CP violation as a probe of BSM at Belle II

Radek Žlebčík on behalf of the Belle II collaboration

February 13, 2023 International Workshop on the Origin of Matter-Antimatter Asymmetry Les Houches, France

CHARLES UNIVERSITY

Unitarity triangle : 20 years of development

- UT constructed from CKM matrix has angles and sides which are well-defined (physical) quantities
- New Physics can cause inconsistency in the triangle parameters or inconsistency between tree-dominated and loop-dominated estimates

Sin 2β in tree and loop dominated decays

• Decays including K_s or γ are difficult to measure in hadronic collisions

$FICUSIOII(D\toC)$							
	sin(2	2 β) ≡	∎ sin(2	$2\phi_1)$	DINARY		
BaBar PRD 79 (20	009) 072009			0.69 ± 0.0	03 ± 0.01		
Belle PRL 108 (2	2012) 171802		•	0.67 ± 0.0	02 ± 0.01		
LHCb JHEP 11 (2	2017) 170		н	0.7	76 ± 0.03		
-2	-1	0	1	2	3		

Tera incognita ($b \rightarrow s$)

pp and ee collisions

• The ee collisions are cleaner than pp, but less B mesons are produced (1 ab^{-1} in $e^+e^- \sim 1$ fb⁻¹ in pp)

Belle2 & SuperKEKB status

- 430 fb⁻¹ of luminosity collected so far
 → target is 50 ab⁻¹
- World record instantaneous luminosity 0.5x10³⁵ cm⁻² s⁻¹
 - \rightarrow target 6x10³⁵ cm⁻² s⁻¹

CP violation in interference of mixing and decay

B-factory variables

• The following variables profit from knowledge of beam energies and are loosely correlated

$$M_{bc} = \sqrt{(E_{\text{beam}}^*)^2 - (p_B^*)^2}$$

 Continuum BG from light quark has jet-like structure and is typically suppressed by ML

φ₁ = β

CPV measurement: $B^0 \rightarrow J/\psi K^0_s$

• The J/ ψ K⁰_s sample has ~99% purity

- S, A for control mode compatible with 0
- \bullet Slight difference for A between e and μ

Belle II results

Sample	$N_{\rm evts}$	$p_{\rm sig}(\%)$	$\varepsilon_{\rm sig}(\%)$	${S}_{CP}$	A_{CP}
$B^0 ightarrow J/\psi K^0_S$	2755	98.6	40.6	0.720 ± 0.062	0.094 ± 0.044
$B^0 \to J/\psi (\to \mu^+ \mu^-) K^0_S$	1615	99.2	47.6	0.776 ± 0.078	0.042 ± 0.057
$B^0 \to J/\psi (\to e^+ e^-) K^0_S$	1140	98.0	33.6	0.676 ± 0.093	0.185 ± 0.068
$B^+ \to J/\psi K^+$	9973	98.1	40.3	0.016 ± 0.029	0.021 ± 0.021
$B^+ \to J/\psi (\to \mu^+ \mu^-) K^+$	5760	99.0	46.6	-0.015 ± 0.039	0.008 ± 0.028
$B^+ \to J/\psi (\to e^+ e^-) K^+$	4213	96.7	34.1	0.058 ± 0.045	0.040 ± 0.033

CPV measurement: $B^0 \rightarrow J/\psi K^0_s$

- S_{CP} value has twice larger stat uncertainty than at Belle due to 1 quarter smaller sample
- In our convention, the syst. uncertainty incorporates res. fun. stat uncertainties from $B^0 \rightarrow D^{(*)} \pi^+$ sample size

$\overline{S_{CP}} = 0.720 \pm 0.062 (\text{stat}) \pm 0.016 (\text{sy})$	$\operatorname{st})$
$A_{CP} = 0.094 \pm 0.044 (\text{stat}) + 0.042 (\text{sy}) - 0.017 (\text{sy})$	st)

