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CHAPTER 1

Introduction

Physics aims to describe nature with mathematical models. The most successful models at the moment
are general relativity and the Standard Model (SM) of particle physics. General relativity is the
description of gravity, interpreting it as an interaction of the curvature of space-time and matter. The
SM describes the remaining three fundamental forces, namely the electromagnetic, weak and strong
force. While the SM is very successful in general [1], some phenomena, like the neutrino masses or
the CP violation [2], are beyond its current scope and need further investigation.
The different particle collider experiments around the world are designed to further investigate the
SM. The Belle II experiment is one of them, located in Tsukuba, Japan. Belle II’s main goals are to
further investigate flavour physics and the CP violation. For the Belle II experiment electrons and their
anti-particles, positrons, are collided at energies needed to produce Υ(4S) mesons. These mesons
mostly decay into 𝐵 meson pairs. For precise measurements of the decay products of these 𝐵 mesons
very capable hardware and analysis software are needed. At Belle II the efficient reconstruction, also
called tagging, of tag 𝐵 mesons is necessary, to fully reconstruct the desired signal 𝐵 mesons. This is
especially the case for hard to reconstruct signal 𝐵 mesons, for example if neutrinos appear in the
decay chain.
This thesis focuses on the development of software tools which shall improve the particle reconstruction
at Belle II. The tools are based on a graph neural network, called the DSIT model, and aim to categorize
the final state particles of a decay event in order to improve the tagging. This is done as a further
development of an already existing semi-inclusive tagging method, the further development being
named deep semi-inclusive tagging in this thesis. The main goal is to improve purity and efficiency of
the tagging.

Later the DSIT model’s capability to clean up the rest of event after the signal 𝐵 meson was already
reconstructed gets investigated.

The thesis starts with an overview of the Belle II experiment and related physics in chapter 2.
Chapter 3 introduces the needed principles of deep learning and graph neural networks. In chapter 4
the Belle II tagging algorithm FEI and the deep semi-inclusive approach are explained and compared.
A proof of concept for the deep semi-inclusive tagging method based on self simulated phase space
events is shown in chapter 5. Then the deep semi-inclusive tagging method gets applied to official
Monte-Carlo data in chapter 6. The neural network is trained to clean up the rest of event after the
signal 𝐵 meson reconstruction in chapter 7. A conclusion for the thesis is given in chapter 8.
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CHAPTER 2

The Belle II Experiment and Physics Background

2.1 SuperKEKB

The SuperKEKB 𝑒+𝑒− collider is located in Tsukuba, Japan. A graphical representation of the collider
is shown in figure 2.1. SuperKEKB uses two beam pipes to accelerate bunches of electrons to 7 GeV
and bunches of positrons to 4 GeV. The electron and positron bunches are then collided in the centre
of the Belle II detector resulting in a centre of mass energy of

√
𝑠 = 10.58 GeV. This is the invariant

mass of the Υ(4S) meson, which decays for more than 96% [3] into charged or neutral 𝐵 meson pairs.
Therefore the SuperKEKB is often referred to as 𝐵 factory.
The SuperKEKB collider reaches peak luminosities of 8 × 10−35 cm−2s−1 and produces around 1010

𝐵 meson pairs per year.

Figure 2.1: The SuperKEKB Collider [4]
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Chapter 2 The Belle II Experiment and Physics Background

2.2 Belle II Detector

The Belle II detector aims to measure the particles produced by the 𝑒+𝑒− collision. The detector is
planned to collect a total integrated luminosity of 50 ab−1 in its lifetime.

The coordinate system within the Belle II detector is set that the z-axis is approximately along the
electron beam. The angle 𝜃 is defined as the zenith angle in respect to the z-axis.

The trajectories, and also often their causative particles, of charged particles in high energy physics
experiments as Belle II are referred to as tracks. The space coordinates of a particle creation are called
vertex.

2.2.1 Sub Detectors

Belle II consists of multiple sub detectors which are placed in a cylindrical shape around the collision
point. Figure 2.2 shows a cross section of the Belle II detector with its labeled components. The most
important parts are explained here briefly, the Belle II Technical Design Report [5] explains everything
in more detail.

Figure 2.2: Cross section of the Belle 2 detector labeled with the names of its components [6]

Pixel Detector (PXD) and Silicon Vertex Detector (SVD)

The PXD and SVD are the two most inner layers of the Belle II sub detectors. They enable the high
precision reconstruction of vertices.

Central Drift Chamber (CDC)

The CDC is a wire chamber filled with gas placed in a magnetic field. This allows to determine the
momentum of charged tracks by measuring their curvature resulting from the magnetic field.

Time Of Propagation Counter (TOP) and Aerogel RICH Counter (ARICH)

The TOP and ARICH detectors are both Cherenkov detectors. The TOP detector is placed in the
barrel region and the ARICH detector is placed in the end cap region of Belle II. Both detectors are

4



2.3 Physics Processes in 𝑒+𝑒− Collisions

used for particle identification.

Electromagnetic Calorimeter (ECL)

The ECL consists of CsI(Tl) scintillation crystals and it is used among other things to identify electrons
and to detect high energy photons.

𝑲0
L/Muon Detector (KLM)

The most outer layer of Belle II, the KLM, is designed to detect 𝐾0
L and 𝜇. It consists of alternating

iron plates and active detector elements.

2.3 Physics Processes in 𝒆+𝒆− Collisions

Several processes take place in 𝑒+𝑒− collisions, a non exhaustively overview is given here. The
continuum events are non-resonant 𝑒+𝑒− → 𝑞𝑞 reactions. Then there are 𝑒+𝑒− → 𝑒

+
𝑒
− reactions

which have a more than 100 times higher cross section in Belle II than the actual wanted Υ(4S)
production. Because the 𝑒− and 𝑒+ are collided in bunches, those 𝑒+𝑒− → 𝑒

+
𝑒
− reactions can also

take place simultaneously to a Υ(4S) event and therefore end up being detected in the detectors in the
same event. Sources like these are what produces the background particles, which are not related
to the investigated Υ(4S) decay event. The Υ(4S) (𝑏𝑏) meson is produced in resonant 𝑒+𝑒− → 𝑏𝑏

reactions.
In comparison to hadronic collisions, 𝑒+𝑒− collisions are relatively clean. This means the energy

and momentum of the 𝑒+𝑒− system is well known. Because the Υ(4S) mostly decays into 𝐵 meson
pairs, the number of Υ(4S) daughter particles is usually well known, too. The 𝐵 mesons decay further
and the particles which have a long enough life time to be detected in the detectors are referred to as
final state particles (FSPs), regardless if they are stable particles like the 𝑒− or not like the 𝐾 and 𝜇.

2.4 Tag-Side Reconstruction

Due to the well known kinematics of the Υ(4S) meson in Belle II, even difficult to reconstruct 𝐵
decays can be examined. The 𝐵 with the decay of interest is called 𝐵sig and the other one is called 𝐵tag.
Examples for hardly reconstructable decays are decays which involve at least one neutrino, because
neutrinos are practically impossible to detect for Belle II. To fully reconstruct the 𝐵sig decay the best
possible reconstruction of the 𝐵tag is necessary, because then the reconstructed 𝐵tag and the known
kinematics of the Υ(4S) can be used to restrict the 𝐵sig meson’s kinematics.

The 𝐵tag reconstruction, also called tag-side reconstruction or tagging, can mostly be organized into
three categories. Figure 2.3 gives an graphical overview for the three categories. Generally speaking
the exclusive tagging usually has a higher precision than the inclusive tagging, but therefore has fewer
events successfully reconstructed. The semi-inclusive tagging tries to combine the benefits of both
other methods.

5



Chapter 2 The Belle II Experiment and Physics Background

In Belle II jargon the term rest of event is used to define the final state particles which remain
once a composite particle is reconstructed. Therefore a rest of event is always connected to a already
reconstructed particle.

2.4.1 Exclusive Tagging

For the exclusive tagging the 𝐵tag gets reconstructed explicitly. This means that every subsequent
decay of the 𝐵tag and its daughters needs to be reconstructed with a specific decay chain.

2.4.2 Inclusive Tagging

For the inclusive tagging the 𝐵sig gets reconstructed first and then all remaining FSPs are used as 𝐵tag
descendants and combined to reconstruct the 𝐵tag, with no explicit decay chains getting reconstructed.

2.4.3 Semi-Inclusive Tagging

For the semi-inclusive tagging the 𝐵sig and the 𝐻c get reconstructed first. The remaining FSPs are
grouped into the 𝑋 system. 𝑋 and 𝐻c are then combined to reconstruct the 𝐵tag.

In general the 𝐻c is a placeholder for any charmed hadron. For the scope of this thesis 𝐻c means that
the following hadrons or, if existing, their charge conjugated version were aimed to be reconstructed:
𝐷

∗0, 𝐷∗−, 𝐷−, 𝐷0, 𝐷+
s , Λ𝑐 and 𝐽/𝜓.

