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CHAPTER 1

Introduction

Physics aims to describe nature with mathematical models. The most successful models at the moment
are general relativity and the Standard Model (SM) of particle physics. General relativity is the
description of gravity, interpreting it as an interaction of the curvature of space-time and matter. The
SM describes the remaining three fundamental forces, namely the electromagnetic, weak and strong
force. While the SM is very successful in general [1], some phenomena, like the neutrino masses or
the CP violation [2], are beyond its current scope and need further investigation.
The di�erent particle collider experiments around the world are designed to further investigate the
SM. The Belle II experiment is one of them, located in Tsukuba, Japan. Belle II's main goals are to
further investigate �avour physics and the CP violation. For the Belle II experiment electrons and their
anti-particles, positrons, are collided at energies needed to produce� ¹4Sº mesons. These mesons
mostly decay into� meson pairs. For precise measurements of the decay products of these� mesons
very capable hardware and analysis software are needed. At Belle II the e�cient reconstruction, also
called tagging, of tag� mesons is necessary, to fully reconstruct the desired signal� mesons. This is
especially the case for hard to reconstruct signal� mesons, for example if neutrinos appear in the
decay chain.
This thesis focuses on the development of software tools which shall improve the particle reconstruction
at Belle II. The tools are based on a graph neural network, called the DSIT model, and aim to categorize
the �nal state particles of a decay event in order to improve the tagging. This is done as a further
development of an already existing semi-inclusive tagging method, the further development being
named deep semi-inclusive tagging in this thesis. The main goal is to improve purity and e�ciency of
the tagging.

Later the DSIT model's capability to clean up the rest of event after the signal� meson was already
reconstructed gets investigated.

The thesis starts with an overview of the Belle II experiment and related physics in chapter 2.
Chapter 3 introduces the needed principles of deep learning and graph neural networks. In chapter 4
the Belle II tagging algorithm FEI and the deep semi-inclusive approach are explained and compared.
A proof of concept for the deep semi-inclusive tagging method based on self simulated phase space
events is shown in chapter 5. Then the deep semi-inclusive tagging method gets applied to o�cial
Monte-Carlo data in chapter 6. The neural network is trained to clean up the rest of event after the
signal� meson reconstruction in chapter 7. A conclusion for the thesis is given in chapter 8.
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CHAPTER 2

The Belle II Experiment and Physics Background

2.1 SuperKEKB

The SuperKEKB4¸ 4� collider is located in Tsukuba, Japan. A graphical representation of the collider
is shown in �gure 2.1. SuperKEKB uses two beam pipes to accelerate bunches of electrons to7GeV
and bunches of positrons to4GeV. The electron and positron bunches are then collided in the centre
of the Belle II detector resulting in a centre of mass energy of

p
B= 10•58GeV. This is the invariant

mass of the� ¹4Sº meson, which decays for more than96%[3] into charged or neutral� meson pairs.
Therefore the SuperKEKB is often referred to as� factory.
The SuperKEKB collider reaches peak luminosities of8 � 10� 35 cm� 2s� 1 and produces around1010

� meson pairs per year.

Figure 2.1: The SuperKEKB Collider [4]
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Chapter 2 The Belle II Experiment and Physics Background

2.2 Belle II Detector

The Belle II detector aims to measure the particles produced by the4¸ 4� collision. The detector is
planned to collect a total integrated luminosity of50 ab� 1 in its lifetime.

The coordinate system within the Belle II detector is set that the z-axis is approximately along the
electron beam. The angle\ is de�ned as the zenith angle in respect to the z-axis.

The trajectories, and also often their causative particles, of charged particles in high energy physics
experiments as Belle II are referred to as tracks. The space coordinates of a particle creation are called
vertex.

2.2.1 Sub Detectors

Belle II consists of multiple sub detectors which are placed in a cylindrical shape around the collision
point. Figure 2.2 shows a cross section of the Belle II detector with its labeled components. The most
important parts are explained here brie�y, theBelle II Technical Design Report[5] explains everything
in more detail.

Figure 2.2: Cross section of the Belle 2 detector labeled with the names of its components [6]

Pixel Detector (PXD) and Silicon Vertex Detector (SVD)

The PXD and SVD are the two most inner layers of the Belle II sub detectors. They enable the high
precision reconstruction of vertices.

Central Drift Chamber (CDC)

The CDC is a wire chamber �lled with gas placed in a magnetic �eld. This allows to determine the
momentum of charged tracks by measuring their curvature resulting from the magnetic �eld.

Time Of Propagation Counter (TOP) and Aerogel RICH Counter (ARICH)

The TOP and ARICH detectors are both Cherenkov detectors. The TOP detector is placed in the
barrel region and the ARICH detector is placed in the end cap region of Belle II. Both detectors are

4



2.3 Physics Processes in4¸ 4� Collisions

used for particle identi�cation.

Electromagnetic Calorimeter (ECL)

The ECL consists of CsI(Tl) scintillation crystals and it is used among other things to identify electrons
and to detect high energy photons.

Q0
L /Muon Detector (KLM)

The most outer layer of Belle II, the KLM, is designed to detect 0
L and` . It consists of alternating

iron plates and active detector elements.

2.3 Physics Processes in e¸ e� Collisions

Several processes take place in4¸ 4� collisions, a non exhaustively overview is given here. The
continuum events are non-resonant4¸ 4� ! @@reactions. Then there are4¸ 4� ! 4¸ 4� reactions
which have a more than 100 times higher cross section in Belle II than the actual wanted� ¹4Sº
production. Because the4� and4¸ are collided in bunches, those4¸ 4� ! 4¸ 4� reactions can also
take place simultaneously to a� ¹4Sº event and therefore end up being detected in the detectors in the
same event. Sources like these are what produces the background particles, which are not related
to the investigated� ¹4Sº decay event. The� ¹4Sº (11) meson is produced in resonant4¸ 4� ! 11
reactions.

In comparison to hadronic collisions,4¸ 4� collisions are relatively clean. This means the energy
and momentum of the4¸ 4� system is well known. Because the� ¹4Sº mostly decays into� meson
pairs, the number of� ¹4Sº daughter particles is usually well known, too. The� mesons decay further
and the particles which have a long enough life time to be detected in the detectors are referred to as
�nal state particles (FSPs), regardless if they are stable particles like the4� or not like the and` .

2.4 Tag-Side Reconstruction

Due to the well known kinematics of the� ¹4Sº meson in Belle II, even di�cult to reconstruct�
decays can be examined. The� with the decay of interest is called� sig and the other one is called� tag.
Examples for hardly reconstructable decays are decays which involve at least one neutrino, because
neutrinos are practically impossible to detect for Belle II. To fully reconstruct the� sig decay the best
possible reconstruction of the� tag is necessary, because then the reconstructed� tag and the known
kinematics of the� ¹4Sº can be used to restrict the� sig meson's kinematics.

The� tag reconstruction, also called tag-side reconstruction or tagging, can mostly be organized into
three categories. Figure 2.3 gives an graphical overview for the three categories. Generally speaking
the exclusive tagging usually has a higher precision than the inclusive tagging, but therefore has fewer
events successfully reconstructed. The semi-inclusive tagging tries to combine the bene�ts of both
other methods.
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Chapter 2 The Belle II Experiment and Physics Background

In Belle II jargon the term rest of event is used to de�ne the �nal state particles which remain
once a composite particle is reconstructed. Therefore a rest of event is always connected to a already
reconstructed particle.