Belle I value: $0.670 \pm 0.029 (stat.) \pm 0.013 (sys.)$

3		
Scales like stat. unc		
Source	$\sigma(S_{CP})$	$\sigma(A_{CP})$
Statistical	0.0622	0.0439
$B^0 \to D^{(*)-}\pi^+$ sample size	0.0111	0.0093
Analysis bias	0.0080	0.0020
Signal charge asymmetry	0.0027	0.0126
$w_6^+ = 0$ limit	0.0014	0.0001
$Resolution\ function\ parametrization$	0.0039	0.0008
$ au_{B^0},\Delta m_d$	0.0007	0.0002
Alignment	0.0020	0.0042
Beam spot	0.0024	0.0020
Momentum scale	0.0005	0.0013
$\sigma_{\Delta t}$ binning	0.0050	0.0051
Multiple candidates	0.0005	0.0008
Tag-side interference	0.0020	$+0.0380 \\ -0.000$
Total systematic	0.0159	$+0.0418 \\ -0.0173$

PDG : $S_{CP} = 0.699 \pm 0.017$

Sin 2β measured stat limited, similar sys. unc. as at Belle

CP violation in $B^0 \rightarrow K^0_s K^0_s K^0_s$

- Challenging vertex reconstruction
- Two BDT classifiers
 - \rightarrow to reduce fake K^0_s contribution
 - \rightarrow to reduce continuum qq background
- \bullet Simultaneous fit to $M_{\text{bc}},\,M$ and O'_{CS}
- Validated in $B^0 \rightarrow K^+ K^0_S K^0_S$

$\label{eq:cp_violation} CP \ violation \ in \ B^0 \ \rightarrow \ K^0{}_s \ K^0{}_s \ K^0{}_s \ K^0{}_s$

• In the fit S, A not restricted to physical limit $S^2 + A^2 < 1$ which can lead to situation, where f_{phys} is sometimes negative but f_{obs} always positive

 $f_{\rm obs}(\Delta t, \sigma) = f_{\rm phys}(\Delta t) \otimes \mathcal{R}(\delta \Delta t, \sigma)$

1.0

0.5

0.0

-0.5

-1.0 **-**-1.0

-0.5

 \checkmark

Belle II (preliminary

 $\int \mathcal{L}dt = 189.3 \text{fb}^-$

0.0

S

0.5

 $\Delta t [ps]$

 $S = -1.86 \stackrel{+0.91}{_{-0.46}} (\text{stat}) \pm 0.09 (\text{syst})$

 $\mathcal{A} = -0.22 \stackrel{+0.30}{_{-0.27}} (\text{stat}) \pm 0.04 (\text{syst})$

 $S = -0.71 \pm 0.23 \pm 0.05$

 $A = -0.12 \pm 0.16 \pm 0.05$

Belle

Other channels in the Moriond pipe-line

Probing isospin symmetry in B $\rightarrow~$ K π

DALL-E "isospin symmetry"

Direct CP violation in $B^0 \ \rightarrow \ K^0{}_s \ \pi^0$

Phys.Lett.B 627 (2005) 82

• From the iso-spin symmetry in the SM holds:

$$\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}(K^{+}\pi^{0})\frac{\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{B^{0}}}{\tau_{B^{+}}} - 2\mathcal{A}_{CP}(K^{0}\pi^{0})\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})} = 0$$

• The $A_{CP}(K^0\pi^0)$ is the most imprecise A_{CP} term in the equation

Direct CP violation in $B^0 \ \rightarrow \ K^0{}_{s} \ \pi^0$

- The $B^0 \to K^0{}_s \; \pi^0$ only accessible at $e^+e^-\,$ B factories
- Main challenge is the decay vertex reconstruction
- BR and A_{CP} obtained from 4D fit in M_{bc} , ΔE , Δt , O_{CS}
 - \rightarrow S_{CP} fixed to 0.67, i.e. average from Belle

