\text{miss}}^2$

D*モードと候補カテゴリーごとに用意した計27のヒストグラムPDFを使用する.

フィット変数: $R(D^*)$, $\mathcal{B}(\overline{B} \to D^* \ell^- \overline{\nu}_\ell)$

以下のように $R(D^*)$ と $B(\overline{B} \rightarrow D^* \ell^- \overline{\nu}_\ell)$ を定義して収量をフィットして決定する.

$$\begin{split} R(D^*) &= \frac{N_{\bar{B}\to D^*\tau\bar{\nu}_{\tau}}^i}{N_{\bar{B}\to D^*\ell\bar{\nu}_{\ell}}^i/2} \cdot \frac{\varepsilon_{\bar{B}\to D^*\tau\bar{\nu}_{\ell}}^i}{\varepsilon_{\bar{B}\to D^*\tau\bar{\nu}_{\tau}}^i}, \quad i \in \{D^{*+} \to D^0\pi^+, D^{*+} \to D^+\pi^0, D^{*0} \to D^0\pi^0\} \\ \mathcal{B}(\bar{B}^0 \to D^{*+}\ell^-\bar{\nu}_{\ell}) &= \frac{N_{\bar{B}\to D^*\ell\bar{\nu}_{\ell}}^j}{\varepsilon_{\bar{B}\to D^*\ell\bar{\nu}_{\ell}}^i \cdot 2} \cdot \frac{1}{f_{00} \cdot 2N_{B\bar{B}}}, \quad j \in \{D^{*+} \to D^0\pi^+, D^{*+} \to D^+\pi^0\} \\ \mathcal{B}(B^- \to D^{*0}\ell^-\bar{\nu}_{\ell}) &= \frac{N_{\bar{B}\to D^*\ell\bar{\nu}_{\ell}}^k}{\varepsilon_{\bar{B}\to D^*\ell\bar{\nu}_{\ell}}^i \cdot 2} \cdot \frac{1}{(1-f_{00}) \cdot 2N_{B\bar{B}}}, \quad k \in \{D^{*0} \to D^0\pi^0\} \\ &\quad * i, j \text{ Icdsthad} D^* \ddot{B} \equiv t - F \ddot{B} \text{ of } t \in \mathbb{Z} \\ R(D^*) \geq \mathcal{B}(\bar{B} \to D^*\ell^-\bar{\nu}_{\ell}) \text{ Icdsthad} \eta \equiv 1^{\mathcal{C}} \neg \mathcal{L} - \mathcal{D} N_{\bar{B}\to D^*\tau\bar{\nu}_{\tau}}^i \geq N_{\bar{B}\to D^*\tau\bar{\nu}_{\ell}}^i \log N^{\mathcal{C}} \neg \mathcal{L} - \mathcal{D} \\ &\quad \text{Icdsthad} D^* \mathcal{B} = \mathcal{D}^* \mathcal{L} - \mathcal{D} \\ R(D^*) \geq \mathcal{B}(\bar{B} \to D^*\ell^-\bar{\nu}_{\ell}) \text{ Icdsthad} \eta \equiv 1^{\mathcal{C}} \neg \mathcal{L} - \mathcal{D} N_{\bar{B}\to D^*\tau\bar{\nu}_{\tau}}^i \geq N_{\bar{B}\to D^*\tau\bar{\nu}_{\ell}}^i \log N^{\mathcal{C}} \neg \mathcal{L} - \mathcal{D} \\ &\quad \text{Icdsthad} D^* \mathcal{B} = \mathcal{D} \\ &\quad \text{Icdsthad} D^* \mathcal{B} = \mathcal{D} \\ R(D^*) \geq \mathcal{D}(\bar{B} \to D^*\ell^-\bar{\nu}_{\ell}) \text{ Icdsthad} \eta \equiv \mathcal{D} \\ &\quad \text{Icdsthad} D^* \mathcal{D} = \mathcal{D} \\ R(D^*) \geq \mathcal{D}(\bar{B} \to D^*\ell^-\bar{\nu}_{\ell}) \\ &\quad \text{Icdsthad} D^* \mathcal{D} \\ R(D^*) \geq \mathcal{D}(\bar{B} \to D^*\tau\bar{\nu}_{\tau}, \varepsilon_{\bar{B}\to D^*\ell\bar{\nu}_{\ell}}^i) \\ &\quad \text{Icdsthad} D^* \mathcal{D} \\ \\ &\quad \text{Icdsthad} D^* \mathcal{D} \\ \quad \text{Icdsthad} D^* \mathcal{D} \\ \quad \text{Icdsthad} D^* \mathcal{D} \\ &\quad \text{Icdsthad} D^* \mathcal{D} \\ \quad \text{Icds$$

フィット変数:収量パラメータ

各候補カテゴリーの収量は以下のように動かしてフィットを行い,計17の変数を決定する.