Btag

D0

K-

Bsig

K+ - -

(a) Exclusive tagging

Btag

K-

Bsig

(b) Inclusive tagging

K+ -
X

Btag

  Hc

K-

Bsig

(c) Semi-inclusive tagging

Figure 2.3: Schematic overview of the three different tagging techniques

2.5 Physics Variables

Physics variables relevant for this thesis are listed here.

Particle Identification Variables (IDs)

Particle IDs get calculated based on the track’s kinematics in a way that these IDs should help to
decide which particle was measured in form of a charged track.

Vertex Information

The vertex information 𝑑r is the transverse distance between the vertex of a particle and the 𝑒+𝑒−

collision point, and 𝑑z is the z-axis distance between the vertex and the 𝑒+𝑒− collision point.
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2.6 basf2 Reconstruction Software

ECL Cluster Variables

The ECL cluster variable clusterReg is the ECL region the cluster was measured and clusterE9E21
is the "ratio of energies in inner 3x3 crystals [...] and 5x5 crystals around the central crystal without
corners" [7].

Beam Constraint Mass 𝑴bc

The beam constraint mass for the 𝐵tag is defined as follows [8]

𝑀bc =

√︄(√
𝑠

2

)2

−
(
®𝑝CM
𝐵tag

)2
(2.1)

with
√
𝑠 being the centre of mass energy and ®𝑝CM

𝐵tag
the momentum vector of the 𝐵tag in the centre of

mass (CM) frame.
For a correctly reconstructed 𝐵 meson 𝑀bc is expected to be the 𝐵 meson mass 𝑚𝐵.

Missing Mass Squared 𝒎2
miss

The 𝑚2
miss is defined for the reconstructed Υ(4S) meson as follows [9]

𝑚
2
miss =

(√
𝑠

2
− 𝐸CM

𝐵sig

)2

−
(
®𝑝CM
𝐵sig

+ ®𝑝CM
𝐵tag

)2
(2.2)

with
√
𝑠 being the centre of mass energy, 𝐸CM

𝐵sig
the energy of the 𝐵sig in the CM frame, ®𝑝CM

𝐵sig
the

momentum vector of the 𝐵sig in the CM frame and ®𝑝CM
𝐵tag

the momentum vector of the 𝐵tag in the CM
frame.
For a fully hadronic 𝐵tag and a 𝐵sig with one neutrino daughter particle like in a 𝐷∗

ℓ𝜈 decay, the 𝑚2
miss

distribution is expected to peak at zero for correctly reconstructed events.

Energy Difference 𝚫𝑬

The energy difference Δ𝐸 for a 𝐵tag meson is defined as follows [8]

Δ𝐸 = 𝐸
CM
𝐵tag

−
√
𝑠

2
(2.3)

with 𝐸CM
𝐵tag

being the energy of the 𝐵tag in the CM frame and
√
𝑠 being the centre of mass energy.

For a correctly reconstructed 𝐵 meson Δ𝐸 is expected to be zero.

2.6 basf2 Reconstruction Software

basf2, short for Belle II Analysis Software Framework, is the official data analysis and simulation
software of the Belle II experiment [10]. It gets used to process real detector raw data, to generate
Monte-Carlo events and to reconstruct particle decays. For the latter the analyst creates a path. To
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Chapter 2 The Belle II Experiment and Physics Background

which one adds all wanted analysis steps, like filling lists with FSP candidates or reconstructing
specific decays out of FSPs or other already reconstructed composite particles. Also basf2 allows
the analyst to create custom modules with new functionalities which then can be added to particle
reconstructions.

2.6.1 Particle Categories based on basf2 Variables

Throughout this thesis it is often necessary to assign final state particles to categories. Those categories
depend on from which ancestor particle the final state particle stems from. For simulated Monte-Carlo
decay events this is checked with the basf2 variables genMotherPDG(i) and genMotherID(i),
which store the PDG code and array index of the 𝑖-th mother particle. The array index gives every
particle in an event a unique number, counting starts by the Υ(4S) meson getting a zero. If a final
state particle has no related ancestor 𝐵 meson it is considered to be background.

2.6.2 stdMostLikely Function

The stdMostLikely function of basf2 decides which mass hypothesis to choose for charged particles
based on the particle ID information. Also this function applies selections on the final state particles.
These are thetaInCDCAcceptance == 1, nCDCHits > 20, 𝑑r < 0.5 and |𝑑z | < 2. In section A.1
the first two variables are explained.
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CHAPTER 3

Deep Learning and Graph Neural Networks

Deep learning is a branch of the wider field of machine learning based on artificial neural networks
(NN) as these NNs are designed to mimic structures which are found in human or animal brains. Many
of the features of NNs have analogous structures or features in the biological structure of brains. [11]
[12]

3.1 Deep Learning Principles

Deep learning is based on the processing of input data with a NN in order to use latent patterns in data
for tasks like classification, regression, data generation, etc. In the example of picture recognition the
input data consists of the pixels of the picture and the output can be a classification of what is shown
in the picture, for example a dog or a cat. This classification by the NN can be seen as its prediction.
The inner structure of a NN consists of layers of neurons. The most simple layer is the feed forward
layer, which will be used as an example to explain the main features of NNs. Each of a layer’s elements
is called a node. The single elements of input and output are also called input and output nodes.
Figure 3.1 shows an example of a NN with eight input nodes on the left, two subsequent feed forward
layers with six nodes each and four output nodes on the right. The arrows represent the connections of
the nodes and the direction of the data flow. One sees that every node of a layer is connected to all
nodes of the subsequent and previous layer, which is the principle of feed forward layers. Inside of
the feed forward layer nodes a calculation takes place. Every incoming value from a previous layer
gets multiplied by a corresponding weight. The sum of these weighted inputs is then used as the
argument of a non-linear activation function. This function’s output is then the node’s output which
gets propagated to the next layer.
The general structure of the network, like which and how many layers are used, are critical for the
performance of the network. Different network architectures are needed for different kinds of data.
Features of the network like number of layers or the number of nodes per layer are referred to as hyper
parameters.
If the structure of the network is considered to be the brain of the network, the already mentioned
weights are its memories. In order to get the right weights for meaningful predictions a NN gets
trained. This is done by feeding input data to the network for which the correct prediction or label is
already known. Then the loss function can be calculated, which processes the network’s outputs into a
single real number. Usually the loss function’s value gets lower for higher accuracies of the network’s
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Chapter 3 Deep Learning and Graph Neural Networks

predictions. The weights get adjusted with the back propagation in order to minimize the loss function
[13]. This weight adjustment is done for subsets of the whole training data at once, called batches.
The speed of these adjustments is regulated with a factor called the learning rate. Its purpose is to
prevent too big fluctuations in the weights during the training process.

The training data gets processed in multiple cycles which are called training epochs. Usually the
training data gets split into a training set and a validation set. The training set gets used to adjust
the weights. The validation set is used to prevent over training, which occurs when the network
starts learning the statistical fluctuations of the particular data set used for training. Therefore the
performance worsens when data the network has not been trained on yet is presented to it. Randomly
dropping some nodes out of the network during training is one of many other regularization techniques
to reduce over training. The hyper parameter drop rate defines the fraction of nodes to ignore during
training. Other regularization techniques are for example data augmentation, increasing the training
data by creating copies with slight deviations, or early stopping, stopping the training once the loss of
the validation data increases.

Figure 3.1: A neural network with eight input nodes on the left, two subsequent feed forward layers with six
nodes each and four output nodes on the right. The arrows represent the connections of the nodes and the data
flow. [14]

3.2 Graph Neural Networks

Graph NNs use graph representations of their input data. In graph representation the nodes represent
the objects which are of interest and the edges represent the relations between the objects. The graph
that represents the relations between the interconnected entities can be designed to be fully connected,
meaning all nodes are connected to each other, or in any other wanted layout.
For example in high energy physics the nodes of the graph can be used to represent particles and the
edges are then representing the relations between the particles. See [15] for a more detailed overview

10



3.3 NRI Model

of graph NNs in high energy physics.

3.3 NRI Model

The NN used in this thesis is based on the NRI model provided by Neural Relational Inference for
Interacting Systems (NRI) [16]. The NRI model is a graph auto encoder. The principle of an auto
encoder is to transform the input data into a representation of a smaller dimension and then using this
representation to recreate the input data. For the usage in this thesis only the dimension reduction
part of the auto encoder is needed. The main features of the NRI model are the Node2Edge and
Edge2Node layers. These layers transform the node based representation of the data to an edge based
representation and vice versa. See [17] for an similar application of the NRI model than used in
this thesis and a more extensive explanation of the Node2Edge and Edge2Node layers. The code
implementation of the NRI model used as a basis for this thesis also stems from there. The used
implementation is based on the pytorch framework [18].