2.4.1 Exclusive Tagging

For the exclusive tagging the� tag gets reconstructed explicitly. This means that every subsequent
decay of the� tag and its daughters needs to be reconstructed with a speci�c decay chain.

2.4.2 Inclusive Tagging

For the inclusive tagging the� sig gets reconstructed �rst and then all remaining FSPs are used as� tag
descendants and combined to reconstruct the� tag, with no explicit decay chains getting reconstructed.

2.4.3 Semi-Inclusive Tagging

For the semi-inclusive tagging the� sig and the� c get reconstructed �rst. The remaining FSPs are
grouped into the- system.- and� c are then combined to reconstruct the� tag.

In general the� c is a placeholder for any charmed hadron. For the scope of this thesis� c means that
the following hadrons or, if existing, their charge conjugated version were aimed to be reconstructed:
� � 0, � �� , � � , � 0, � ¸

s , � 2 and� •k .

(a) Exclusive tagging (b) Inclusive tagging (c) Semi-inclusive tagging

Figure 2.3: Schematic overview of the three di�erent tagging techniques

2.5 Physics Variables

Physics variables relevant for this thesis are listed here.

Particle Identi�cation Variables (IDs)

Particle IDs get calculated based on the track's kinematics in a way that these IDs should help to
decide which particle was measured in form of a charged track.

Vertex Information

The vertex information3r is the transverse distance between the vertex of a particle and the4¸ 4�

collision point, and3z is the z-axis distance between the vertex and the4¸ 4� collision point.
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2.6 basf2 Reconstruction Software

ECL Cluster Variables

The ECL cluster variableclusterReg is the ECL region the cluster was measured andclusterE9E21
is the "ratio of energies in inner 3x3 crystals [...] and 5x5 crystals around the central crystal without
corners" [7].

Beam Constraint Mass S bc

The beam constraint mass for the� tag is de�ned as follows [8]

" bc =

s � p
B

2

� 2

�
�

®?CM
� tag

� 2
(2.1)

with
p

Bbeing the centre of mass energy and®?CM
� tag

the momentum vector of the� tag in the centre of
mass (CM) frame.
For a correctly reconstructed� meson" bc is expected to be the� meson mass< � .

Missing Mass Squared m2
miss

The< 2
miss is de�ned for the reconstructed� ¹4Sº meson as follows [9]

< 2
miss =

� p
B

2
� � CM

� sig

� 2

�
�

®?CM
� sig

¸ ®?CM
� tag

� 2
(2.2)

with
p

Bbeing the centre of mass energy,� CM
� sig

the energy of the� sig in the CM frame,®?CM
� sig

the

momentum vector of the� sig in the CM frame and®?CM
� tag

the momentum vector of the� tag in the CM
frame.
For a fully hadronic� tag and a� sig with one neutrino daughter particle like in a� � �a decay, the< 2

miss
distribution is expected to peak at zero for correctly reconstructed events.

Energy Di�erence � K

The energy di�erence� � for a � tag meson is de�ned as follows [8]

� � = � CM
� tag

�
p

B
2

(2.3)

with � CM
� tag

being the energy of the� tag in the CM frame and
p

Bbeing the centre of mass energy.
For a correctly reconstructed� meson� � is expected to be zero.

2.6 basf2 Reconstruction Software

basf2 , short for Belle II Analysis Software Framework, is the o�cial data analysis and simulation
software of the Belle II experiment [10]. It gets used to process real detector raw data, to generate
Monte-Carlo events and to reconstruct particle decays. For the latter the analyst creates a path. To

7



Chapter 2 The Belle II Experiment and Physics Background

which one adds all wanted analysis steps, like �lling lists with FSP candidates or reconstructing
speci�c decays out of FSPs or other already reconstructed composite particles. Alsobasf2 allows
the analyst to create custom modules with new functionalities which then can be added to particle
reconstructions.

2.6.1 Particle Categories based on basf2 Variables

Throughout this thesis it is often necessary to assign �nal state particles to categories. Those categories
depend on from which ancestor particle the �nal state particle stems from. For simulated Monte-Carlo
decay events this is checked with thebasf2 variablesgenMotherPDG(i) andgenMotherID(i) ,
which store the PDG code and array index of the8-th mother particle. The array index gives every
particle in an event a unique number, counting starts by the� ¹4Sº meson getting a zero. If a �nal
state particle has no related ancestor� meson it is considered to be background.

2.6.2 stdMostLikely Function

ThestdMostLikely function ofbasf2 decides which mass hypothesis to choose for charged particles
based on the particle ID information. Also this function applies selections on the �nal state particles.
These arethetaInCDCAcceptance == 1, nCDCHits¡ 20, 3r Ÿ 0•5 andj3zj Ÿ 2. In section A.1
the �rst two variables are explained.
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CHAPTER 3

Deep Learning and Graph Neural Networks

Deep learning is a branch of the wider �eld of machine learning based on arti�cial neural networks
(NN) as these NNs are designed to mimic structures which are found in human or animal brains. Many
of the features of NNs have analogous structures or features in the biological structure of brains. [11]
[12]

3.1 Deep Learning Principles

Deep learning is based on the processing of input data with a NN in order to use latent patterns in data
for tasks like classi�cation, regression, data generation, etc. In the example of picture recognition the
input data consists of the pixels of the picture and the output can be a classi�cation of what is shown
in the picture, for example a dog or a cat. This classi�cation by the NN can be seen as its prediction.
The inner structure of a NN consists of layers of neurons. The most simple layer is the feed forward
layer, which will be used as an example to explain the main features of NNs. Each of a layer's elements
is called a node. The single elements of input and output are also called input and output nodes.
Figure 3.1 shows an example of a NN with eight input nodes on the left, two subsequent feed forward
layers with six nodes each and four output nodes on the right. The arrows represent the connections of
the nodes and the direction of the data �ow. One sees that every node of a layer is connected to all
nodes of the subsequent and previous layer, which is the principle of feed forward layers. Inside of
the feed forward layer nodes a calculation takes place. Every incoming value from a previous layer
gets multiplied by a corresponding weight. The sum of these weighted inputs is then used as the
argument of a non-linear activation function. This function's output is then the node's output which
gets propagated to the next layer.
The general structure of the network, like which and how many layers are used, are critical for the
performance of the network. Di�erent network architectures are needed for di�erent kinds of data.
Features of the network like number of layers or the number of nodes per layer are referred to as hyper
parameters.
If the structure of the network is considered to be the brain of the network, the already mentioned
weights are its memories. In order to get the right weights for meaningful predictions a NN gets
trained. This is done by feeding input data to the network for which the correct prediction or label is
already known. Then the loss function can be calculated, which processes the network's outputs into a
single real number. Usually the loss function's value gets lower for higher accuracies of the network's
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Chapter 3 Deep Learning and Graph Neural Networks

predictions. The weights get adjusted with the back propagation in order to minimize the loss function
[13]. This weight adjustment is done for subsets of the whole training data at once, called batches.
The speed of these adjustments is regulated with a factor called the learning rate. Its purpose is to
prevent too big �uctuations in the weights during the training process.