候褚	甫カテゴリー			収量パラメータ	_	$M_{\rm miss}^2 > 1 ({\rm GeV}/c^2)^2$
	信号モード $\bar{B} \rightarrow D^* \tau^- \bar{\nu}_{\tau}$			Floated		35 $Belle II$ Internal $D^*\tau v$ $U dt = 189.3 \text{ fb}^{-1}$
	偽レプトン候補を含む信号モード $\bar{B} \rightarrow D^* \tau^- \bar{\nu}_{\tau}$		Fixed by MC	ស្ត	$\begin{array}{ccc} & D^{*} & D^{*} \\ \hline & MC14ri \\ & Hadronic FEI \end{array} D^{*+} \rightarrow D^{0} \pi^{+} \begin{array}{ccc} & D^{*} \nu \\ \hline &$	
	基準モード	$\overline{B} \rightarrow D$	$D^*\ell^-ar{ u}_\ell$	Floated	ndidate	$B^{0} \leftrightarrow B^{\pm} \operatorname{crossfeed}$
真のD*候補を 含む背景事象			$\bar{B} \rightarrow D^{**} \ell^- \bar{\nu}_{\ell}$ 背景事象	Floated	Cai	15 The second se
			ハドロニックB崩壊背景事象	Fixed by MC		
			$B^0 \leftrightarrow B^\pm$ タグ間違い背景事象	Fixed by MC		0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 $E_{\text{rot}}^{\text{even}}$ [GeV]
		qq間背景事象 (q = u,d,s,c)	Fixed by MC			
		その他の背景事象	Fixed by MC	_		
	偽D*候補を含む背景事象		Constrained			

収量をフィットで決定

フィット変数:収量パラメータ

各候補カテゴリーの収量は以下のように動かしてフィットを行い,計17の変数を決定する.

収量をフィットで決定

フィット変数:収量パラメータ

各候補カテゴリーの収量は以下のように動かしてフィットを行い,計17の変数を決定する.

収量をフィットで決定

偽D*候補を含む背景事象の制御

偽D*候補は最大の背景事象であるため精度良く見積もることが重要.

偽 D^* 候補を多く含む ΔM_{D^*} (= $M_{D^*} - M_D$) サイドバンド領域を利用して 閾値関数を ΔM_{D^*} 分布にフィットすることでMCの偽 D^* 候補の収量を較正して制限する.

Δ*M*_{D*}サイドバンド領域のフィットの例

偽D*候補を含む背景事象のMC較正結果

 ΔM_{D^*} サイドバンド領域で偽 D^* 候補の較正を適用したフィット変数の形状を評価した.

偽D*候補のフィット変数分布がMCでよく再現されていることを確認

疑似データを用いた統計誤差の見積もり

ヒストグラムPDFをもとに189 fb⁻¹の疑似データを乱数生成して5,000回分の疑似実験を実施. 疑似データへの入力値: $R(D^*)_{SM} = 0.254$ (標準模型の理論値)

統計誤差 $\sigma_{R(D^*)}^{\text{stat.}} = \frac{+0.043}{-0.040} \begin{pmatrix} +17\% \\ -16\% \end{pmatrix}$

結論

R(*D*^{*})の実験値は標準模型の予想から3σを超える乖離を示す. → 新物理によるレプトンフレーバー普遍性の破れの兆候の可能性.

検証に向けてSuperKEKB/Belle II実験の実データを用いた $R(D^*)$ 測定を目指している.

- ハドロン相互作用に由来する γ を削減し E_{ECL}^{extra} 分解能を改善した.
- 偽D*候補の収量対するMC較正手法を確立した.
- 189 fb⁻¹の擬似データを使用して $R(D^*)_{SM} = 0.254$ における統計誤差を $\sigma_{R(D^*)}^{stat.} = \frac{+17\%}{-16\%}$ と見積もった.

結果公表に向けて

- 基準モード $\bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell \geq \bar{B} \rightarrow D^{**} \ell^- \bar{\nu}_\ell$ 背景事象のためのサイドバンド領域の確認
- $M_{\text{miss}}^2 < 1 (\text{GeV}/c^2)^2$ 領域における基準モード $\bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell$ のデータの確認
- 系統誤差の見積もり

が進行中

2022/03/22