Measurements of ϕ_1 (β) at Belle II and related decay-time-dependent analyses

Thibaud Humair, on behalf of the Belle II collaboration thumair@mpp.mpg.de

KEK-FF, KEK

9 February 2023

2 KEK-FF 2023

2 KEK-FF 2023

Belle and Babar established the CKM structure of the SM with the measurement of β in 2001. \Rightarrow Nobel Prize to Kobayashi and Maskawa in 2008.

Belle and Babar established the CKM structure of the SM with the measurement of β in 2001. \Rightarrow Nobel Prize to Kobayashi and Maskawa in 2008.

Today: β and other CKM angles have become a precision test of the SM, β best known angle Central aim at Belle II: push β -related measurements to ultimate precision.

2 KEK-FF 2023

Belle II and SuperKEK-B

SuperKEKB e^+e^- collider achieves higher instantaneous luminosity using so-called nano beam scheme.

- Goal: $L = 6 \times 10^{35} \text{ cm}^{-2} s^{-1}$ (30× Belle)
- Achieved: 4.7 × 10³⁴ cm⁻²s⁻¹ (2× Belle)

Belle II: all sub-detectors underwent a major upgrade from Belle, improving performance in spite of higher beam background, *e.g.*:

- \Rightarrow Enhanced K/π separation
- \Rightarrow Improved vertex resolution (more later...)

Data taking status

- ▶ 360 fb⁻¹ on tape \sim 400 M $B\bar{B}$ pairs \sim Babar and 1/2 Belle
- \blacktriangleright Now in shutdown till ~end 2023
 - \Rightarrow machine improvements
 - \Rightarrow installation of complete pixel detector

Today: results on 190 fb^{-1} of data or less

CP-violation in interference between mixing and decay

 $\beta \approx$ phase of V_{td}

CP-violation occurs with B^0 or \overline{B}^0 decays to *CP*-eigenstates:

The decay $B^0 \to J/\psi K_S^0$ allows to measure the CKM angle β with low uncertainty: golden mode at Belle II.

7 KEK-FF 2023

7 KEK-FF 2023

7 KEK-FF 2023

7 KEK-FF 2023

8 KEK-FF 2023

8 KEK-FF 2023

Time-dependent analyses at Belle II: vertex resolution

Time measurement is a fundamental ingredient! New beam scheme means reduced boost wrt Belle:

$$eta\gamma = 0.43 \longrightarrow eta\gamma = 0.29$$

 $\Delta z pprox 200 \ \mu m \longrightarrow \Delta z pprox 130 \ \mu m$

 \Rightarrow added a pixel detector directly around the beam pipe (radius \approx 1.4 cm) to recover precision on Δt .

9 KEK-FF 2023

Time-dependent analyses at Belle II: vertex resolution

Time measurement is a fundamental ingredient! New beam scheme means reduced boost wrt Belle:

> $eta\gamma = 0.43 \longrightarrow eta\gamma = 0.29$ $\Delta z \approx 200 \ \mu m \longrightarrow \Delta z \approx 130 \ \mu m$

 \Rightarrow added a pixel detector directly around the beam pipe (radius \approx 1.4 cm) to recover precision on Δt .

Use beam spot profile to increase precision on vertex fit \Rightarrow new beam scheme means smaller beam spot and stronger constraint KEK-FF 2023

Oscillation frequency measurement: background treatment

Use $\sim 35k$ hadronic $B^0 \rightarrow D^{(*)-}\pi^+/K^+$ decays in 190 fb⁻¹ of data.

2 backgrounds: $e^+e^-
ightarrow q\overline{q}$ and misreconstructed $e^+e^-
ightarrow B\overline{B}$

- 1. Fit ΔE and the classifier output based on event topology variables
- 2. Subtract backgrounds from sidebands (sWeights) to obtain background-free Δt distribution
- \Rightarrow fit Δt distribution to extract Δm_d and au_{B^0}

10 KEK-FF 2023

Oscillation frequency measurement: result

Best determination of Δm_d from LHCb.

Milestone in Belle II program: not only an input to the CKM fit, but precise validation of the whole machinery for time-dependent measurements!

11 KEK-FF 2023

Oscillation frequency measurement: detector response

Tagging power:

 $arepsilon_{ ext{tag}} = 29.9 \pm 0.6\%$ (\sim 5-7% at LHCb & 29.8 \pm 0.4% at Belle)

- Improvement already seen with new data processing: $arepsilon_{ ext{tag}}=31.7\pm0.4\%$ (stat)
- Further improvement possible with improved PID & MVA techniques

Resolution:

 Δt resolution model takes into account:

- Vertex resolution
- Smearing due to secondary D mesons in B_{tag} decay ⇒ yield main systematic
- ⇒ similar resolution than Belle in spite of reduced boost

Good control of the detector's alignment yield a reasonably small systematic

Measurement of the CKM angle β

Machinery ready for measurement of β Reconstruct 2755 $B^0 \rightarrow J/\psi K_S$ with $J/\psi \rightarrow ee$ and $J/\psi \rightarrow \mu\mu$

Sample 98.6% pure

13

Extra cross-checks: check measurements with $B^+ \rightarrow J/\psi K^+$, where no CPV is expected

 $S_{CP} = 0.016 \pm 0.029 (\text{stat})$ $A_{CP} = 0.021 \pm 0.021 (\text{stat})$