The training data gets processed in multiple cycles which are called training epochs. Usually the
training data gets split into a training set and a validation set. The training set gets used to adjust
the weights. The validation set is used to prevent over training, which occurs when the network
starts learning the statistical �uctuations of the particular data set used for training. Therefore the
performance worsens when data the network has not been trained on yet is presented to it. Randomly
dropping some nodes out of the network during training is one of many other regularization techniques
to reduce over training. The hyper parameter drop rate de�nes the fraction of nodes to ignore during
training. Other regularization techniques are for example data augmentation, increasing the training
data by creating copies with slight deviations, or early stopping, stopping the training once the loss of
the validation data increases.

Figure 3.1: A neural network with eight input nodes on the left, two subsequent feed forward layers with six
nodes each and four output nodes on the right. The arrows represent the connections of the nodes and the data
�ow. [14]

3.2 Graph Neural Networks

Graph NNs use graph representations of their input data. In graph representation the nodes represent
the objects which are of interest and the edges represent the relations between the objects. The graph
that represents the relations between the interconnected entities can be designed to be fully connected,
meaning all nodes are connected to each other, or in any other wanted layout.
For example in high energy physics the nodes of the graph can be used to represent particles and the
edges are then representing the relations between the particles. See [15] for a more detailed overview

10



3.3 NRI Model

of graph NNs in high energy physics.

3.3 NRI Model

The NN used in this thesis is based on the NRI model provided byNeuralRelationalInference for
Interacting Systems(NRI) [16]. The NRI model is a graph auto encoder. The principle of an auto
encoder is to transform the input data into a representation of a smaller dimension and then using this
representation to recreate the input data. For the usage in this thesis only the dimension reduction
part of the auto encoder is needed. The main features of the NRI model are the Node2Edge and
Edge2Node layers. These layers transform the node based representation of the data to an edge based
representation and vice versa. See [17] for an similar application of the NRI model than used in
this thesis and a more extensive explanation of the Node2Edge and Edge2Node layers. The code
implementation of the NRI model used as a basis for this thesis also stems from there. The used
implementation is based on thepytorch framework [18].

The NRI model consists of an initial MultiLayer Perceptron (MLP), then a Node2Edge layer,
followed by a second MLP and then multiple blocks. A MLP consists of two feed forward layers. A
block contains a Edge2Node layer, followed by a MLP, an Node2Edge layer and another MLP. The
last layer of the NRI model is a feed forward layer with the output dimension set by the user.

11





CHAPTER 4

FEI and Deep Semi-Inclusive Tagging

4.1 FEI Tag-side Reconstruction

The Full Event Interpretation (FEI) is an particle reconstruction algorithm, designed to be used
for the Belle II experiment. It uses boosted decision trees to hierarchically reconstruct the decay
chains of� mesons. Each reconstructed particle in the decay chain gets assigned a probability called
SignalProbability which should indicate how likely it is that the reconstruction was correct. More
than 100 decay channels have been hard coded into the FEI. This leads to more than104 � meson
decay chains that can be reconstructed. Figure 4.1 shows a schematic overview of the hierarchically�
meson reconstruction of the FEI. The reconstruction starts with the detector data from which the �nal
state particles are reconstructed. Subsequently the composite particles and �nally the� meson get
reconstructed. See [19] for more details on the FEI.

Figure 4.1: Schematic overview of the hierarchically� meson reconstruction of the FEI [19]
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Chapter 4 FEI and Deep Semi-Inclusive Tagging

4.2 Deep Semi-Inclusive Tagging Model

The Model

The NRI model as described in section 3.3 was altered for the application used in this thesis. The
resulting model was named theDSIT model (DeepSemi-InclusiveTaggingmodel). The alternation
consisted in changing the output of the model from an edge representation of the data to a node or
particle based representation. This was achieved by adding an Edge2Node layer before the �nal feed
forward layer.

The DSIT model is used to categorize �nal state particles of an� ¹4Sº decay event. For a number
of particles< and a number of features per particle= the input has the dimension< � = and the
output has the dimension< . Figure 4.2 represents the �ow of input data through the network to the
output data. For categorization into: categories the DSIT model produces an integer prediction of
each particle's category in the range»0– : � 1¼. The< particles are organized into a fully connected
graph. Each node of the graph, representing a particle, is a vector of dimension= which holds the
input features for this speci�c particle.

Figure 4.2: Schematic Overview of the input data �ow through the DSIT model and its resulting output.< is
the number of particles represented in the input,= is the number of features provided per particle.

Hyper Parameters

The hyper parameters of the model are=hid, the number of nodes per layer,=blocks, the number of
blocks in the model, the drop rate, the initial learning rate, which was set to0•001and the batch
size. During the training of the DSIT model the learning rate was adjusted automatically using the
ReduceLROnPlateaufunctionality frompytorch . This functionality reduces the learning rate if the
loss was not reduced for several epochs. The used loss function is the cross entropy loss function.

Metrics

To monitor the performance of the DSIT model, several metrics were de�ned. Most important is the
accuracy, which is the fraction of correctly predicted particles based on all particles. Then there are
the category-wise accuracies, which are the respective fractions of correctly predicted particles per
category. The event based metrics measure the fraction of events in categories of how many prediction
errors the DSIT model made per event. The best possible outcome, namely zero prediction errors, is
calledperfect (separation). One error per event is called1E, 2 errors per event2E, three errors per
event3E and four or more errors per event� 4E.
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Separation Cases

Depending on the supposed usage di�erent separation cases are created for the DSIT model. The
separation case de�nes which categories are to be predicted by the DSIT model. For each separation
case all �nal state particles which are not supposed to be predicted by the DSIT model, get deleted.
This means the DSIT model only gets presented the particles which should get predicted by it.

Deep Semi-Inclusive Tagging

In this deep approach we want to improve the semi-inclusive tagging that was described in section
2.4. The� c gets reconstructed by the FEI and the� sig and- system are meant to be reconstructed
based on the DSIT model's prediction. For this the DSIT model is used with the� sig- - - background
separation case.

4.3 Comparison FEI and Deep Semi-Inclusive Tagging Model

As mentioned the FEI is using hard coded decay channels. This restricts the amount of� decays the
FEI can reconstruct. In comparison the DSIT model has no hard coded restrictions for the decay
channels it can possibly learn.

Also the general structure of the FEI's boosted decision trees can potentially decrease its �exibility.
Early, wrong decisions during the hierarchically designed reconstruction process are in�uencing the
complete subsequent reconstruction. The DSIT model on the other hand does not work hierarchically.

A potential down side of the DSIT model could be that there is only one prediction for each �nal
state particle of an event. If errors are in these predictions, the complete reconstruction is �awed.
The severity of this �aw is then in�uenced by how important the falsely predicted particle was. For
example falsely predicting a low momentum particle is less bad for the reconstruction than falsely
predicting a high momentum particle. The predictions can also only produce a limited number of
� ¹4Sº candidates, while using the FEI in general produces more candidates which can be compared
to one another.
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CHAPTER 5

Deep Semi-Inclusive Tagging Toy Model

The goal of this chapter is to show a proof of concept. The goal was to create simple, easy adjustable
test data, in order to prove the concept of the deep semi-inclusive tagging based on the DSIT model.

