

Status of the CKM Matrix

with a Focus on $V_{u b}$ and $V_{c b}$

Markus Prim

on behalf of the Belle and Belle II collaborations and with material from the LHCb collaboration
08/11/2022 - DISCRETE 2022

CKM Matrix

How do we measure the CKM triangle?

How do we measure the CKM triangle?

How do we measure the CKM triangle?

B-Meson Mixing

How do we measure the CKM triangle?

B-Meson Mixing

CKM γ can be

measured from
tree-level decays

How do we measure the CKM triangle?

How can we measure $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$?

Where do we stand with $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$?

Significant tension between inclusive and exclusive determinations

Inclusive $\left|V_{u b}\right|$

1. Measurement of partial \& differential branching fractions of inclusive $B \rightarrow X_{u} \ell v_{\ell}$ decays with hadronic tagging

Measurement of partial \& differential branching fractions of inclusive $B \rightarrow X_{u} \ell v_{\ell}$ decays \mathcal{B}

Measurement of partial \& differential branching fractions of inclusive $B \rightarrow X_{u} \ell v_{\ell}$ decays
 BELLE

Exclusive $\left|V_{u b}\right|$

1. First observation of the decay $B_{S}^{0} \rightarrow K^{-} \mu^{+} v_{\mu}$ \& measurement of $\left|V_{u b}\right| /\left|V_{c b}\right| \mathbf{L H C b}$
2. First glimpse at $\left|V_{u b}\right|$ in $B \rightarrow \pi \ell v_{\ell}$ with Belle II data $\underset{\substack{\text { Emele }}}{B}$

First observation of the decay $B_{s}^{0} \rightarrow K^{-} \mu^{+} v_{\mu} \&$

- Directly measure $\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}$ via the ratio

$$
R=\frac{B R\left(B_{s}^{0} \xrightarrow{\mid v c} K^{-} \mu^{+} v_{\mu}\right)}{B R\left(B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} v_{\mu}\right)}=\frac{N_{K}}{N_{D_{s}}} \frac{\epsilon_{D_{s}}}{\epsilon_{K}} B R\left(D_{B_{s}} \rightarrow K^{+} K^{-} \pi^{-}\right) \mu /{\underset{X=K / D_{s}}{ }}_{X_{\mu}}^{T}
$$

- Separation of decay vertex from primary vertex is utilized to reconstruct B_{s} flight direction

$$
\begin{gathered}
m_{\text {corr }}=\sqrt{m^{2}(Y \mu)+p_{\perp}^{2}(Y \mu)}+p_{\perp}(Y \mu) \\
\text { with } \quad Y=K^{-}, D_{s}^{-}
\end{gathered}
$$

- Reconstruct corrected mass $m_{\text {corr }}$

First observation of the decay $B_{s}^{0} \rightarrow K^{-} \mu^{+} v_{\mu} \&$

Extraction at low and high $q^{2}=\left(p_{B}-p_{K}\right)^{2}$

$\left|V_{u b}\right|$ in $B \rightarrow \pi \ell v_{\ell}$ with Belle II data \mathcal{B}
 [2206.08102]

- Hadronic tag-side reconstruction
- Fit in 3 bins of q^{2} to subtract background
- Form factor \& $\left|V_{u b}\right|$ fit

Tag Side

$p_{\text {sig }}=p_{e^{+} e^{-}}-p_{\text {tag }}$
Belle II Preliminary $\int \mathcal{L} d t=189.3 \mathrm{fb}^{-1}$

Inclusive $\left|V_{c b}\right|$

1. Measurement of q^{2} moments of inclusive $B \rightarrow X_{C} \ell v_{\ell}$ decays with hadronic tagging Measurement of Lepton mass squared moments in inclusive $B \rightarrow X_{C} \ell v_{\ell}$ decays with the Belle II experiment

2. First determination of $\left|V_{c b}\right|$ from q^{2} moments
3. Third order correction to the semileptonic $b \rightarrow c$ and the muon decays Three loop calculations and $\left|V_{c b}\right|$

Measurement of q^{2} moments of inclusive $B \rightarrow X_{c} \ell v_{\ell}$ decays with hadronic tagging

- Similar analysis strategy for Belle and Belle II
- Hadronic tag-side reconstruction