The NRI model consists of an initial MultiLayer Perceptron (MLP), then a Node2Edge layer,
followed by a second MLP and then multiple blocks. A MLP consists of two feed forward layers. A
block contains a Edge2Node layer, followed by a MLP, an Node2Edge layer and another MLP. The
last layer of the NRI model is a feed forward layer with the output dimension set by the user.
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CHAPTER 4

FEI and Deep Semi-Inclusive Tagging

4.1 FEI Tag-side Reconstruction

The Full Event Interpretation (FEI) is an particle reconstruction algorithm, designed to be used
for the Belle II experiment. It uses boosted decision trees to hierarchically reconstruct the decay
chains of 𝐵 mesons. Each reconstructed particle in the decay chain gets assigned a probability called
SignalProbability which should indicate how likely it is that the reconstruction was correct. More
than 100 decay channels have been hard coded into the FEI. This leads to more than 104

𝐵 meson
decay chains that can be reconstructed. Figure 4.1 shows a schematic overview of the hierarchically 𝐵
meson reconstruction of the FEI. The reconstruction starts with the detector data from which the final
state particles are reconstructed. Subsequently the composite particles and finally the 𝐵 meson get
reconstructed. See [19] for more details on the FEI.
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Figure 4.1: Schematic overview of the hierarchically 𝐵 meson reconstruction of the FEI [19]
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Chapter 4 FEI and Deep Semi-Inclusive Tagging

4.2 Deep Semi-Inclusive Tagging Model

The Model

The NRI model as described in section 3.3 was altered for the application used in this thesis. The
resulting model was named the DSIT model (Deep Semi-Inclusive Tagging model). The alternation
consisted in changing the output of the model from an edge representation of the data to a node or
particle based representation. This was achieved by adding an Edge2Node layer before the final feed
forward layer.

The DSIT model is used to categorize final state particles of an Υ(4S) decay event. For a number
of particles 𝑚 and a number of features per particle 𝑛 the input has the dimension 𝑚 × 𝑛 and the
output has the dimension 𝑚. Figure 4.2 represents the flow of input data through the network to the
output data. For categorization into 𝑘 categories the DSIT model produces an integer prediction of
each particle’s category in the range [0, 𝑘 − 1]. The 𝑚 particles are organized into a fully connected
graph. Each node of the graph, representing a particle, is a vector of dimension 𝑛 which holds the
input features for this specific particle.

Neural Network
Output

dimension: m


Input


dimension: m × n

Figure 4.2: Schematic Overview of the input data flow through the DSIT model and its resulting output. 𝑚 is
the number of particles represented in the input, 𝑛 is the number of features provided per particle.

Hyper Parameters

The hyper parameters of the model are 𝑛hid, the number of nodes per layer, 𝑛blocks, the number of
blocks in the model, the drop rate, the initial learning rate, which was set to 0.001 and the batch
size. During the training of the DSIT model the learning rate was adjusted automatically using the
ReduceLROnPlateau functionality from pytorch. This functionality reduces the learning rate if the
loss was not reduced for several epochs. The used loss function is the cross entropy loss function.

Metrics

To monitor the performance of the DSIT model, several metrics were defined. Most important is the
accuracy, which is the fraction of correctly predicted particles based on all particles. Then there are
the category-wise accuracies, which are the respective fractions of correctly predicted particles per
category. The event based metrics measure the fraction of events in categories of how many prediction
errors the DSIT model made per event. The best possible outcome, namely zero prediction errors, is
called perfect (separation). One error per event is called 1E, 2 errors per event 2E, three errors per
event 3E and four or more errors per event ≥ 4E.
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4.3 Comparison FEI and Deep Semi-Inclusive Tagging Model

Separation Cases

Depending on the supposed usage different separation cases are created for the DSIT model. The
separation case defines which categories are to be predicted by the DSIT model. For each separation
case all final state particles which are not supposed to be predicted by the DSIT model, get deleted.
This means the DSIT model only gets presented the particles which should get predicted by it.

Deep Semi-Inclusive Tagging

In this deep approach we want to improve the semi-inclusive tagging that was described in section
2.4. The 𝐻c gets reconstructed by the FEI and the 𝐵sig and 𝑋 system are meant to be reconstructed
based on the DSIT model’s prediction. For this the DSIT model is used with the 𝐵sig- 𝑋 - background
separation case.

4.3 Comparison FEI and Deep Semi-Inclusive Tagging Model

As mentioned the FEI is using hard coded decay channels. This restricts the amount of 𝐵 decays the
FEI can reconstruct. In comparison the DSIT model has no hard coded restrictions for the decay
channels it can possibly learn.

Also the general structure of the FEI’s boosted decision trees can potentially decrease its flexibility.
Early, wrong decisions during the hierarchically designed reconstruction process are influencing the
complete subsequent reconstruction. The DSIT model on the other hand does not work hierarchically.

A potential down side of the DSIT model could be that there is only one prediction for each final
state particle of an event. If errors are in these predictions, the complete reconstruction is flawed.
The severity of this flaw is then influenced by how important the falsely predicted particle was. For
example falsely predicting a low momentum particle is less bad for the reconstruction than falsely
predicting a high momentum particle. The predictions can also only produce a limited number of
Υ(4S) candidates, while using the FEI in general produces more candidates which can be compared
to one another.
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CHAPTER 5

Deep Semi-Inclusive Tagging Toy Model

The goal of this chapter is to show a proof of concept. The goal was to create simple, easy adjustable
test data, in order to prove the concept of the deep semi-inclusive tagging based on the DSIT model.

5.1 Training Data Creation

The particle decay events used for training data creation were simulated with the python package
PhaseSpace [20]. For this two sets of six different decay modes each of the Υ(4S) were simulated.
The used decay modes are shown in figure A.1 and A.2. For each of the six modes 15 · 103 events
were simulated resulting in 90 · 103 events total. These events got split into 90% training data and
10% validation data.

5.1.1 Simulated Data Attributes

In order to simulate a more realistic experimental scenario, the complexity of the data was gradually
increased. During this process we evaluated the performance of the DSIT model, to identify potential
bottlenecks in the method.

For the 𝜌 and 𝐷∗0 mesons mass distributions were simulated instead of fixed mass values. The
used mass distributions are shown in figure 5.1 and were calculated using a Breit-Wigner distribution
and parameters from [3].

Pions with 𝑝 < 100 MeV and photons with 𝑝 < 50 MeV were dropped from the data set, to simulate
background suppression selections. 5% of all final state particles were excluded from the data set
randomly. Background particles were added randomly on an event basis. These background particles
were then randomly picked from the daughter particles of a separately simulated 3-body decay of
a hypothetical particle with mass 𝑚 = 1 500 MeV which decayed into a photon, a pion and a kaon.
The number of extra particles was decided based on drawing the amount of background particles to
add per event from a binomial distribution with 𝑝 = 0.5 and 𝑛 = 3. The momentum values for all
charged final state particles were smeared with gaussian noise were the standard deviation was 2%
of the original value. The momentum values of the photons were smeared in dependance of their
respective momenta. The values for the momentum dependant smearing got taken from [8] in order to
simulate a Belle II realistic scenario.
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Figure 5.1: 𝜌 and 𝐷∗0 meson mass distributions used for the toy data simulated with PhaseSpace

The Υ(4S) was boosted into the lab frame accordingly to the boost of the asymmetric 𝑒+𝑒− collision
in Belle II. All final state particles which did not fit in the 𝜃 range of 12.4◦ − 155.1◦ were dropped
from the data set to match the detection acceptance of the ECL detector.

5.1.2 Separation Cases

Three different separation cases were simulated: 𝑋 - 𝐵sig- background, 𝑋 - 𝐻c- background and 𝑋 -
𝐻c- 𝐵sig- background. For the 𝐵sig- 𝐻c- 𝑋 - background separation the modes in figure A.1 were used,
for the other two separation cases the modes in figure A.2 were used.

5.1.3 Simulated Features per Particle

The already described simulation steps provide the 4-momenta for all particles which are supposed to
be given as input to the DSIT model. In addition to that the charge and a simulated hadron ID were
added to each particle. The charge was assigned according to the respectively used decay modes
(figure A.1 and A.2) and was simulated without any uncertainty. Two hadron IDs were provided, one
for the pion ID and one for the kaon ID. The hadron IDs were simulated with a exponential distribution
with range [0, 1]. The used scale factor for the distribution was 0.05. If a particle was for example a
kaon, the pion ID was drawn from a exponential distribution having its maximum at zero, while the
distribution for the kaon ID had its maximum at one. For photons and pions the distributions were
switched accordingly.

See figure 5.2 for per mode momentum spectra of kaons, pions and photons (no background
particles) on 𝐵sig- 𝑋 - background separation data as example.
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Figure 5.2: Momentum spectra of pions, kaons and photons per Υ(4S) decay mode for 𝐵sig- 𝑋 - background
separation (no background particles).

5.2 Results

5.2.1 Hyper Parameters

Different hyper parameters and their combinations were tested until the best combination was found.
𝑛hid and 𝑛blocks proved to be the most crucial hyper parameters, who already affected the DSIT model’s
performance significant if only small changes were made. The best values found were setting 𝑛hid to
1024, 𝑛blocks to 8. In contrast the performance was only mildly affected by changes of drop rate and
batch size. For this reason the drop rate was set to 0.3 and the batch size to 128.

5.2.2 DSIT Model Performance

As one can see in table 5.1 the performance of the DSIT model on the toy data was high for all three
tested separation cases. For the 𝑋 - 𝐻c- background and the 𝑋 - 𝐵sig- background separation case the
performance is better than for the 𝑋 - 𝐻c- 𝐵sig- background separation, which makes sense because
for the latter an additional category had to be predicted by the model.