5.1 Training Data Creation

The particle decay events used for training data creation were simulated with the python package
PhaseSpace[20]. For this two sets of six di�erent decay modes each of the� ¹4Sº were simulated.
The used decay modes are shown in �gure A.1 and A.2. For each of the six modes15 � 103 events
were simulated resulting in90 � 103 events total. These events got split into 90% training data and
10% validation data.

5.1.1 Simulated Data Attributes

In order to simulate a more realistic experimental scenario, the complexity of the data was gradually
increased. During this process we evaluated the performance of the DSIT model, to identify potential
bottlenecks in the method.

For thed and� � 0 mesons mass distributions were simulated instead of �xed mass values. The
used mass distributions are shown in �gure 5.1 and were calculated using a Breit-Wigner distribution
and parameters from [3].

Pions with? Ÿ 100MeV and photons with? Ÿ 50MeV were dropped from the data set, to simulate
background suppression selections. 5% of all �nal state particles were excluded from the data set
randomly. Background particles were added randomly on an event basis. These background particles
were then randomly picked from the daughter particles of a separately simulated 3-body decay of
a hypothetical particle with mass< = 1 500MeV which decayed into a photon, a pion and a kaon.
The number of extra particles was decided based on drawing the amount of background particles to
add per event from a binomial distribution with? = 0•5 and= = 3. The momentum values for all
charged �nal state particles were smeared with gaussian noise were the standard deviation was 2%
of the original value. The momentum values of the photons were smeared in dependance of their
respective momenta. The values for the momentum dependant smearing got taken from [8] in order to
simulate a Belle II realistic scenario.
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(a) d meson (b) � � 0 meson

Figure 5.1:d and� � 0 meson mass distributions used for the toy data simulated withPhaseSpace

The� ¹4Sº was boosted into the lab frame accordingly to the boost of the asymmetric4¸ 4� collision
in Belle II. All �nal state particles which did not �t in the\ range of12•4� � 155•1� were dropped
from the data set to match the detection acceptance of the ECL detector.

5.1.2 Separation Cases

Three di�erent separation cases were simulated:- - � sig- background,- - � c- background and- -
� c- � sig- background. For the� sig- � c- - - background separation the modes in �gure A.1 were used,
for the other two separation cases the modes in �gure A.2 were used.

5.1.3 Simulated Features per Particle

The already described simulation steps provide the 4-momenta for all particles which are supposed to
be given as input to the DSIT model. In addition to that the charge and a simulated hadron ID were
added to each particle. The charge was assigned according to the respectively used decay modes
(�gure A.1 and A.2) and was simulated without any uncertainty. Two hadron IDs were provided, one
for the pion ID and one for the kaon ID. The hadron IDs were simulated with a exponential distribution
with range»0–1¼. The used scale factor for the distribution was0•05. If a particle was for example a
kaon, the pion ID was drawn from a exponential distribution having its maximum at zero, while the
distribution for the kaon ID had its maximum at one. For photons and pions the distributions were
switched accordingly.

See �gure 5.2 for per mode momentum spectra of kaons, pions and photons (no background
particles) on� sig- - - background separation data as example.
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Figure 5.2: Momentum spectra of pions, kaons and photons per� ¹4Sº decay mode for� sig- - - background
separation (no background particles).

5.2 Results

5.2.1 Hyper Parameters

Di�erent hyper parameters and their combinations were tested until the best combination was found.
=hid and=blocksproved to be the most crucial hyper parameters, who already a�ected the DSIT model's
performance signi�cant if only small changes were made. The best values found were setting=hid to
1024,=blocks to 8. In contrast the performance was only mildly a�ected by changes of drop rate and
batch size. For this reason the drop rate was set to 0.3 and the batch size to 128.

5.2.2 DSIT Model Performance

As one can see in table 5.1 the performance of the DSIT model on the toy data was high for all three
tested separation cases. For the- - � c- background and the- - � sig- background separation case the
performance is better than for the- - � c- � sig- background separation, which makes sense because
for the latter an additional category had to be predicted by the model.

Figure 5.3, 5.4 and 5.5 show the DSIT model training progress over the training epochs for the- -
� c- � sig- background separation case. Figure 5.3 shows the cross entropy loss for the course of the
DSIT model training for the training and validation data set separately. The deviation of training set
and validation set loss from roughly epoch 20 onwards shows that overtraining occurs. But because
the validation set loss does not increase notably the overtraining can be tolerated here. Figure 5.4
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separation case perfect separation accuracy
- - � c- background 93.4% 98.4%
- - � sig- background 91.9% 98.3%
- - � c- � sig- background 81.8% 97.4%

Table 5.1: Results of the DSIT model for di�erent separation cases on the validation data.

shows the fraction of number of prediction errors per event, normalized to the overall accuracy over
training epochs on the validation data set. This shows that the events that are not predicted perfectly
mostly only have small amounts of prediction errors per event, namely one or two. Figure 5.5 shows
the category wise accuracies and the overall accuracy over training epochs on the validation data set.
The categories- , � c and� sig show similar accuracies while the background accuracy is the lowest.
All three �gures show that the most learning success by the DSIT model is gained during the �rst 20
epochs and afterwards only small improvements are still achieved.

Figure 5.3: Cross entropy loss for DSIT model training for the- - � c- � sig- background separation case, over
training epochs on training and validation data sets.
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5.2 Results

Figure 5.4: Fraction of number of prediction errors per event, normalized to the overall accuracy for- - � c-
� sig- background training over training epochs on validation data set.

Figure 5.5: Category wise and overall accuracies for- - � c- � sig- background training over training epochs on
validation data set.
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5.2.3 Hadron ID Studies

In this study we test whether or not the simulated kaon and pion IDs can replace the mass hypothesis
information for the DSIT model which is provided for each particle via its energy. In order to do this,
two data sets based on the- - � sig- background separation were created. For the �rst one all kaon
masses were set to the pion mass< c , resulting in all hadrons having the same mass. For the second
data set the energy information was dropped from the input feature vector. Each data set was then
used to train the DSIT model with four di�erent sets of input variables. One with only the momenta
(4-momenta respectively 3-momenta without the energy) and one each with the charge, hadron IDs
and charge and hadron IDs in addition to the momenta information. See table 5.2 for the fraction
of perfectly predicted events for each case. For both cases adding the charge information does not
improve the DSIT model performance, while adding the hadron IDs improved the performance notably
at least for the �rst case. For the case where the model was not exposed to the energy information, but
only to the hadron IDs, no improvement was observed. It seems that the hadron IDs can only increase
the performance of the DSIT model performance when the energy information is also provided, even
if the masses are the same for all hadrons.

In comparison to table 5.1 where the- - � sig- background yielded almost92%perfectly predicted
events one sees that both cases investigated here had worse performance. This means the mass/energy
information can not be fully replaced by a deep representation that the DSIT model creates from the
hadron ID features.

