

Status of the CKM Matrix

with a Focus on V_{ub} and $\overline{V_{cb}}$

Markus Prim on behalf of the Belle and Belle II collaborations and with material from the LHCb collaboration

08/11/2022 - DISCRETE 2022

CKM Matrix

How can we measure $|V_{ub}|$ and $|V_{cb}|$?

Where do we stand with $|V_{ub}|$ and $|V_{cb}|$?

Significant tension between inclusive and exclusive determinations

Inclusive $|V_{ub}|$

1. Measurement of partial & differential branching fractions of inclusive $B \rightarrow X_u \ell v_\ell$ decays with hadronic tagging

DISCRETE 2022 - 06/11/2022

Markus Prim

Exclusive $|V_{ub}|$

- 1. First observation of the decay $B_s^0 \to K^- \mu^+ \nu_{\mu}$ & measurement of $|V_{ub}| / |V_{cb}|$
- 2. First glimpse at $|V_{ub}|$ in $B \to \pi \ell \nu_{\ell}$ with Belle II data \mathbb{C}

First observation of the decay $B_s^0 \rightarrow K^- \mu^+ \nu_\mu \&$ measurement of $|V_{ub}| / |V_{cb}|$ [Phys.Rev.Lett. 126 (2021) 8, 081804]

• Directly measure
$$\frac{|V_{ub}|}{|V_{cb}|}$$
 via the ratio

$$R = \frac{BR(B_s^0 \to K^- \mu^+ \nu_\mu)}{BR(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = \frac{N_K}{N_{D_s}} \frac{\epsilon_{D_s}}{\epsilon_K} BR(D_s \to K^+ K^- \pi^-) \mu_{X=K/D_s} p_{\perp}$$

• Separation of decay vertex from primary vertex is utilized to reconstruct B_s flight direction

1 . .

• Reconstruct corrected mass m_{corr}

First observation of the decay $B_s^0 \rightarrow K^- \mu^+ \nu_\mu \&$ measurement of $|V_{ub}| / |V_{cb}|$ [Phys.Rev.Lett. 126 (2021) 8, 081804]

Extraction at low and high $q^2 = (p_B - p_K)^2$

$|V_{ub}|$ in $B \to \pi \ell \nu_{\ell}$ with Belle II data

Inclusive $|V_{cb}|$

- 1. Measurement of q^2 moments of inclusive $B \to X_c \ell \nu_\ell$ decays with hadronic tagging Measurement of Lepton mass squared moments in inclusive $B \to X_c \ell \nu_\ell$ decays with the Belle II experiment
- 2. First determination of $|V_{cb}|$ from q^2 moments
- 3. Third order correction to the semileptonic $b \rightarrow c$ and the muon decays Three loop calculations and $|V_{cb}|$

- Measurement of q^2 moments of inclusive $B \rightarrow X_c \ell \nu_\ell$ decays with hadronic tagging
- Similar analysis strategy for Belle and Belle II
- Hadronic tag-side reconstruction

BELLE

Belle T

Measurement of q^2 moments of inclusive $B \rightarrow X_c \ell \nu_\ell$ decays with hadronic tagging

First determination of $|V_{cb}|$ from q^2 moments

• Fit to both Belle and Belle II measurements

F. Bernlochner, M. Fael, K. Olschwesky, E. Persson, R. Van Tonder, K. Vos, M. Welsch [JHEP 10 (2022) 068]

- Leverage reparametrization invariance to reduce the set of HQE parameters \rightarrow only 8 nonperturbative parameters up to order $\frac{1}{m_b^4}$
- Consistent with inclusive $|V_{cb}|$ from lepton energy and hadronic invariant mass moments

Theory Progress

• Semi-leptonic rate at N3LO

M.Fael, K. Schönwald, M. Steinhauser [Phys. Rev. D 104 (2021) 1, 016003]

→Update inclusive fit of lepton energy and hadronic invariant mass moments

M. Bordone, B.Capdevila, P.Gambino [Phys.Lett.B. 822 (2021) 136679]

$$|V_{cb}| = 41.16(30)_{th}(32)_{exp}(25)_{\Gamma} \ 10^{-3}$$

$$\frac{\Delta |V_{cb}|}{|V_{cb}|} = 1.2\%$$

Exclusive $|V_{cb}|$

- 1. Beyond zero-recoil lattice prediction for form factors
- 2. Measurement of $|V_{cb}|$ with $B_s \rightarrow D_s^{(*)} \mu \nu_{\mu}$ decays
- 3. $|V_{cb}|$ in $B \to D\ell \nu_{\ell}$ with Belle II data
- 4. $|V_{cb}|$ in $B^0 \to D^* \ell \nu_\ell$ with Belle II data
- 5. Measurement of Differential Distributions of $B \to D^* \ell \nu_\ell$ and Determination of $|V_{cb}|$