Measurement of q^{2} moments of inclusive $B \rightarrow X_{C} \ell v_{\ell}$ decays with hadronic tagging

- Event-wise Master-formula

$$
\left\langle q^{2 m}\right\rangle=\frac{\mathrm{C}_{\text {cal }} \mathrm{C}_{\text {acc }}}{\sum_{\mathrm{i}}^{\text {event }} \mathrm{w}\left(\mathrm{q}_{\mathrm{i}}^{2}\right)} \times \sum_{\mathrm{i}}^{\text {events }} \mathrm{w}\left(\mathrm{q}_{\mathrm{i}}^{2}\right) \mathrm{q}_{\mathrm{cal}, \mathrm{i}}^{2 \mathrm{~m}}
$$

1. Subtract

Background

2. Calibrate

 moments
3. Correct for
selection efficiencies

Belle: [PRD 104, 112011 (2021)] Belle II: [2205.06372]

First determination of $\left|V_{c b}\right|$ from q^{2} moments

- Fit to both Belle and Belle II measurements
- $\left|V_{c b}\right|=(41.69 \pm 0.63) \times 10^{-3}$

 order $\frac{1}{m_{b}^{4}}$

F. Bernlochner, M. Fael,
K. Olschwesky, E. Persson,
R. Van Tonder, K. Vos,
M. Welsch
[JHEP 10 (2022) 068]
- Leverage reparametrization invariance to reduce the set of HQE parameters \rightarrow only 8 nonperturbative parameters up to
- Consistent with inclusive $\left|V_{c b}\right|$ from lepton energy and hadronic invariant mass moments

Theory Progress

- Semi-leptonic rate at N3LO
M.Fael, K. Schönwald, M. Steinhauser
[Phys. Rev. D 104 (2021) 1, 016003]

\rightarrow Update inclusive fit of lepton energy and hadronic invariant mass moments
M. Bordone, B.Capdevila, P.Gambino
[Phys.Lett.B. 822 (2021) 136679]

$$
\left|V_{c b}\right|=41.16(30)_{t h}(32)_{\exp }(25)_{\Gamma} 10^{-3}
$$

$$
\frac{\Delta\left|V_{c b}\right|}{\left|V_{c b}\right|}=1.2 \%
$$

Exclusive $\left|V_{c b}\right|$

1. Beyond zero-recoil lattice prediction for form factors
2. Measurement of $\left|V_{c b}\right|$ with $B_{S} \rightarrow D_{S}^{(*)} \mu \nu_{\mu}$ decays
3. $\left|\mathrm{V}_{\mathrm{cb}}\right|$ in $B \rightarrow \mathrm{D} \ell \mathrm{v}_{\ell}$ with Belle II data
4. $\left|\mathrm{V}_{\mathrm{cb}}\right|$ in $\mathrm{B}^{0} \rightarrow \mathrm{D}^{*} \ell v_{\ell}$ with Belle II data

5. Measurement of Differential Distributions of $B \rightarrow D^{*} \ell v_{\ell}$ and Determination of $\left|V_{c b}\right|$

Beyond zero-recoil lattice prediction for form factors

- Theory progresses and delivers beyond zero-recoil predictions for the $B \rightarrow D^{*} \ell v_{\ell}$ form factors for the first time
- FNAL/MILC under review ${ }_{\text {[2. Bazarvovet. al }}^{\text {[21019] }}$
- HPQCD \& JLQCD in preparation

Measurement of $\left|V_{c b}\right|$ with $B_{s} \rightarrow D_{s}^{(*)} \mu v_{\mu}$ decays

- Separation of decay vertex from primary vertex is utilized to reconstruct B_{s} flight direction
- Reconstruct corrected mass $m_{\text {corr }}$
- Hadronic recoil w reconstructed via correlation to $p_{\perp}\left(D_{S}\right)$

$$
m_{\text {corr }} \equiv \sqrt{m^{2}\left(D_{s}^{-} \mu^{+}\right)+p_{1}^{2}\left(D_{s}^{-} \mu^{+}\right)}+p_{\perp}\left(D_{s}^{-} \mu^{+}\right)
$$

Measurement of $\left|V_{c b}\right|$ with $B_{s} \rightarrow D_{s}^{(*)} \mu v_{\mu}$ decays