NN input variables all< hadr. = < c no energy passed
only momenta 76% (4-momentum) 68% (3-momentum)
+charge 76% 68%
+hadron IDs 87% 69%
+charge+IDs 87% 69 %

Table 5.2: Hadron ID study results for- - � sig- background separation on validation data. The entries show the
fraction of perfectly predicted events. The �rst column shows the input variables passed to the DSIT model, the
second and third column show the di�erent hadron ID study cases. For the second column all hadron masses
were set to the pion mass< c , for the third column the energy information was not provided to the NN and
therefore no mass hypothesis.

5.3 Creation and Training on Real MC of the 6 Toy Modes

The DSIT model performance on the toy data so far was promising, therefore the six toy modes
were simulated with the o�cial Monte-Carlo creation software for Belle II calledbasf2 , which was
described in section 2.6. For this the six modes from �gure A.1 were used for all separation cases that
were tested. Each separation case was created once with the generated information and once with the
reconstructed information, where detector and reconstruction e�ects were included. For both data sets
the 4-momenta were used as input for the DSIT model. For the reconstructed information two extra
data sets, where additionally the charge respectively the hadron IDs for kaons and pions were used as
input, got created. This was done for the- - � 2 - background and- - � sig- background separation
cases.
The fraction of perfectly predicted events for each case is presented in table 5.3. One can see a
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signi�cant decrease between the generated information and the reconstructed information. This is
expected due to reconstruction uncertainties. Also notable is that the addition of charge or the hadron
(pion and kaon) IDs to the input data increases the performance in all tested cases. This means that
the DSIT model can better distinguish between the particle categories when it is provided with this
extra information. In contrast during the hadron studies in section 5.2.3 no increase for the DSIT
model's performance was found for adding the charge to the input feature vector. This shows that for
the more complex simulated events created withbasf2 , the DSIT model needs more information to
make meaningful predictions.

separation case generated information reconstructed information
NN input variables 4 momentum +charge +hadron IDs
- - � 2 - background 98% 40% 49% 44%
- - � sig- background 99% 33% 38% 36%
- - � 2 - � sig- background 94% 13% - -

Table 5.3: Fraction of perfectly predicted events for the six decay modes simulated withbasf2 . For generated
and reconstructed information. All cases with the 4-momentum as input for the DSIT model, last two columns
with charge or hadron IDs as additional input.
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CHAPTER 6

Application of Deep Semi-Inclusive Tagging on
Monte-Carlo H ! J � �. Events

The previous studies aimed on verifying that the DSIT model is appropriate for the task of separating
particles based on their ancestor particle. As shown in chapter 5 the DSIT model showed promising
performance on the toy data and also on events which were simulated withbasf2 . Therefore
this chapter aims to apply the DSIT model on a realistic reconstruction problem, namely the deep
semi-inclusive tagging as described in section 4.2. For this the- - � sig- background separation case
is used for the DSIT model, while the� c will be provided by the FEI. The tagging in this chapter is
performed for� sig ! � � ¹! � 0cº�a (� = 4– )̀ decays. The� tag decays generically. Everything in
this chapter is based on� � Monte-Carlo events.

6.1 Existing Semi-Inclusive Tagging for H ! J � �.

The already existing semi-inclusive tagging method for� ! � � ¹! � 0cº�a events from [9] will
be used as a baseline to compare the DSIT model's performance. This method is not using any
multivariate analysis tools, except for the reconstruction of the� c with the FEI, which is exactly the
case for this application as well. The tagging strategy of this approach is described in section 2.4.
Notable is that the best candidate selection for the� ¹4Sº is performed by taking the� ¹4Sº candidate
with the highest FEISignalProbability for the used� c candidate. Also only speci�c� 0 modes
get reconstructed, namely� 0 !  c , � 0 !  cc 0, � 0 !  ccc and� 0 !  cccc 0.

6.1.1 Performance of Existing Semi-Inclusive Tagging for H ! J � �.

Figure 6.1 shows the< 2
miss, as de�ned in equation(2.2), distribution of the reconstructed� ¹4Sº

mesons, reconstructed with the existing semi-inclusive tagging. In blue all events which passed
all the applied selections are shown and in orange all events which additionally have a correctly
reconstructed� sig. The distributions are quite symmetrical and are centered at zero as it is expected
for the reconstructed decay.
For the existing semi-inclusive tagging the e�ciency is de�ned as the number of tagged� � �a events
divided by the number of� � �a events in the analysed sample. The purity is de�ned as the fraction of
truth matched� � �a events in the tagged sample. The e�ciency of the existing method is2•75%and the
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purity is 70%when theSignalProbability , as described in section 4.1, for the FEI reconstructed
� c candidate is required to be at least0•001.

Figure 6.1:< 2
miss, as de�ned in equation(2.2), distribution for the existing semi-inclusive tagging method. In

blue all events which passed all the applied selections are shown and in orange all events which additionally
have a correctly reconstructed� sig.

6.1.2 DSIT Model Performance on Data from Existing Semi-Inclusive Tagging
Algorithm

To create a direct comparison between the already existing semi-inclusive tagging algorithm and the
DSIT model, a training of the DSIT model was performed based on the �nal state particle selections
the already existing algorithm is based on. Additionally the� c reconstructed by the FEI was required
to be perfectly reconstructed. This was done in order to ensure that the target labels were correct. If a
not correctly reconstructed� c candidate would be used for labeling the FSPs of an event, the labels
would become ambiguous. This is because it is non-trivial to assume which of the particles actually
existing in the event, the FEI tried to reconstruct as� c. Only events for which the already existing
method could reconstruct a� ¹4Sº candidate were considered further.

A notable issue using the data for the DSIT model was assigning a mass hypothesis for each track.
While the already existing method can handle multiple mass hypothesis candidates for each track,
the DSIT model needs a �xed mass hypothesis because every track is only passed to the model once.
The mass hypothesis was decided based on what the already existing method ended up using for the
same decay event. For example if a track was used as a pion by the already existing method, this mass
hypothesis was used in the DSIT model input feature vector. If the already existing method did not
use a particle, the mass hypothesis was chosen randomly from the reconstructed candidates. Variables
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used as input for the DSIT model are the particle's mass, charge, the particle IDs, namely pion ID,
kaon ID, electron ID, muon ID and proton ID. Also the vertex information3r and3z are saved for
each particle. The ECL cluster variablesclusterReg andclusterE9E21 are used too. In section
2.5 these variables are explained.

The used hyper parameters for the DSIT model were=hid set to 512,=blocksset to 4, the drop rate set
to 0.3 and the batch size set to 64.

Table 6.1 shows the results of this comparison. Only the validation data events from the DSIT
model are used here to compare the performance of the DSIT model and the existing method. The
sample consists of52 � 103 events. For this speci�c data set the DSIT model performs signi�cantly
better than the already existing method in terms of accuracy for all particles and in terms of prediction
errors per event. However this is not translated into perfect predictions on an event basis. More than
three quarters of events have more than 3 prediction errors. This problem will be addressed in the
following sections.

case perfect 1E 2E 3E � 4E accuracy
DSIT model 1.8% 4.2% 6.9% 9.2% 77.9% 76.3%
existing method 0.0% 0.0% 0.0% 0.0% 100% 56.6%

Table 6.1: Particle assignment errors per event and accuracy for the comparison of DSIT model performance
and existing semi-inclusive tagging algorithm. Number of events:52 � 103.