Beyond zero-recoil lattice prediction for form factors

- Theory progresses and delivers beyond zero-recoil predictions for the $B \rightarrow D^* \ell \nu_{\ell}$ form factors for the first time
- FNAL/MILC under review A. Bazarvov et. al [2105.14019]
- HPQCD & JLQCD in preparation

Measurement of $|V_{cb}|$ with $B_s \rightarrow D_s^{(*)} \mu \nu_{\mu}$ decays [Phys. Rev. D. 101, 072004] [Phys. Rev. D. 101, 072004]

- Separation of decay vertex from primary vertex is utilized to reconstruct B_s flight direction
- Reconstruct corrected mass m_{corr}
- Hadronic recoil w reconstructed via correlation to $p_{\perp}(D_s)$

Measurement of $|V_{cb}|$ with $B_s \rightarrow D_s^{(*)} \mu \nu_{\mu}$ decays

$|V_{cb}|$ in $B \rightarrow D\ell \nu_{\ell}$ with Belle II data [2210.13143]

- Untagged reconstruction and $189.3 fb^{-1}$ for $B^{\pm,0}$, $\ell = e, \mu$
- Signal extraction in

$$\cos \theta_{BY} = \frac{2 E_B^* E_Y^* - m_B^2 - m_Y^2}{2|p_B^*||p_Y^*|}$$

- Signal peaks [-1, 1]
- Main background: D^*

$|V_{cb}|$ in $B^0 \to D^* \ell \nu_\ell$ with Belle II data

- Reconstructed with hadronic tagging and $189.3 fb^{-1}$ Tag Side
- Background subtraction in

 $m_{\rm miss}^2 = (p_{\rm sig} - p_{D^*} - p_\ell)^2 \sim p_\nu^2 = 0$

Belle

Measurement of Differential Distributions of $B \rightarrow D^* \ell \nu_{\ell}$ and Determination of $|V_{cb}|$

- Analysis in 4 separate decay modes: $B^{\pm,0}$, $\ell = e, \mu$
- Utilize hadronic tagging (Full Event Interpretation)
- Extract form factors from differential shapes, and use world averaged absolute branching ratio
- Extraction with model-independent variable

$$M_{\rm miss}^2 = p_{
m miss}^2 = \left(p_{e^+e^-} - p_{
m tag} - p_{D^*} - p_{\ell}\right)^2$$

Measurement of Differential Distributions of New $B \rightarrow D^* \ell \nu_{\ell}$ and Determination of $|V_{cb}|$

Measurement of Differential Distributions of New $B \rightarrow D^* \ell v_\ell$ and Determination of $|V_{cb}|$

Measured Shapes + External Branching Ratio Input

BGL(121)	Value	Correlation				
$a_0 \times 10^3$	24.93 ± 1.41	1.00	0.25	-0.21	0.26	-0.30
$b_0 imes {10}^3$	13.11 ± 0.18	0.25	1.00	-0.01	-0.01	-0.62
$b_1 \times 10^3$	-11.93 ± 12.72	-0.21	-0.01	1.00	0.25	-0.48
$c_1 \times 10^3$	-0.87 ± 0.97	0.26	-0.01	0.25	1.00	-0.49
$ V_{cb} \times 10^3$	40.77 ± 0.92	-0.30	-0.62	-0.48	-0.49	1.00
CLN	Value Correlation					
ρ^2	1.25 ± 0.09) 1.	00 0).56 –	0.89	0.38
$R_{1}(1)$	1.32 ± 0.08	8 0.	56 1	.00 –	-0.63	-0.03
$R_{2}(1)$	0.85 ± 0.07	7 - 0.3	89 -0	.63	1.00	-0.15

 $|V_{cb}| \times 10^3$ 40.30 ± 0.86 0.38 -0.03 -0.15 1.00

Based on the lattice input at zero-recoil:

 $h_{A_1}(1) = 0.906 \pm 0.013$

Measurement of Differential Distributions of $|V_{cb}| \longrightarrow D^* \ell v_\ell$ and Determination of $|V_{cb}| \longrightarrow Prelimination$

Here: beyond zero-recoil points overlayed (not in fit)

Summary

Summary