φ₂ **= α**

Experimental framework

• For $B^0 \rightarrow \pi^+\pi^-$ and $B^0 \rightarrow \pi^0 \pi^0$ the tree-level and look contribution have similar size, but different phase

 Usage of GR iso-spin relations for B→ ππ to disentangle the effects (CKMfitter, UTfit)

$$A^{+0} = A^{+-}/\sqrt{2} + A^{00}$$

$$\bar{A}^{+0} = \bar{A}^{+-}/\sqrt{2} + \bar{A}^{00}$$

$$A^{+0}| = |\bar{A}^{+0}|$$

Need for

- All branching fractions
- Direct CP asymmetries C⁰⁰ C⁺⁻
- TD CP asymmetries S⁰⁰ S⁺⁻

Projected α sensitivity is 1%

Time integrated $B^0 \rightarrow \pi^0 \pi^0$

- Very difficult for LHCb
- Important to constrain the penguin component
- Time-integrated analysis \rightarrow getting π^0 vertices is difficult
- 3D (M_{bc} , ΔE , BDT_{cs}) simultaneous fit to 7 bins of flavor-tagger quality

 $B = (1.27 \pm 0.25 \pm 0.17) \times 10^{-6}$ $A_{CP} = +0.14 \pm 0.46 \pm 0.07$

World average

$$B = (1.59 \pm 0.26) \times 10^{-6}$$
$$A_{CP} = 0.33 \pm 0.22$$

Time integrated $B^+ \rightarrow \pi^+ \pi^0$

- Extra constraint for the α measurement
- Tree-dominated process
- Large BG from $e^+e^- \rightarrow qq$ \rightarrow reduced with ML
- $B^0 \rightarrow D^0(K^+\pi^-) \pi^0$ as control channel

size

ICHEP 2022

World average

BaBar precision

Time integrated $B^0 \rightarrow \rho^+ \rho^-$

- The B $\rightarrow \rho \rho$ decays provide additional constraint to α \rightarrow The $\pi \pi$ and $\rho \rho$ similar but ρ 's are vectors...
- The α fit requires measurement of the polarization
- 6D fit in (ΔE , 2xM($\pi\pi$), 2xhelicity-angles, BDT_{cs})

$$B = (2.67 \pm 0.28(\text{stat}) \pm 0.28(\text{syst})) \times 10^{-5}$$

$$f_L = 0.956 \pm 0.035(\text{stat}) \pm 0.033(\text{syst})$$

World average $B = (2.77 \pm 0.19) \times 10^{-5}$

φ₃ = γ

Experimental framework

• Interference between $b \rightarrow c\overline{u}s$ and $b \rightarrow u\overline{c}s$

- Simultaneous analysis of both final states
- Model-independent Dalitz plot fit

 $A_{B^+}\left(m_{-}^2, m_{+}^2\right) \propto A_{\bar{D}}\left(m_{-}^2, m_{+}^2\right) + r_B^{DK} e^{i\left(\delta_B^{DK} - \phi_3\right)} A_D\left(m_{-}^2, m_{+}^2\right)$

JHEP 02, 063 (2022)

Bins from BESIII & CLEO

$B^+ \rightarrow D^0 \left(K_S \ h^+ \ h^-\right) \ h^+$

- Improved compared to previous Belle analysis (PRD85, 112014 (2012))
 - \rightarrow NN-based K_S reconstruction
 - \rightarrow Added h=K to original h= π
 - \rightarrow Improved BG rejection

extra **40%** data from Belle extra **17%** data from Belle II

BaBar: $\gamma = (69 \pm 17) \text{ deg}$

Conclusion

- Broad CPV physics program at Belle II
- In summer 2022, Belle II collected dataset of similar size as BaBar (430 fb⁻¹)
 - \rightarrow data taking to be continued in 2024
- The CPV in rare (penguin) decay modes probed with higher and higher accuracy
 → profiting from clean event topology
- Many CPV analysis using 430 fb⁻¹ data set in the pipeline