Measurement of the CKM angle β : result

First Belle II measurement of β :

$$\begin{split} \sin 2\beta = & S_{CP} = 0.720 \pm 0.062 (\text{stat}) \pm 0.016 (\text{syst}) \\ & A_{CP} = & 0.094 \pm 0.044 (\text{stat}) {}^{+}_{-} {}^{0.042}_{-} (\text{syst}) \end{split}$$

Corresponds to
$$eta=(23.0\pm2.6(ext{stat})\pm0.7(ext{syst}))^\circ$$

World average (PDG): $(21.9\pm0.7)^\circ$

Belle $(c\overline{c}K_S, J/\psi K_L)$: $S_{CP} = 0.667 \pm 0.023(\text{stat}) \pm 0.012(\text{syst})$ $A_{CP} = 0.006 \pm 0.016(\text{stat}) \pm 0.012(\text{syst})$ PRL108,171802(2012)

14 KEK-FF 2023

Updated measurement in preparation:

- Using all available data (2× more)
- Using $B^0 \rightarrow J/\psi K_L$ mode (2× more)

Belle II ability to detect ${\cal B}^0 \to J/\psi {\cal K}_L$ already demonstrated.

Improve statistical power and reduces systematics related to CP violation in B_{tag} decays. \Rightarrow dominant systematic on A_{CP}

The future of β at Belle II

Challenges to improve β measurement below 0.5° (with 5 ab⁻¹):

Vertex resolution:

With increased beam background at high lumi, need to keep vertex resolution under control:

- No significant degradation seen so far
- ► Full 2 layer PXD detector will be installed in near future ⇒ no degradation of the resolution expected before ~ 2027 (half design lumi)
- ► Further improvement envisaged in later future

Penguin pollution:

- ▶ Penguin pollution: expected to be $\mathcal{O}(1^\circ)$
- \Rightarrow Can be controlled with penguin-enhanced modes: $B_s \rightarrow J/\psi K_S^0$ (LHCb), $B^0 \rightarrow J/\psi \pi^0$

Synergy between theory/LHCb/Belle II needed!

Time-dependent CPV with penguins: $B^0 \rightarrow K^0_S K^0_S K^0_S$

New Physics expected to have larger impact in these decays that are suppressed in the SM

Check if A_{CP} & S_{CP} deviate from SM expectation in modes with clean theory prediction

- $B^0
 ightarrow K^0_S K^0_S K^0_S$:
 - Gluonic penguin
 - No track coming from signal B
 - ⇒ Challenging vertex reconstruction

17 KEK-FF 2023

$B^0 \rightarrow K^0_S K^0_S K^0_S$: Belle II results and prospects

Reconstruct 102 signal events, half of which have vertex information (other half only used to get direct asymmetry)

$$S_{CP} = -1.86 {+0.91 \atop -0.46} (ext{stat}) \pm 0.09 (ext{syst})$$

 $A_{CP} = -0.22 {+0.30 \atop -0.27} (ext{stat}) \pm 0.04 (ext{syst})$

Expectation: $S_{CP} = -\sin 2\beta = -0.7$, $A_{CP} = 0.0$ Good proof of principle for TD analyses with neutrals.

Analysis with full data and improved K_S^0 reco ongoing. Expected to reach similar precision as wolrd's best result from Belle PRD103.032003 where 270 events are seen.

arXiv:2209.0954

$B^0 \rightarrow K_S \pi^0$ and $K \pi$ puzzle

In SM, $B^0 \to K_S \pi^0$ has $S_{CP} \approx \sin 2\beta$ and $A_{CP} \approx 0$ up to $\mathcal{O}(0.1)$ corrections. Also, isospin sum-rule precision limited by $A_{CP}(B^0 \to K_S \pi^0)$:

Need good performance with neutrals and beam spot constraint.

19 KEK-FF 2023

$B^0 \rightarrow K_S \pi^0$: Belle II results and prospects

Use $B^0
ightarrow J/\psi(\mu^+\mu^-)K_S$ to calibrate Δt shapes

Constrain S_{CP} using previous measurements to maximise $\frac{1}{2}$ precision on A_{CP} .

Result:

$$egin{aligned} \mathcal{A}_{\mathsf{CP}} &= -0.41^{+0.30}_{-0.32} \ (\mathsf{stat.}) \pm 0.09 \ (\mathsf{syst.}) \ \mathcal{B} &= (11.0 \pm 1.2 \ (\mathsf{stat.}) \pm 1.0 \ (\mathsf{syst.})) imes 10^{-6} \end{aligned}$$

Measurement using full 360/fb data in preparation.

TDCPV in penguins: prospects

Several TD analyses with penguin modes ongoing. BR measurements already performed with these modes:

The time-dependent analyses profit from Belle II's clean environment and high flavour tagger performance.

Conclusions and outlook

Belle II detector performs nominally and entered the game of β/ϕ_1 -related measurement:

- First β measurement with $B^0 \rightarrow J/\psi K_S$;
- Time-dependent analyses with penguins: $B^0 \rightarrow K_S K_S K_S$ and $B^0 \rightarrow K_S \pi^0$.

It is just the very beginning!

- Have twice as much data on tape;
- $\mathcal{O}(100) \times$ more in a decade

The best is yet to come: many promising results with B factories unique capabilities, *e.g.* analyses with neutrals & very high flavour tagger efficeny.