Figure 5.3, 5.4 and 5.5 show the DSIT model training progress over the training epochs for the 𝑋 -
𝐻c- 𝐵sig- background separation case. Figure 5.3 shows the cross entropy loss for the course of the
DSIT model training for the training and validation data set separately. The deviation of training set
and validation set loss from roughly epoch 20 onwards shows that overtraining occurs. But because
the validation set loss does not increase notably the overtraining can be tolerated here. Figure 5.4
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separation case perfect separation accuracy
𝑋 - 𝐻c- background 93.4% 98.4%
𝑋 - 𝐵sig- background 91.9% 98.3%
𝑋 - 𝐻c- 𝐵sig- background 81.8% 97.4%

Table 5.1: Results of the DSIT model for different separation cases on the validation data.

shows the fraction of number of prediction errors per event, normalized to the overall accuracy over
training epochs on the validation data set. This shows that the events that are not predicted perfectly
mostly only have small amounts of prediction errors per event, namely one or two. Figure 5.5 shows
the category wise accuracies and the overall accuracy over training epochs on the validation data set.
The categories 𝑋 , 𝐻c and 𝐵sig show similar accuracies while the background accuracy is the lowest.
All three figures show that the most learning success by the DSIT model is gained during the first 20
epochs and afterwards only small improvements are still achieved.
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Figure 5.3: Cross entropy loss for DSIT model training for the 𝑋 - 𝐻c- 𝐵sig- background separation case, over
training epochs on training and validation data sets.
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Figure 5.4: Fraction of number of prediction errors per event, normalized to the overall accuracy for 𝑋 - 𝐻c-
𝐵sig- background training over training epochs on validation data set.
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Figure 5.5: Category wise and overall accuracies for 𝑋 - 𝐻c- 𝐵sig- background training over training epochs on
validation data set.
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Chapter 5 Deep Semi-Inclusive Tagging Toy Model

5.2.3 Hadron ID Studies

In this study we test whether or not the simulated kaon and pion IDs can replace the mass hypothesis
information for the DSIT model which is provided for each particle via its energy. In order to do this,
two data sets based on the 𝑋 - 𝐵sig- background separation were created. For the first one all kaon
masses were set to the pion mass 𝑚𝜋 , resulting in all hadrons having the same mass. For the second
data set the energy information was dropped from the input feature vector. Each data set was then
used to train the DSIT model with four different sets of input variables. One with only the momenta
(4-momenta respectively 3-momenta without the energy) and one each with the charge, hadron IDs
and charge and hadron IDs in addition to the momenta information. See table 5.2 for the fraction
of perfectly predicted events for each case. For both cases adding the charge information does not
improve the DSIT model performance, while adding the hadron IDs improved the performance notably
at least for the first case. For the case where the model was not exposed to the energy information, but
only to the hadron IDs, no improvement was observed. It seems that the hadron IDs can only increase
the performance of the DSIT model performance when the energy information is also provided, even
if the masses are the same for all hadrons.

In comparison to table 5.1 where the 𝑋 - 𝐵sig- background yielded almost 92% perfectly predicted
events one sees that both cases investigated here had worse performance. This means the mass/energy
information can not be fully replaced by a deep representation that the DSIT model creates from the
hadron ID features.

NN input variables all 𝑚hadr. = 𝑚𝜋 no energy passed
only momenta 76% (4-momentum) 68% (3-momentum)
+charge 76% 68%
+hadron IDs 87% 69%
+charge+IDs 87% 69 %

Table 5.2: Hadron ID study results for 𝑋 - 𝐵sig- background separation on validation data. The entries show the
fraction of perfectly predicted events. The first column shows the input variables passed to the DSIT model, the
second and third column show the different hadron ID study cases. For the second column all hadron masses
were set to the pion mass 𝑚𝜋 , for the third column the energy information was not provided to the NN and
therefore no mass hypothesis.

5.3 Creation and Training on Real MC of the 6 Toy Modes

The DSIT model performance on the toy data so far was promising, therefore the six toy modes
were simulated with the official Monte-Carlo creation software for Belle II called basf2, which was
described in section 2.6. For this the six modes from figure A.1 were used for all separation cases that
were tested. Each separation case was created once with the generated information and once with the
reconstructed information, where detector and reconstruction effects were included. For both data sets
the 4-momenta were used as input for the DSIT model. For the reconstructed information two extra
data sets, where additionally the charge respectively the hadron IDs for kaons and pions were used as
input, got created. This was done for the 𝑋 - 𝐻𝑐 - background and 𝑋 - 𝐵sig- background separation
cases.
The fraction of perfectly predicted events for each case is presented in table 5.3. One can see a
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significant decrease between the generated information and the reconstructed information. This is
expected due to reconstruction uncertainties. Also notable is that the addition of charge or the hadron
(pion and kaon) IDs to the input data increases the performance in all tested cases. This means that
the DSIT model can better distinguish between the particle categories when it is provided with this
extra information. In contrast during the hadron studies in section 5.2.3 no increase for the DSIT
model’s performance was found for adding the charge to the input feature vector. This shows that for
the more complex simulated events created with basf2, the DSIT model needs more information to
make meaningful predictions.

separation case generated information reconstructed information
NN input variables 4 momentum +charge +hadron IDs
𝑋 - 𝐻𝑐 - background 98% 40% 49% 44%
𝑋 - 𝐵sig- background 99% 33% 38% 36%
𝑋 - 𝐻𝑐 - 𝐵sig- background 94% 13% - -

Table 5.3: Fraction of perfectly predicted events for the six decay modes simulated with basf2. For generated
and reconstructed information. All cases with the 4-momentum as input for the DSIT model, last two columns
with charge or hadron IDs as additional input.
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CHAPTER 6

Application of Deep Semi-Inclusive Tagging on
Monte-Carlo 𝑩 → 𝑫∗ℓ𝝂 Events

The previous studies aimed on verifying that the DSIT model is appropriate for the task of separating
particles based on their ancestor particle. As shown in chapter 5 the DSIT model showed promising
performance on the toy data and also on events which were simulated with basf2. Therefore
this chapter aims to apply the DSIT model on a realistic reconstruction problem, namely the deep
semi-inclusive tagging as described in section 4.2. For this the 𝑋 - 𝐵sig- background separation case
is used for the DSIT model, while the 𝐻c will be provided by the FEI. The tagging in this chapter is
performed for 𝐵sig → 𝐷

∗(→ 𝐷
0
𝜋)ℓ𝜈 (ℓ = 𝑒, 𝜇) decays. The 𝐵tag decays generically. Everything in

this chapter is based on 𝐵𝐵 Monte-Carlo events.

6.1 Existing Semi-Inclusive Tagging for 𝑩 → 𝑫∗ℓ𝝂

The already existing semi-inclusive tagging method for 𝐵 → 𝐷
∗(→ 𝐷

0
𝜋)ℓ𝜈 events from [9] will

be used as a baseline to compare the DSIT model’s performance. This method is not using any
multivariate analysis tools, except for the reconstruction of the 𝐻c with the FEI, which is exactly the
case for this application as well. The tagging strategy of this approach is described in section 2.4.
Notable is that the best candidate selection for the Υ(4S) is performed by taking the Υ(4S) candidate
with the highest FEI SignalProbability for the used 𝐻c candidate. Also only specific 𝐷0 modes
get reconstructed, namely 𝐷0 → 𝐾𝜋, 𝐷0 → 𝐾𝜋𝜋

0, 𝐷0 → 𝐾𝜋𝜋𝜋 and 𝐷0 → 𝐾𝜋𝜋𝜋𝜋
0.

6.1.1 Performance of Existing Semi-Inclusive Tagging for 𝑩 → 𝑫∗ℓ𝝂

Figure 6.1 shows the 𝑚2
miss, as defined in equation (2.2), distribution of the reconstructed Υ(4S)

mesons, reconstructed with the existing semi-inclusive tagging. In blue all events which passed
all the applied selections are shown and in orange all events which additionally have a correctly
reconstructed 𝐵sig. The distributions are quite symmetrical and are centered at zero as it is expected
for the reconstructed decay.
For the existing semi-inclusive tagging the efficiency is defined as the number of tagged 𝐷∗

ℓ𝜈 events
divided by the number of 𝐷∗

ℓ𝜈 events in the analysed sample. The purity is defined as the fraction of
truth matched 𝐷∗

ℓ𝜈 events in the tagged sample. The efficiency of the existing method is 2.75% and the
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purity is 70% when the SignalProbability, as described in section 4.1, for the FEI reconstructed
𝐻c candidate is required to be at least 0.001.
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Figure 6.1: 𝑚2
miss, as defined in equation (2.2), distribution for the existing semi-inclusive tagging method. In

blue all events which passed all the applied selections are shown and in orange all events which additionally
have a correctly reconstructed 𝐵sig.