- Fit to $m_{c o r r}{ }^{-} p_{\perp}$

LHCb Simulation

- Unfolded w distributions for $B_{s} \rightarrow D_{s}^{*} \mu v_{\mu}$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ in $B \rightarrow \mathrm{D} \ell \mathrm{v}_{\ell}$ with Belle II data

- Untagged reconstruction and $189.3 \mathrm{fb}^{-1}$ for $B^{ \pm, 0}, \ell=e, \mu$
- Signal extraction in

$$
\cos \theta_{B Y}=\frac{2 E_{B}^{*} E_{Y}^{*}-m_{B}^{2}-m_{Y}^{2}}{2\left|p_{B}^{*}\right|\left|p_{Y}^{*}\right|}
$$

- Signal peaks [-1, 1]
- Main background: D^{*}

$\left|V_{c b}\right|$ in $B^{0} \rightarrow D^{*} \ell v_{\ell}$ with Belle II data

- Reconstructed with hadronic tagging and $189.3 \mathrm{fb}^{-1 \text { Tag Side }}$
- Background subtraction in

$$
m_{\mathrm{miss}}^{2}=\left(p_{\mathrm{sig}}-p_{D^{*}}-p_{t}\right)^{2} \sim p_{\nu}^{2}=0
$$

Measurement of Differential Distribu $B \rightarrow D^{*} \ell \nu_{\ell}$ and Determination of \cdot - Analysis in 4 separate decay modes: $B^{ \pm 0, \ell}, \ell=e, \mu$

- Utilize hadronic tagging (Full Event Interpretation)
- Extract form factors from differential shapes, and use world averaged absolute branching ratio
- Extraction with model-independent variable

$$
M_{\mathrm{miss}}^{2}=p_{\mathrm{miss}}^{2}=\left(p_{e^{+} e^{-}}^{2}-p_{\mathrm{tag}}-p_{D^{*}}-p_{\ell}\right)^{2}
$$

Measurement of Differential Distributions of $B \rightarrow D^{*} \ell v_{\ell}$ and Determination of $\left|V_{c b}\right| \mathcal{B} \sim N$

Signal extraction in bins of $M_{\text {miss }}^{2}$

+ Unfolding + Acceptance Correction

Measurement of Differential Distributions of $B \rightarrow D^{*} \ell v_{\ell}$ and Determination of $\left|V_{c b}\right| \mathcal{B} \mathcal{D}^{\sim} N^{N}$

Measured Shapes + External Branching Ratio Input

$\mathrm{BGL}(121)$	Value	Correlation				
$a_{0} \times 10^{3}$	24.93 ± 1.41	1.00	0.25	-0.21	0.26	-0.30
$b_{0} \times 10^{3}$	13.11 ± 0.18	0.25	1.00	-0.01	-0.01	-0.62
$b_{1} \times 10^{3}$	-11.93 ± 12.72	-0.21	-0.01	1.00	0.25	-0.48
$c_{1} \times 10^{3}$	-0.87 ± 0.97	0.26	-0.01	0.25	1.00	-0.49
$\left\|V_{c b}\right\| \times 10^{3}$	40.77 ± 0.92	-0.30	-0.62	-0.48	-0.49	1.00

CLN	Value	Correlation			
ρ^{2}	1.25 ± 0.09	1.00	0.56	-0.89	0.38
$R_{1}(1)$	1.32 ± 0.08	0.56	1.00	-0.63	-0.03
$R_{2}(1)$	0.85 ± 0.07	-0.89	-0.63	1.00	-0.15
$\left\|V_{c b}\right\| \times 10^{3}$	40.30 ± 0.86	0.38	-0.03	-0.15	1.00

Based on the lattice input at zero-recoil:
$h_{A_{1}}(1)=0.906 \pm 0.013$

Measurement of Differential Distributions of $B \rightarrow D^{*} \ell v_{\ell}$ and Determination of $\left|V_{c b}\right| \mathcal{B} \operatorname{Bin}^{N}$

Here: beyond zero-recoil points overlayed (not in fit)

Summary

Summary

New inclusive $\left|V_{c b}\right|$

Summary

New exclusive $\left|V_{c b}\right|$
Belle II Belle

Summary

New inclusive $\left|V_{u b}\right|$ Belle

Summary