6.2 Training Data Creation

As shown in section 6.1.2, more adjustments were needed for feasible results. Training based on the
data created here is the base for everything that follows in this chapter. In order to improve the results
of the DSIT model speci�c data selections were applied for the training data.

6.2.1 Event and Particle based Selections

A generator level selection was applied to all events, selecting only� � ¹! � 0cº�a events and the
speci�c � 0 modes the already existing semi-inclusive tagging method is reconstructing. The� c is
required to be perfectly reconstructed and to have a� meson as mother particle. The mass hypothesis
for each track was picked by using thestdMostLikely function of basf2 as described in section
2.6.2. The top 0.5% of events in terms of number of particles per event got deleted in order to
create training data with less outliers. This does not statistically a�ect our experiments, because the
distribution of the number of particles per event has a very long tail towards high numbers of particles.
The created data consisted of roughly200� 103 events. Those events were split into80%training and
20%validation data.

6.2.2 Used Input Variables

Variables used as input for the DSIT model are the particle's mass, charge, the particle IDs, namely
pion ID, kaon ID, electron ID, muon ID and proton ID. Also the vertex information3r and3z are
saved for each particle. The ECL cluster variablesclusterReg andclusterE9E21 are used too. In
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section 2.5 these variables are explained. Also provided were the� c vertex coordinates. Because
the general input data structure of the DSIT model is particle based, the� c vertex coordinates were
provided for every particle.

Variables which are not de�ned for all FSPs, e.g. the ECL cluster region variable is not assigned for
particles which were not detected with the ECL, got imputed with� 1•0. This allows the network to
condition the existence of the feature or not because all variables which are not de�ned for all FSPs
have ranges greater or equal to zero.

6.3 Hyper Parameters and Ablation Studies

6.3.1 Hyper Parameters

Di�erent hyper parameters and their combinations were tested until the best combination was found.
=hid and=blocksproved to be the most crucial hyper parameters, who already a�ected the DSIT model's
performance signi�cant if only small changes were made. The best values found were setting=hid to
256,=blocks to 4. In contrast the performance was only mildly a�ected by changes of drop rate and
batch size. For this reason the drop rate was set to 0.1 and the batch size to 64.

6.3.2 Ablation Studies

In order to test which variables are the optimal input features, ablation studies were performed. Table
6.2 shows the distribution of prediction errors per event and the accuracy calculated for all FSPs for
the di�erent sets of input features. Note that the row "all variables" means that here all input variables
as described in section 6.2 were provided to the DSIT model. In all the other cases, one variable
or group of variables is excluded from the input. Only exception is the ablation case named "only
4-momentum", where only the 4-momentum was provided to the DSIT model.
It is surprising that most variables have only minor, unclear e�ects if left out. IfclusterReg , pion
ID, kaon ID or the� c vertex are left out the DSIT model performs even slightly better than with all
variables provided, although the e�ect is small. Only leaving out the charge has a signi�cant e�ect by
decreasing the accuracy of the DSIT model by2p.p. in comparison to passing all variables to the
DSIT model. Interestingly is that even passing only the 4-momentum is achieving already70•3%of
accuracy in comparison to76•5%if all variables get passed. This shows that the by far most important
set of variables for the DSIT model is the 4-momentum, followed by far by the charge.
Because the best result was the one where the� c vertex information was left out and in order to save
the computation time needed to perform the vertex �t, it was decided that in the following sections the
input variables will be used without the� c vertex coordinates.
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ablation case perfect 1E 2E 3E � 4E accuracy
no � c vertex 13.7% 17.2% 17.0% 15.3% 36.8% 76.8%
noclusterReg 13.7% 17.0% 17.1% 15.1% 37.1% 76.7%
no pion ID 13.5% 17.0% 17.1% 15.3% 37.1% 76.6%
no kaon ID 13.4% 17.0% 17.3% 15.1% 37.2% 76.5%
all variables 13.4% 17.0% 17.0% 15.4% 37.3% 76.5%
no proton ID 13.6% 17.1% 16.9% 15.1% 37.4% 76.5%
no electron ID 13.3% 17.1% 17.0% 15.2% 37.5% 76.5%
no mass 13.4% 16.9% 17.1% 15.4% 37.2% 76.5%
no 3z 13.5% 16.9% 16.9% 15.1% 37.6% 76.4%
no 3r 12.9% 17.0% 16.8% 15.2% 38.0% 76.2%
noclusterE9E21 13.2% 16.6% 17.1% 15.1% 38.0% 76.2%
no muon ID 13.0% 16.7% 17.1% 15.1% 38.1% 76.2%
no charge 10.8% 15.0% 16.4% 15.7% 42.2% 74.3%
only 4-momentum 7.0% 11.4% 14.5% 15.6% 51.5% 70.3%
Table 6.2: DSIT model performance on validation data for di�erent ablation cases.

6.4 DSIT Model Performance

The performance of the DSIT model trained with the data described in section 6.2, the hyper parameters
shown in section 6.3.1 and the input variables without the� c vertex coordinates as motivated in
section 6.3.2 get discussed in this section.

6.4.1 Performance Indicators

Table 6.3 shows the distribution of prediction errors per event, the accuracy calculated for all particles
and per category, namely- , � sig and background. Notably are that the correct prediction rate for
background of68•3% is worse than for- with 80•1% and for� sig with 77•2%. The fact that only
36•8%of all events have 4 or more prediction errors is a promising result.

perfect 1E 2E 3E � 4E accuracy - acc. � sig acc. bg acc.
13.7% 17.2% 17.0% 15.3% 36.8% 76.8% 80.1% 77.2% 68.3%

Table 6.3: Distribution of prediction errors per event, accuracy for all particles and accuracies for the three
categories- - � sig- background (bg) on validation data. Based on the best achieved training on the data
described in section 6.4.

Figure 6.2 shows the fraction of correctly predicted FSPs per event on the y-axis and the number of
FSPs per event on the x-axis. Note that each column is normalized to 1, therefore the colored entries
show the fraction of events in the respective number of FSPs bin. For all four modes the fraction of
correctly assigned FSPs per event worsens for higher numbers of FSPs per event. However the e�ect
is not as bad as one might expect. The degrading e�ect is more severe as the number of� 0 daughters
increases. This is expected because the higher number of� 0 daughters increases the number of� sig
particles per event. This increase of the combinatorial complexity makes the DSIT model more prone
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to errors in comparison to smaller numbers of� sig FSPs.
Figure 6.3 shows the summed momenta of wrongly predicted particles per event. Each color shows
the distribution for di�erent numbers of wrongly predicted particles per event from one to four. The
plot indicates that for most events particles with relatively high momentum get assigned correctly
and usually the particles with less momentum are those who get wrongfully predicted. If one looks
at the peaks of the di�erent distributions, the typical wrongly predicted particle appears to have a
momentum of? � 120 MeV.

Figure 6.2: Fraction of FSPs per event predicted correctly by the DSIT model vs. number FSPs per event,
normalized on each column of the x-xis (number of FSPs). The color indicates the fraction of events in number
of FSPs per event bin. Displayed per� 0 mode.
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Figure 6.3: Summed momenta distributions of wrongly predicted particles per event, for di�erent numbers of
wrongly predicted particles per event.