6.1.2 DSIT Model Performance on Data from Existing Semi-Inclusive Tagging
Algorithm

To create a direct comparison between the already existing semi-inclusive tagging algorithm and the
DSIT model, a training of the DSIT model was performed based on the final state particle selections
the already existing algorithm is based on. Additionally the 𝐻c reconstructed by the FEI was required
to be perfectly reconstructed. This was done in order to ensure that the target labels were correct. If a
not correctly reconstructed 𝐻c candidate would be used for labeling the FSPs of an event, the labels
would become ambiguous. This is because it is non-trivial to assume which of the particles actually
existing in the event, the FEI tried to reconstruct as 𝐻c. Only events for which the already existing
method could reconstruct a Υ(4S) candidate were considered further.

A notable issue using the data for the DSIT model was assigning a mass hypothesis for each track.
While the already existing method can handle multiple mass hypothesis candidates for each track,
the DSIT model needs a fixed mass hypothesis because every track is only passed to the model once.
The mass hypothesis was decided based on what the already existing method ended up using for the
same decay event. For example if a track was used as a pion by the already existing method, this mass
hypothesis was used in the DSIT model input feature vector. If the already existing method did not
use a particle, the mass hypothesis was chosen randomly from the reconstructed candidates. Variables
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6.2 Training Data Creation

used as input for the DSIT model are the particle’s mass, charge, the particle IDs, namely pion ID,
kaon ID, electron ID, muon ID and proton ID. Also the vertex information 𝑑r and 𝑑z are saved for
each particle. The ECL cluster variables clusterReg and clusterE9E21 are used too. In section
2.5 these variables are explained.

The used hyper parameters for the DSIT model were 𝑛hid set to 512, 𝑛blocks set to 4, the drop rate set
to 0.3 and the batch size set to 64.

Table 6.1 shows the results of this comparison. Only the validation data events from the DSIT
model are used here to compare the performance of the DSIT model and the existing method. The
sample consists of 52 · 103 events. For this specific data set the DSIT model performs significantly
better than the already existing method in terms of accuracy for all particles and in terms of prediction
errors per event. However this is not translated into perfect predictions on an event basis. More than
three quarters of events have more than 3 prediction errors. This problem will be addressed in the
following sections.

case perfect 1E 2E 3E ≥ 4E accuracy
DSIT model 1.8% 4.2% 6.9% 9.2% 77.9% 76.3%
existing method 0.0% 0.0% 0.0% 0.0% 100% 56.6%

Table 6.1: Particle assignment errors per event and accuracy for the comparison of DSIT model performance
and existing semi-inclusive tagging algorithm. Number of events: 52 · 103.

6.2 Training Data Creation

As shown in section 6.1.2, more adjustments were needed for feasible results. Training based on the
data created here is the base for everything that follows in this chapter. In order to improve the results
of the DSIT model specific data selections were applied for the training data.

6.2.1 Event and Particle based Selections

A generator level selection was applied to all events, selecting only 𝐷∗(→ 𝐷
0
𝜋)ℓ𝜈 events and the

specific 𝐷0 modes the already existing semi-inclusive tagging method is reconstructing. The 𝐻c is
required to be perfectly reconstructed and to have a 𝐵 meson as mother particle. The mass hypothesis
for each track was picked by using the stdMostLikely function of basf2 as described in section
2.6.2. The top 0.5% of events in terms of number of particles per event got deleted in order to
create training data with less outliers. This does not statistically affect our experiments, because the
distribution of the number of particles per event has a very long tail towards high numbers of particles.
The created data consisted of roughly 200 · 103 events. Those events were split into 80% training and
20% validation data.

6.2.2 Used Input Variables

Variables used as input for the DSIT model are the particle’s mass, charge, the particle IDs, namely
pion ID, kaon ID, electron ID, muon ID and proton ID. Also the vertex information 𝑑r and 𝑑z are
saved for each particle. The ECL cluster variables clusterReg and clusterE9E21 are used too. In
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section 2.5 these variables are explained. Also provided were the 𝐻c vertex coordinates. Because
the general input data structure of the DSIT model is particle based, the 𝐻c vertex coordinates were
provided for every particle.

Variables which are not defined for all FSPs, e.g. the ECL cluster region variable is not assigned for
particles which were not detected with the ECL, got imputed with −1.0. This allows the network to
condition the existence of the feature or not because all variables which are not defined for all FSPs
have ranges greater or equal to zero.

6.3 Hyper Parameters and Ablation Studies

6.3.1 Hyper Parameters

Different hyper parameters and their combinations were tested until the best combination was found.
𝑛hid and 𝑛blocks proved to be the most crucial hyper parameters, who already affected the DSIT model’s
performance significant if only small changes were made. The best values found were setting 𝑛hid to
256, 𝑛blocks to 4. In contrast the performance was only mildly affected by changes of drop rate and
batch size. For this reason the drop rate was set to 0.1 and the batch size to 64.

6.3.2 Ablation Studies

In order to test which variables are the optimal input features, ablation studies were performed. Table
6.2 shows the distribution of prediction errors per event and the accuracy calculated for all FSPs for
the different sets of input features. Note that the row "all variables" means that here all input variables
as described in section 6.2 were provided to the DSIT model. In all the other cases, one variable
or group of variables is excluded from the input. Only exception is the ablation case named "only
4-momentum", where only the 4-momentum was provided to the DSIT model.
It is surprising that most variables have only minor, unclear effects if left out. If clusterReg, pion
ID, kaon ID or the 𝐻c vertex are left out the DSIT model performs even slightly better than with all
variables provided, although the effect is small. Only leaving out the charge has a significant effect by
decreasing the accuracy of the DSIT model by 2 p.p. in comparison to passing all variables to the
DSIT model. Interestingly is that even passing only the 4-momentum is achieving already 70.3% of
accuracy in comparison to 76.5% if all variables get passed. This shows that the by far most important
set of variables for the DSIT model is the 4-momentum, followed by far by the charge.
Because the best result was the one where the 𝐻c vertex information was left out and in order to save
the computation time needed to perform the vertex fit, it was decided that in the following sections the
input variables will be used without the 𝐻c vertex coordinates.
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ablation case perfect 1E 2E 3E ≥ 4E accuracy
no 𝐻c vertex 13.7% 17.2% 17.0% 15.3% 36.8% 76.8%
no clusterReg 13.7% 17.0% 17.1% 15.1% 37.1% 76.7%
no pion ID 13.5% 17.0% 17.1% 15.3% 37.1% 76.6%
no kaon ID 13.4% 17.0% 17.3% 15.1% 37.2% 76.5%
all variables 13.4% 17.0% 17.0% 15.4% 37.3% 76.5%
no proton ID 13.6% 17.1% 16.9% 15.1% 37.4% 76.5%
no electron ID 13.3% 17.1% 17.0% 15.2% 37.5% 76.5%
no mass 13.4% 16.9% 17.1% 15.4% 37.2% 76.5%
no 𝑑z 13.5% 16.9% 16.9% 15.1% 37.6% 76.4%
no 𝑑r 12.9% 17.0% 16.8% 15.2% 38.0% 76.2%
no clusterE9E21 13.2% 16.6% 17.1% 15.1% 38.0% 76.2%
no muon ID 13.0% 16.7% 17.1% 15.1% 38.1% 76.2%
no charge 10.8% 15.0% 16.4% 15.7% 42.2% 74.3%
only 4-momentum 7.0% 11.4% 14.5% 15.6% 51.5% 70.3%
Table 6.2: DSIT model performance on validation data for different ablation cases.

6.4 DSIT Model Performance

The performance of the DSIT model trained with the data described in section 6.2, the hyper parameters
shown in section 6.3.1 and the input variables without the 𝐻c vertex coordinates as motivated in
section 6.3.2 get discussed in this section.

6.4.1 Performance Indicators

Table 6.3 shows the distribution of prediction errors per event, the accuracy calculated for all particles
and per category, namely 𝑋 , 𝐵sig and background. Notably are that the correct prediction rate for
background of 68.3% is worse than for 𝑋 with 80.1% and for 𝐵sig with 77.2%. The fact that only
36.8% of all events have 4 or more prediction errors is a promising result.

perfect 1E 2E 3E ≥ 4E accuracy 𝑋 acc. 𝐵sig acc. bg acc.
13.7% 17.2% 17.0% 15.3% 36.8% 76.8% 80.1% 77.2% 68.3%

Table 6.3: Distribution of prediction errors per event, accuracy for all particles and accuracies for the three
categories 𝑋 - 𝐵sig- background (bg) on validation data. Based on the best achieved training on the data
described in section 6.4.

Figure 6.2 shows the fraction of correctly predicted FSPs per event on the y-axis and the number of
FSPs per event on the x-axis. Note that each column is normalized to 1, therefore the colored entries
show the fraction of events in the respective number of FSPs bin. For all four modes the fraction of
correctly assigned FSPs per event worsens for higher numbers of FSPs per event. However the effect
is not as bad as one might expect. The degrading effect is more severe as the number of 𝐷0 daughters
increases. This is expected because the higher number of 𝐷0 daughters increases the number of 𝐵sig
particles per event. This increase of the combinatorial complexity makes the DSIT model more prone
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to errors in comparison to smaller numbers of 𝐵sig FSPs.
Figure 6.3 shows the summed momenta of wrongly predicted particles per event. Each color shows
the distribution for different numbers of wrongly predicted particles per event from one to four. The
plot indicates that for most events particles with relatively high momentum get assigned correctly
and usually the particles with less momentum are those who get wrongfully predicted. If one looks
at the peaks of the different distributions, the typical wrongly predicted particle appears to have a
momentum of 𝑝 ≈ 120 MeV.
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Figure 6.2: Fraction of FSPs per event predicted correctly by the DSIT model vs. number FSPs per event,
normalized on each column of the x-xis (number of FSPs). The color indicates the fraction of events in number
of FSPs per event bin. Displayed per 𝐷0 mode.
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Figure 6.3: Summed momenta distributions of wrongly predicted particles per event, for different numbers of
wrongly predicted particles per event.