6.4.2 Physics Variables directly from DSIT Model's Predictions

After the performance indicators described in the last section seemed promising, relevant physics vari-
ables got calculated based directly on the DSIT model's predictions for each FSP and the information
of the already FEI reconstructed� c.
Figure 6.4 shows the distribution of the" bc of � tag, as de�ned in equation(2.1). The distribution is
shown for all events and for di�erent numbers of prediction errors per event from zero to two. The
peaks of the distributions are at5•28GeV and therefore in alignment with the� 0 meson mass of
< � = 5•279GeV [3]. The< 2

miss, as de�ned in equation(2.2), distribution of the� ¹4Sº reconstruc-
ted directly from the DSIT model's predictions is shown in �gure 6.5, with an event selection of
" bc � 5•0GeV for � tag. The distribution is shown for all events and di�erent numbers of prediction
errors per event from zero to two. The mean and standard deviation are smaller for lower numbers of
prediction errors per event. This dependency is depicted for a wider range of prediction errors per
event, from zero to ten, in �gure 6.6. Also for this wider range of prediction errors per event the same
trend is visible. The higher the number of prediction errors per event the higher are the mean and
standard deviation of the< 2

miss distribution.

The results look promising, but the decay reconstruction was not done exclusively. Therefore it
is not possible to apply further selections on the reconstructed� ¹4Sº candidates or their daughter
particles. Because of this the explicit reconstruction based on the DSIT model's prediction will be
performed in section 6.5.
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Figure 6.4: Distribution of" bc of � tag, as de�ned in equation(2.1), reconstructed directly from the DSIT
model's predictions and the� c reconstructed by the FEI. The distribution is shown for all events and di�erent
numbers of prediction errors per event from zero to two.

Figure 6.5: Distribution of< 2
miss, as de�ned in equation(2.2), reconstructed directly from the DSIT model's

predictions and the� c reconstructed by the FEI with a selection of" bc � 5•0GeV for � tag. The distribution is
shown for all events and di�erent numbers of prediction errors per event from zero to two.
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Figure 6.6:=� prediction errors dependance of std and mean in< 2
missdistribution in �gure 6.5 (= 2 N–0 � = � 10).
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6.5 Explicit � ¹4Yº Reconstruction based on DSIT Model's Predictions

The DSIT model gets applied on explicit reconstruction of the� ¹4Sº meson. For this the� c will be
reconstructed by the FEI, the� sig will be explicitly reconstructed by the DSIT model's predictions and
the- will be taken inclusively also based on the DSIT model's predictions. The explicit reconstruction
will make more reconstructed variables available, which then will be used to improve the reconstruction
quality by being able to apply selections on these variables.

This explicit reconstruction will also be done under more realistic circumstances then before. No
more generator level selections on� � ¹! � 0cº�a events or the� 0 modes which are meant to be
reconstructed are applied. The FEI reconstructed� c is no longer required to be perfect or to have a
� meson mother, but is instead selected with a best candidate selection. Note that the DSIT model
trained with the data described in section 6.2, the hyper parameters shown in section 6.3.1 and the
input variables without the� c vertex coordinates as motivated in section 6.3.2 gets used in this section.
This means the model used was trained only for� � ¹! � 0cº�a events and the speci�c� 0 modes.
Therefore the reconstruction performed also needs to discriminate between the� � ¹! � 0cº�a events
which are meant to be reconstructed and the other decay modes in the sample.

The reconstruction is based on200fb� 1 of � � Monte-Carlo events. The FSPs used for the
reconstruction are selected with thestdMostLikely function like it was done to create the training
data. The mass hypothesis decided by thestdMostLikely function will be retained throughout the
reconstruction which is mostly important for the� sig reconstruction.

6.5.1 Custom basf2 Module

In order to explicitly reconstruct the� ¹4Sº meson based on the DSIT model's predictions it is
necessary to get the predictions during thebasf2 reconstruction process. For this a custombasf2
module was created which applies the DSIT model. The module makes the predictions available
for the furtherbasf2 reconstruction by saving it for every particle in a integer variable called
extraInfo(NN_prediction) . Here0 stands for a predicted background particle,1 for a - particle
and2 for a � sig descendant.
The custom module requires three arguments to be initialized before it can be added to thebasf2
path. First is a list containing all particle lists the DSIT model shall be applied to. Note that these
lists can still, but do not have to, contain the FSPs which are daughters of the� c candidate selected
beforehand. In both cases the custom module expects the particles to have an assigned variable
extraInfo(Hc_used) which indicates if a particle is a� c descendant binary. The second argument
for the custom module is a list containing the input variable names the DSIT model will use. This
variable list has to have the same order the model's input variables had during training. The last
argument is the DSIT model itself. For this the model gets initialized with the wanted hyper parameters
and the weights get loaded from a training which was already performed.

6.5.2 Nc Best Candidate Selection

As already mentioned the� c is no longer required to be perfectly reconstructed or to have a
� mother. Instead a best candidate is selected based on the FEISignalProbability . For
the SignalProbability of the � c a minimal value of0•001 was used exactly like the method
introduced in section 6.1. For thisSignalProbability value and two more strict minimal values
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the e�ectiveness of the� c best candidate selection was investigated. For this the fraction of events
which pass the correspondingSignalProbability selection were determined. Additionally the
fraction of these events with any perfect� c candidate (perfectly reconstructed and� mother) was
determined. Then the best candidate selection was performed by selecting the� c candidate with the
highestSignalProbability value. After this selection the fraction of events where a perfect� c
candidate was selected were calculated.
Table 6.4 shows the results. The higherSignalProbability selections of0•01and0•1 reject a lot
of events, by only letting80%respectively38%of events pass. The fraction of events with a perfect
� c after theSignalProbability selection increases notably. For all three selections the fraction of
perfect� c events after the� c best candidate selection seems a reasonable trade o� for the simplicity
of the performed best candidate selection.

It was decided to use theSignalProbability selection of0•001, in order no to loose too many
events due to the best candidate selection.

SignalProbability minimal value 0.001 0.01 0.1
fraction of events which pass the selection 100% 80% 38%
fraction of events with perfect� c for at least one candidate 17% 20% 34%
fraction of perfect� c events after� c BCS 12% 15% 29%

Table 6.4: Best candidate selection for� c based on the FEISignalProbability .

6.5.3 Best Candidate Selection for � ¹4Sº Candidates

The explicit� ¹4Sº reconstruction withbasf2 often produces multiple� ¹4Sº candidates per event.
Therefore a best candidate selection for the� ¹4Sº needs to be performed. The best candidate selection
was based on the< 2

miss, as de�ned in equation(2.2), distribution, as this distribution is meant to peak
at zero and this attribute was used to rate the di�erent techniques tested.
Three di�erent best candidate selection approaches were investigated. The �rst approach was to select
the candidate with the minimal absolute value of< 2

miss of all candidates of the respective event. The
second approach was to take the candidate with the smallest value of� extra which was presented in
[21]. � extra is de�ned as the summed energy of photons with� W � 50MeV which were not used to
reconstruct the� ¹4Sº candidate. The third approach was to perform a random candidate selection.
The< 2

miss distributions for all three approaches are shown in �gure 6.7. The best candidate selection
based on the minimal absolute value of< 2

miss gives the best peak. Therefore this best candidate
selection approach was selected.
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Figure 6.7:< 2
miss, as de�ned in equation(2.2), distribution from explicit� ¹4Sº reconstruction inbasf2 based

on the DSIT model's predictions and the� c reconstructed by the FEI. Shown are the best� ¹4Sº candidates for
each of the three di�erent tested best candidate selection options.