6.4.2 Physics Variables directly from DSIT Model’s Predictions

After the performance indicators described in the last section seemed promising, relevant physics vari-
ables got calculated based directly on the DSIT model’s predictions for each FSP and the information
of the already FEI reconstructed 𝐻c.
Figure 6.4 shows the distribution of the 𝑀bc of 𝐵tag, as defined in equation (2.1). The distribution is
shown for all events and for different numbers of prediction errors per event from zero to two. The
peaks of the distributions are at 5.28 GeV and therefore in alignment with the 𝐵0 meson mass of
𝑚𝐵 = 5.279 GeV [3]. The 𝑚2

miss, as defined in equation (2.2), distribution of the Υ(4S) reconstruc-
ted directly from the DSIT model’s predictions is shown in figure 6.5, with an event selection of
𝑀bc ≥ 5.0 GeV for 𝐵tag. The distribution is shown for all events and different numbers of prediction
errors per event from zero to two. The mean and standard deviation are smaller for lower numbers of
prediction errors per event. This dependency is depicted for a wider range of prediction errors per
event, from zero to ten, in figure 6.6. Also for this wider range of prediction errors per event the same
trend is visible. The higher the number of prediction errors per event the higher are the mean and
standard deviation of the 𝑚2

miss distribution.

The results look promising, but the decay reconstruction was not done exclusively. Therefore it
is not possible to apply further selections on the reconstructed Υ(4S) candidates or their daughter
particles. Because of this the explicit reconstruction based on the DSIT model’s prediction will be
performed in section 6.5.
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Figure 6.4: Distribution of 𝑀bc of 𝐵tag, as defined in equation (2.1), reconstructed directly from the DSIT
model’s predictions and the 𝐻c reconstructed by the FEI. The distribution is shown for all events and different
numbers of prediction errors per event from zero to two.
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Figure 6.5: Distribution of 𝑚2
miss, as defined in equation (2.2), reconstructed directly from the DSIT model’s

predictions and the 𝐻c reconstructed by the FEI with a selection of 𝑀bc ≥ 5.0 GeV for 𝐵tag. The distribution is
shown for all events and different numbers of prediction errors per event from zero to two.
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Figure 6.6: 𝑛· prediction errors dependance of std and mean in𝑚2
miss distribution in figure 6.5 (𝑛 ∈ N, 0 ≤ 𝑛 ≤ 10).
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6.5 Explicit 𝚼(4𝑺) Reconstruction based on DSIT Model’s Predictions

The DSIT model gets applied on explicit reconstruction of the Υ(4S) meson. For this the 𝐻c will be
reconstructed by the FEI, the 𝐵sig will be explicitly reconstructed by the DSIT model’s predictions and
the 𝑋 will be taken inclusively also based on the DSIT model’s predictions. The explicit reconstruction
will make more reconstructed variables available, which then will be used to improve the reconstruction
quality by being able to apply selections on these variables.

This explicit reconstruction will also be done under more realistic circumstances then before. No
more generator level selections on 𝐷∗(→ 𝐷

0
𝜋)ℓ𝜈 events or the 𝐷0 modes which are meant to be

reconstructed are applied. The FEI reconstructed 𝐻c is no longer required to be perfect or to have a
𝐵 meson mother, but is instead selected with a best candidate selection. Note that the DSIT model
trained with the data described in section 6.2, the hyper parameters shown in section 6.3.1 and the
input variables without the 𝐻c vertex coordinates as motivated in section 6.3.2 gets used in this section.
This means the model used was trained only for 𝐷∗(→ 𝐷

0
𝜋)ℓ𝜈 events and the specific 𝐷0 modes.

Therefore the reconstruction performed also needs to discriminate between the 𝐷∗(→ 𝐷
0
𝜋)ℓ𝜈 events

which are meant to be reconstructed and the other decay modes in the sample.
The reconstruction is based on 200 fb−1 of 𝐵𝐵 Monte-Carlo events. The FSPs used for the

reconstruction are selected with the stdMostLikely function like it was done to create the training
data. The mass hypothesis decided by the stdMostLikely function will be retained throughout the
reconstruction which is mostly important for the 𝐵sig reconstruction.

6.5.1 Custom basf2 Module

In order to explicitly reconstruct the Υ(4S) meson based on the DSIT model’s predictions it is
necessary to get the predictions during the basf2 reconstruction process. For this a custom basf2
module was created which applies the DSIT model. The module makes the predictions available
for the further basf2 reconstruction by saving it for every particle in a integer variable called
extraInfo(NN_prediction). Here 0 stands for a predicted background particle, 1 for a 𝑋 particle
and 2 for a 𝐵sig descendant.
The custom module requires three arguments to be initialized before it can be added to the basf2
path. First is a list containing all particle lists the DSIT model shall be applied to. Note that these
lists can still, but do not have to, contain the FSPs which are daughters of the 𝐻c candidate selected
beforehand. In both cases the custom module expects the particles to have an assigned variable
extraInfo(Hc_used) which indicates if a particle is a 𝐻c descendant binary. The second argument
for the custom module is a list containing the input variable names the DSIT model will use. This
variable list has to have the same order the model’s input variables had during training. The last
argument is the DSIT model itself. For this the model gets initialized with the wanted hyper parameters
and the weights get loaded from a training which was already performed.

6.5.2 𝑯𝒄 Best Candidate Selection

As already mentioned the 𝐻c is no longer required to be perfectly reconstructed or to have a
𝐵 mother. Instead a best candidate is selected based on the FEI SignalProbability. For
the SignalProbability of the 𝐻c a minimal value of 0.001 was used exactly like the method
introduced in section 6.1. For this SignalProbability value and two more strict minimal values
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the effectiveness of the 𝐻c best candidate selection was investigated. For this the fraction of events
which pass the corresponding SignalProbability selection were determined. Additionally the
fraction of these events with any perfect 𝐻c candidate (perfectly reconstructed and 𝐵 mother) was
determined. Then the best candidate selection was performed by selecting the 𝐻c candidate with the
highest SignalProbability value. After this selection the fraction of events where a perfect 𝐻c
candidate was selected were calculated.
Table 6.4 shows the results. The higher SignalProbability selections of 0.01 and 0.1 reject a lot
of events, by only letting 80% respectively 38% of events pass. The fraction of events with a perfect
𝐻c after the SignalProbability selection increases notably. For all three selections the fraction of
perfect 𝐻c events after the 𝐻c best candidate selection seems a reasonable trade off for the simplicity
of the performed best candidate selection.

It was decided to use the SignalProbability selection of 0.001, in order no to loose too many
events due to the best candidate selection.

SignalProbability minimal value 0.001 0.01 0.1
fraction of events which pass the selection 100% 80% 38%
fraction of events with perfect 𝐻c for at least one candidate 17% 20% 34%
fraction of perfect 𝐻c events after 𝐻c BCS 12% 15% 29%

Table 6.4: Best candidate selection for 𝐻c based on the FEI SignalProbability.

6.5.3 Best Candidate Selection for 𝚼(4S) Candidates

The explicit Υ(4S) reconstruction with basf2 often produces multiple Υ(4S) candidates per event.
Therefore a best candidate selection for the Υ(4S) needs to be performed. The best candidate selection
was based on the 𝑚2

miss, as defined in equation (2.2), distribution, as this distribution is meant to peak
at zero and this attribute was used to rate the different techniques tested.
Three different best candidate selection approaches were investigated. The first approach was to select
the candidate with the minimal absolute value of 𝑚2

miss of all candidates of the respective event. The
second approach was to take the candidate with the smallest value of 𝐸extra which was presented in
[21]. 𝐸extra is defined as the summed energy of photons with 𝐸𝛾 ≥ 50 MeV which were not used to
reconstruct the Υ(4S) candidate. The third approach was to perform a random candidate selection.
The 𝑚2

miss distributions for all three approaches are shown in figure 6.7. The best candidate selection
based on the minimal absolute value of 𝑚2

miss gives the best peak. Therefore this best candidate
selection approach was selected.
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Figure 6.7: 𝑚2
miss, as defined in equation (2.2), distribution from explicit Υ(4S) reconstruction in basf2 based

on the DSIT model’s predictions and the 𝐻c reconstructed by the FEI. Shown are the best Υ(4S) candidates for
each of the three different tested best candidate selection options.

6.5.4 Results

The events where aΥ(4S) candidate was found based on the DSIT model’s predictions were categorized
in background and truth matched events. Note that the definition for truth matched here is quite loose.
It only requires the event to be a real 𝐷∗(→ 𝐷

0
𝜋)ℓ𝜈 event and the lepton from the 𝐷∗

ℓ𝜈 decay to
be correctly reconstructed. A more strict definition of truth matched did not let many events pass,
therefore the more loose definition was chosen.
The reconstruction was not really successful. Which can exemplary be shown for the mass distribution
for the reconstructed 𝐷0 meson for the four different reconstructed decay channels shown in figure 6.8.
The background events in orange and the truth matched events in blue are stacked on one another
in the plots. Background and truth matched events both peak at the same value. Except for the
𝐷

0 → 𝐾𝜋𝜋𝜋𝜋
0 mode, which also happens to have by far the lowest statistics, all peaks are far from

the 𝐷0 mass 𝑚
𝐷

0 = 1.865 GeV [3] which is indicated with the red vertical line in the figure. The
𝑚

2
miss, as defined in equation (2.2), distribution of the Υ(4S) meson selected best candidates is shown

in figure 6.9. The distribution is shown once with no selections and with different applied selections
which are listed with their respective boundaries in table 6.5. The single selections applied are the
𝐵tag 𝑀bc, as defined in equation (2.1), 𝐵tag Δ𝐸 , as defined in equation (2.3), 𝑝t, lepton and the 𝑝t,𝐷∗

selection. Also shown are the distributions if all those selections are applied at once and this in
addition with the 𝐷0 mass or the 𝐷∗ mass selection. Again the background events in orange and the
truth matched events in blue are stacked on one another in the plots. For no selections and all different
selections applied the 𝑚2

miss distribution has a much bigger tail in the positive range. Especially the
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𝑝t, lepton selection is quite effective by reducing the background events. Applying all selections at
once and either the 𝐷0 mass or the 𝐷∗ mass selection additionally reduces the background notably
and creates a much a more symmetrical distribution. But this comes with the cost of reducing the
statistics significantly. This issue is depicted in more detail in figure 6.10. The bars shows efficiency
and purity for all different selections from table 6.5 which got applied subsequently from left to
right. The efficiency is defined by the number of events which were tagged divided by the number
of expected events 𝑛expected. In the 200 fb−1 of data are 𝑁all = 101.9 · 106

𝐵𝐵 events. Of those
𝑛expected = 𝑁all · 𝜖𝐷∗

ℓ𝜈 · 𝜖
𝐷

∗→𝐷
0
𝜋
· 𝜖

𝐷
0modes = 2.08 · 106 are the events the reconstruction should

tag. With 𝜖𝐷∗
ℓ𝜈 = 9.9% being the branching fraction of 𝐵 → 𝐷

∗
ℓ𝜈, 𝜖

𝐷
∗→𝐷

0
𝜋
= 67.7% being the

branching fraction of 𝐷∗ → 𝐷
0
𝜋 and 𝜖

𝐷
0modes = 30.49% being the combined branching fraction of

the reconstructed 𝐷0 modes. The purity is defined as the number of truth matched events, as described
above, divided by the number of reconstructed events. Figure 6.10 shows that the efficiency is getting
extremely small with a value below 10−4 once all selections got applied. At the same time the purity
is increasing with every added selection, but with a highest value of only 47%.

Compared to the efficiency of 2.75% and the purity of 70% of the already existing semi-inclusive
tagging method described in section 6.1.1, one has to conclude that the DSIT model based approach
performs much worse than the already existing one. The purity definition used for this thesis is more
strict than for the already existing semi-inclusive tagging method, which does not require the truth
matched lepton.
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Figure 6.8: 𝐷0 mass for each reconstructed 𝐷0 decay mode from explicit Υ(4S) reconstruction in basf2 based
on the DSIT model’s predictions and the 𝐻c reconstructed by the FEI. The (loosely) truth matched (blue) and
background (orange) events are stacked on each other, the red vertical line shows the PDG value of the 𝐷0 mass.
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Figure 6.9: 𝑚2
miss, as defined in equation (2.2), distribution with different applied selections, which are explained

in table 6.5, from explicit Υ(4S) reconstruction in basf2 based on the DSIT model’s predictions and the 𝐻c
reconstructed by the FEI. The (loosely) truth matched (blue) and background (orange) events are stacked on
each other.

selection name lower limit upper limit
𝐵tag 𝑀bc 5.0 GeV -
𝐵tag Δ𝐸 −2.0 GeV −1.0 GeV
foxWolframR2 - 0.3
𝑝t,𝐷∗ - 2.4 GeV
𝑝t, lepton 0.7 GeV -
𝐷

0 mass 1.8 GeV 1.95 GeV
𝐷

∗ mass 1.8 GeV 2.2 GeV
hadronic 𝐵tag 1 -

Table 6.5: Selections used in figure 6.9 and 6.10. Hadronic 𝐵tag indicates binary whether the 𝐵tag is fully
hadronic or not. foxWolframR2 is the ratio of the second and zeroth Fox Wolfram moments, see [8] for more
details. See section 2.5 for 𝑀bc and Δ𝐸 definitions.
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Figure 6.10: Efficiency and purity from explicit Υ(4S) reconstruction in basf2 based on the DSIT model’s
predictions and the 𝐻c reconstructed by the FEI for subsequently applied selections from left to right, which
are explained in table 6.5. The purity is defined for truth matched 𝐷∗ (→ 𝐷

0
𝜋)ℓ𝜈 events which also have a

correctly reconstructed lepton in 𝐵 → 𝐷
∗
ℓ𝜈 decay.
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6.5.5 Possible Performance Restrictions of the DSIT Model in Comparison to the
Already Existing Method

Because the already existing semi-inclusive tagging method described in section 6.1.1 had notably better
purity and efficiency as shown in section 6.5.4, possible reasons as wells as possible improvements for
the deep semi-inclusive tagging approach are discussed here.

A big advancement of the already existing semi-inclusive tagging method is a higher flexibility
regarding the 𝐻c. Multiple 𝐻c candidates get combined to multiple Υ(4S) candidates which then get
selected with adjustable selections. The DSIT model approach on the other hand, at least in its current
form, needs a decision on which 𝐻c candidate to choose even before the DSIT model can predict the
particles’ categories.

This flexibility of a common basf2 reconstruction also gets lost if the DSIT model is used for
example in 𝜋0 reconstruction. The DSIT model’s approach does not allow for multiple 𝜋0 candidates
but only allows for a 𝜋0 to be reconstructed if both of its photons got predicted correctly.

The DSIT model is designed to get each FSP it should predict fed into the network once. This leads
to the necessity to decide on the mass hypothesis for each FSP in an early stage of the reconstruction
process. This might have lead to performance restrictions for the 𝐵sig reconstruction, where the decay
is exclusively reconstructed and therefore the particle type matters. Especially the bad reconstruction
results for the 𝐷0 as shown in figure 6.8 support this statement.

Although apparent, a higher accuracy of the DSIT model would also increase the reconstruction
quality for the deep semi-inclusive Υ(4S) reconstruction. Maybe additional input variables or an
improved neural network design might improve the accuracy. With the current level of accuracy, the
higher flexibility of the already existing semi-inclusive tagging method outperforms the DSIT model
strongly.
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CHAPTER 7

Rest Of Event Clean Up

As shown in chapter 6 the deep semi-inclusive tagging had a bad performance for the full Υ(4S)
reconstruction. However the method netherless showed potential by predicting the category of FSPs.
Therefore a simpler problem is investigated in this chapter. Goal is to train the DSIT model in order to
clean up the rest of event FSPs once the 𝐵sig is reconstructed. After the 𝐵sig is reconstructed the next
step is to reconstruct the 𝐵tag inclusively. In order to help doing this the DSIT model shall categorize
the FSPs in a meaningful way.

7.1 Training Data Creation

7.1.1 Best Candidate Selection of 𝑩𝒔𝒊𝒈

The 𝐵sig reconstruction usually produces multiple candidates. Therefore a best candidate selection is
necessary and was taken from section 3.1 of this paper [22]. For every 𝐵sig candidate a vertex fit gets
performed, candidates which do not have a successful fit get deleted. If multiple candidates survive,
the candidate with the smallest 𝜒2 corresponding to the fit gets chosen.

7.1.2 Particle and Event based Selections and Separation Cases

For this task only 𝐵sig → 𝐷
∗(→ 𝐷

0
𝜋)ℓ𝜈 events and the specific 𝐷0 modes already used in section 6.2

are used and get selected based on generator level information. The 𝐵sig gets reconstructed then and if
necessary the best candidate selection is performed as described in section 7.1.1. On all remaining
FSPs selections are applied which shall already reduce the background particles. Those selections are
physics motivated and taken from another analysis and are listed in the appendix in section A.3. Three
different separation cases were then created from these FSPs, which are not already used in the chosen
𝐵sig candidate, to test the DSIT model for different scenarios:

1. 𝐵tag- combined background (everything not 𝐵tag related)

2. all 𝐵 related FSPs - background

3. 𝐵sig (FSPs not already used for the 𝐵sig candidate) - 𝐵tag- background
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7.2 Results

7.2.1 Hyper Parameters

Different hyper parameters and their combinations were tested until the best combination was found.
𝑛hid and 𝑛blocks proved to be the most crucial hyper parameters, who already affected the DSIT model’s
performance significant if only small changes were made. The best values found were setting 𝑛hid to
256, 𝑛blocks to 4. In contrast the performance was only mildly affected by changes of drop rate and
batch size. For this reason the drop rate was set to 0.2 and the batch size to 64.