6.5.4 Results

The events where a� ¹4Sº candidate was found based on the DSIT model's predictions were categorized
in background and truth matched events. Note that the de�nition for truth matched here is quite loose.
It only requires the event to be a real� � ¹! � 0cº�a event and the lepton from the� � �a decay to
be correctly reconstructed. A more strict de�nition of truth matched did not let many events pass,
therefore the more loose de�nition was chosen.
The reconstruction was not really successful. Which can exemplary be shown for the mass distribution
for the reconstructed� 0 meson for the four di�erent reconstructed decay channels shown in �gure 6.8.
The background events in orange and the truth matched events in blue are stacked on one another
in the plots. Background and truth matched events both peak at the same value. Except for the
� 0 !  cccc 0 mode, which also happens to have by far the lowest statistics, all peaks are far from
the � 0 mass< � 0 = 1•865GeV [3] which is indicated with the red vertical line in the �gure. The
< 2

miss, as de�ned in equation(2.2), distribution of the� ¹4Sº meson selected best candidates is shown
in �gure 6.9. The distribution is shown once with no selections and with di�erent applied selections
which are listed with their respective boundaries in table 6.5. The single selections applied are the
� tag " bc, as de�ned in equation(2.1), � tag � � , as de�ned in equation(2.3), ?t, lepton and the?t–� �

selection. Also shown are the distributions if all those selections are applied at once and this in
addition with the� 0 mass or the� � mass selection. Again the background events in orange and the
truth matched events in blue are stacked on one another in the plots. For no selections and all di�erent
selections applied the< 2

miss distribution has a much bigger tail in the positive range. Especially the
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?t, lepton selection is quite e�ective by reducing the background events. Applying all selections at

once and either the� 0 mass or the� � mass selection additionally reduces the background notably
and creates a much a more symmetrical distribution. But this comes with the cost of reducing the
statistics signi�cantly. This issue is depicted in more detail in �gure 6.10. The bars shows e�ciency
and purity for all di�erent selections from table 6.5 which got applied subsequently from left to
right. The e�ciency is de�ned by the number of events which were tagged divided by the number
of expected events=expected. In the 200fb� 1 of data are# all = 101•9 � 106 � � events. Of those

=expected= # all � n� � �a � n� � ! � 0 c � n� 0modes = 2•08 � 106 are the events the reconstruction should
tag. Withn� � �a = 9•9% being the branching fraction of� ! � � �a , n� � ! � 0 c = 67•7% being the
branching fraction of� � ! � 0c andn� 0modes= 30•49%being the combined branching fraction of
the reconstructed� 0 modes. The purity is de�ned as the number of truth matched events, as described
above, divided by the number of reconstructed events. Figure 6.10 shows that the e�ciency is getting
extremely small with a value below10� 4 once all selections got applied. At the same time the purity
is increasing with every added selection, but with a highest value of only47%.

Compared to the e�ciency of2•75%and the purity of70%of the already existing semi-inclusive
tagging method described in section 6.1.1, one has to conclude that the DSIT model based approach
performs much worse than the already existing one. The purity de�nition used for this thesis is more
strict than for the already existing semi-inclusive tagging method, which does not require the truth
matched lepton.

Figure 6.8:� 0 mass for each reconstructed� 0 decay mode from explicit� ¹4Sº reconstruction inbasf2 based
on the DSIT model's predictions and the� c reconstructed by the FEI. The (loosely) truth matched (blue) and
background (orange) events are stacked on each other, the red vertical line shows the PDG value of the� 0 mass.

37



Chapter 6 Application of Deep Semi-Inclusive Tagging on Monte-Carlo� ! � � �a Events

Figure 6.9:< 2
miss, as de�ned in equation(2.2), distribution with di�erent applied selections, which are explained

in table 6.5, from explicit� ¹4Sº reconstruction inbasf2 based on the DSIT model's predictions and the� c
reconstructed by the FEI. The (loosely) truth matched (blue) and background (orange) events are stacked on
each other.

selection name lower limit upper limit
� tag " bc 5•0 GeV -
� tag � � � 2•0 GeV � 1•0 GeV
foxWolframR2 - 0.3
?t–� � - 2•4 GeV
?t, lepton 0•7 GeV -
� 0 mass 1•8 GeV 1•95 GeV
� � mass 1•8 GeV 2•2 GeV
hadronic� tag 1 -

Table 6.5: Selections used in �gure 6.9 and 6.10. Hadronic� tag indicates binary whether the� tag is fully
hadronic or not.foxWolframR2 is the ratio of the second and zeroth Fox Wolfram moments, see [8] for more
details. See section 2.5 for" bc and� � de�nitions.
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Figure 6.10: E�ciency and purity from explicit� ¹4Sº reconstruction inbasf2 based on the DSIT model's
predictions and the� c reconstructed by the FEI for subsequently applied selections from left to right, which
are explained in table 6.5. The purity is de�ned for truth matched� � ¹! � 0cº�a events which also have a
correctly reconstructed lepton in� ! � � �a decay.
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6.5.5 Possible Performance Restrictions of the DSIT Model in Comparison to the
Already Existing Method

Because the already existing semi-inclusive tagging method described in section 6.1.1 had notably better
purity and e�ciency as shown in section 6.5.4, possible reasons as wells as possible improvements for
the deep semi-inclusive tagging approach are discussed here.

A big advancement of the already existing semi-inclusive tagging method is a higher �exibility
regarding the� c. Multiple � c candidates get combined to multiple� ¹4Sº candidates which then get
selected with adjustable selections. The DSIT model approach on the other hand, at least in its current
form, needs a decision on which� c candidate to choose even before the DSIT model can predict the
particles' categories.

This �exibility of a commonbasf2 reconstruction also gets lost if the DSIT model is used for
example inc0 reconstruction. The DSIT model's approach does not allow for multiplec0 candidates
but only allows for ac0 to be reconstructed if both of its photons got predicted correctly.

The DSIT model is designed to get each FSP it should predict fed into the network once. This leads
to the necessity to decide on the mass hypothesis for each FSP in an early stage of the reconstruction
process. This might have lead to performance restrictions for the� sig reconstruction, where the decay
is exclusively reconstructed and therefore the particle type matters. Especially the bad reconstruction
results for the� 0 as shown in �gure 6.8 support this statement.

Although apparent, a higher accuracy of the DSIT model would also increase the reconstruction
quality for the deep semi-inclusive� ¹4Sº reconstruction. Maybe additional input variables or an
improved neural network design might improve the accuracy. With the current level of accuracy, the
higher �exibility of the already existing semi-inclusive tagging method outperforms the DSIT model
strongly.
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