7.2.2 DSIT Model Performance

The distribution of prediction errors per event, the overall accuracy and the respective category
wise accuracies for the three tested separation cases are shown in table 7.1. Notably is that the 𝐵 -
background separation has the highest accuracy, while the 𝐵sig- 𝐵tag- background separation has the
lowest. This is expected because the latter has an additional category to be predicted. Also the 𝐵
- background separation has a higher accuracy for predicting background than the 𝐵tag- combined
background separation. Putting all 𝐵 related particles in one category seems to be easier for the
network than putting 𝐵sig and background in a combined non 𝐵tag related category.

separation case perfect 1E 2E 3E ≥ 4E accur. bg 𝐵sig 𝐵tag 𝐵

𝐵tag- combined bg 5.2% 11.9% 17.1% 18.5% 47.2% 75.3% 60.7% - 81.6% -
𝐵 - bg 7.8% 18.2% 23.3% 20.5% 30.2% 81.5% 81.3% - - 81.6%
𝐵sig- 𝐵tag- bg 2.2% 6.7% 11.8% 15.1% 64.2% 68.4% 77.4% 46.6% 72.7% -

Table 7.1: Performance for the three different separation cases the DSIT model got trained for the rest of event
clean up. Accur. stands for accuracy. Background (bg), 𝐵sig, 𝐵tag and 𝐵 stand for the respective category wise
accuracies.

Table 7.2 shows the number of FSPs 𝑁 in the complete data set, the fraction of those particles
predicted as background by the DSIT model and the corresponding amount 𝑁predicted as bg for all three
separation cases and every category separately. The number 𝑁predicted as bg for the first category of each
separation case is therefore the number of true positives for predicting the background. The number
𝑁predicted as bg for the remaining category/categories are therefore the false positives for predicting the
background. For the 𝐵 - background and the 𝐵sig- 𝐵tag- background separation cases the false positives
outweigh the true positives, which means more particles are wrongfully predicted to be background
than true background got predicted correctly. For the 𝐵tag- combined background separation case
the number of true positives of 220 · 103 outweighs the number of falsely predicted background of
137 · 103 almost by a factor of two.
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separation case category 𝑁 fraction predicted as bg 𝑁predicted as bg

𝐵tag- combined background combined bg 362 · 103 60.7% 220 · 103

𝐵tag 744 · 103 18.4% 137 · 103

𝐵 - bg bg 147 · 103 81.3% 120 · 103

𝐵 960 · 103 18.4% 177 · 103

𝐵sig- 𝐵tag- bg
bg 147 · 103 77.4% 114 · 103

𝐵tag 744 · 103 15.2% 113 · 103

𝐵sig 215 · 103 15.7% 34 · 103

Table 7.2: Amount in each category 𝑁 and fraction and amount 𝑁predicted as bg of particles predicted as background
(bg) for each category of the three tested separation cases.

7.2.3 Physics Variables from DSIT Predictions for the 𝑩tag- combined background
Separation Case

The 𝐵tag- combined background separation case got further investigated. This was done because for
this separation case an clear application was the easiest, because 𝐵tag was already clearly predicted by
the DSIT model and the performace was better than for the 𝐵sig- 𝐵tag- background separation. Also
the 𝐵tag- combined background separation case was the only case where the true positive background
predictions outweighed the false positives. Relevant physics variables got calculated based directly
on the DSIT model’s predictions for each FSP and the information of the already reconstructed 𝐵sig.
Figure 7.1 shows the distribution of the 𝑀bc of 𝐵tag, as defined in equation (2.1), calculated based
on the DSIT model’s predictions. The distribution is shown for all events and for different numbers
of prediction errors per event from zero to two. The peaks of the distributions are at 5.27 GeV and
5.28 GeV and therefore in alignment with the 𝐵0 meson mass of 𝑚𝐵 = 5.279 GeV [3]. The 𝑚2

miss, as
defined in equation (2.2), distribution of the Υ(4S) reconstructed directly from the DSIT model’s
predictions is shown in figure 7.2, with an event selection of 𝑀bc ≥ 5.0 GeV for 𝐵tag. The distribution
is shown for all events and different numbers of prediction errors per event from zero to two. Figure
7.3 shows the summed momenta of wrongly predicted particles per event. Each color shows the
distribution for different numbers of wrongly predicted particles per event from one to four. The plot
indicates that for most events particles with relatively high momentum get assigned correctly and
usually the particles with less momentum are those who get wrongfully predicted.
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Figure 7.1: 𝑀bc of 𝐵tag, as defined in equation (2.1), distribution directly from the DSIT model’s predictions for
𝐵tag. The distribution is shown for all events and different numbers of prediction errors per event from zero to
two.
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Figure 7.2: 𝑚2
miss, as defined in equation (2.2), distribution directly from the DSIT model’s predictions for 𝐵tag

and the 𝐵sig reconstructed with basf2 with an event selection of 𝑀bc ≥ 5.0 GeV for 𝐵tag. The distribution is
shown for all events and different numbers of prediction errors per event from zero to two.
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Figure 7.3: Summed momenta distributions of wrongly predicted particles per event, for different numbers of
wrongly predicted particles per event.
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CHAPTER 8

Conclusion

This thesis covered three major topics.

Deep Semi-Inclusive Tagging Toy Model

Data for the toy model was self created by simulating phase space events with PhaseSpace and basf2.
Each tested data set consisted of six different decay modes. Different separation cases were tested.
The toy model proved that the DSIT model can learn the patterns of Υ(4S) decays in order to categorize
the final state particles based on their ancestor particles. It was shown that the performance worsens if
more categories are required to be predicted by the network.

Deep Semi-Inclusive Tagging Applied on Official Monte-Carlo Data

For signal 𝐵 mesons from 𝐵 → 𝐷
∗(→ 𝐷

0
𝜋)ℓ𝜈 decays and generic tag 𝐵 mesons the 𝑋 - 𝐵sig-

background separation was trained on official Monte-Carlo data. Event and final state particle based
selections necessary for good DSIT model training results were developed. The accuracy of the DSIT
model reached up to 76.8%. The best combination of input variables for the DSIT model was found in
ablation studies. For the explicit reconstruction of the Υ(4S) a best candidate selection for the FEI
reconstructed 𝐻c was developed. The explicit reconstruction of the Υ(4S) with the deep semi-inclusive
tagging was found to be non compatible. The purity and efficiency of the deep semi-inclusive tagging
were significantly lower than for a presented already existing semi-inclusive tagging method. Possible
reasons for this or further improvements of the DSIT model’s performance were discussed.

Rest Of Event Clean Up

Three different separation cases were created and tested for the rest of event clean up for events where
a signal 𝐵 meson was already reconstructed. This was performed for 𝐵 → 𝐷

∗(→ 𝐷
0
𝜋)ℓ𝜈 decays.

Accuracies between 68% and 82% were reached by the trained DSIT model. The 𝐵tag- combined
background separation was then chosen to calculate physics variables based on the DSIT model’s
predictions.
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APPENDIX A

Useful Information

A.1 Variables used by basf2

See [10] for more details.

thetaInCDCAcceptance: binary indicates if particle is in CDC 𝜃 acceptance of 17◦ < 𝜃 < 150◦

nCDCHits: the number of CDC hits associated to the particle

clusterReg: integer indicating the cluster region in the ECL

clusterNHits: sum of weights of the crystals the ECL cluster was measured

clusterTiming: time of the cluster, measured starting at the time of the event
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A.2 Used Decay Trees for Simulated Data
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Figure A.1: Modes which were simulated with basf2 for 𝑋 - 𝐵sig- background, 𝑋 - 𝐻c- background and 𝑋 -
𝐻c- 𝐵sig- background separation and were simulated with PhaseSpace for 𝑋 - 𝐻c- 𝐵sig- background separation
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Figure A.2: Modes which were simulated with PhaseSpace for 𝑋 - 𝐵sig- background and 𝑋 - 𝐻c- background
separation

A.3 Rest Of Event Clean Up Final State Particle Selections

The final state particle selections used for the data production in chapter 7 are listed here. The variables
and their meanings get explained in section 2.5 and A.1.
Tracks are subject to these selections:

• 𝑝t > 0.05 GeV

• thetaInCDCAcceptance == 1

• |𝑑z | < 3.0

• |𝑑r | < 1.0

• 𝐸 < 5.5 GeV

Photons are subject to these selections:
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• (clusterReg==1 and 𝑝t > 0.03 GeV) or (clusterReg==2 and 𝑝t > 0.04 GeV) or (clusterReg==3
and 𝑝t > 0.06 GeV)

• thetaInCDCAcceptance == 1

• 𝐸 < 5.5 GeV

• clusterNHits > 1.5

• |clusterTiming| < 200
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