2012年度 修士学位論文

結晶カロリメーターにおける
アパランシェフォトダイオード読み出しの特性の評価

奈良女子大学大学院人間文化研究科
物理学専攻 高エネルギー物理学研究室
　平山 明子

2013年2月8日
目次

第1章 はじめに 1

第2章 Bファクトリー実験の高度化 3
 2.1 Bファクトリー実験高度化の動機 3
 2.2 SuperKEKB加速器 4
 2.3 BelleII検出器 6

第3章 カロリメーター 9
 3.1 Belle実験のカロリメーター 9

第4章 半導体検出器 13
 4.1 半導体検出器の原理 13
 4.1.1 不純物半導体 13
 4.1.2 pn接合またはPIN接合した半導体の光検出器への応用 13
 4.2 アパラーンジェフォトダイオード(APD) 15

第5章 無機結晶シンチレーター 19
 5.1 シンチレーター 19
 5.2 無機結晶シンチレーター 19

第6章 宇宙線を用いたノイズレベルの測定 21
 6.1 APDと無機結晶シンチレーターのオプション 21
 6.2 シンチレーションカウンタートと読み出し電子回路の構成 22
 6.3 ノイズの測定 23
 6.3.1 BSOシンチレーターのAPD読み出しにおける測定 24
 6.3.2 純CsIシンチレーターのAPD読み出しにおける測定結果 31
 6.3.3 BGOシンチレーターのAPD読み出しにおける測定結果 33

第7章 Geant4シミュレーション 37
 7.1 Geant4 37
 7.2 BelleのカロリメーターとBGO+APDカロリメーターのエネルギーファクター
 の比較 38

第8章 波長可変レーザーを用いた APD の感度測定 43
 8.1 波長可変レーザーの原理 43
 8.2 測定方法 43
図目次

2.1 SuperKEKB 加速器 .. 5
2.2 BelleII 測定器の概観 7
3.1 現在の Belle の電磁カロリメーター 11
4.2 APD (左) S8664-1010 型、 (右) S8664-55 型 17
4.3 APD S8664-55 型、 S8664-1010 型の仕様 (浜松ホトニクス社カタログより抜粋) ... 17
4.4 APD の量子効率 (浜松ホトニクス社カタログより抜粋) 17
6.1 pureCsI と APD を内蔵したアルミボックスを接着した時の様子 22
6.2 測定のセットアップ ... 23
6.3 テストパルス 1 イベントのデータ 24
6.4 5mm × 5mm APD を用いて、V_{50} の逆バイアスを印可した際のテストパルス 500 イベントの波高分布 25
6.5 ノイズレベル測定結果 ... 26
6.6 宇宙線 1 イベントのデータ 27
6.7 5mm × 5mm APD を用いて、V_{50} の逆バイアスを印可した際の宇宙線 500 イベントの波高分布 28
6.8 波高測定結果 .. 30
6.9 (上段) カタログ品 APD、 (下段) 変更品 APD の波高分布。(左) テストパルス (右) 宇宙線の結果。印可電圧は V_{50} である。 32
6.10 純 CsI シンチレーターでの測定結果 33
6.11 BGO シンチレーターでの測定結果。(上段) 時定数 100ns、 (下段) 時定数 30ns での波高分布。 (左) テストパルス (右) 宇宙線の結果。印可電圧は V_{50} である。 .. 34
7.1 5 × 5 マトリックスの BGO シンチレーターに 500MeV のγを入射した事象の例 .. 37
7.2 γ線を BGO シンチレーターに入射した際のエネルギー分布。（左）APD1 個で読み出した場合、（右）APD4 個で読み出した場合。（上段）100MeV のγ入射時、（中段）500MeV のγ線入射時、（下段）2GeV のγ入射時。 39

iii
7.3 ガ線を既存の Belle の CsI(Tl) カウンターに入射した際のエネルギー分布。
(上段)100MeV のガ線入射時、(中段)500MeV のガ線入射時、(下段)2GeV のガ線入射時。
7.4 $E_{\text{calor}}/E_\gamma$ を E_γ の関数で示す。ここで E_{calor} はカロリメーター中で検出したエネルギービークに対応するエネルギー、E_γ は入射ガ線のエネルギーである。
7.5 エネルギー分解能 (σ/E_γ) を E_γ の関数で示す。ここで σ とは E_γ は Logarithmic Gaussian でフィットした際の幅とピーク値、E_γ は入射ガ線のエネルギーである。

8.1 波長変換の様子[14]
8.2 APD 周辺の回路図
8.3 セットアップ
8.4 APD をステージに取り付けた様子
8.5 ベデスタル
8.6 ADC 分布
8.7 レーザー 1 パルス当たりのエネルギーの分布
8.8 レーザー 1 パルス当たりのエネルギーの時間変化
8.9 イベント毎に ADC を power で割ったものの分布
8.10 1cm × 1cmAPD の感度比。AA0707 を 1 とした。
8.11 5mm × 5mmAPD の感度比。AA3253 を 1 とした。
表 目 次

<table>
<thead>
<tr>
<th>2.1</th>
<th>SuperKEKB 加速器のパラメータ</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>光検出器の比較</td>
<td>15</td>
</tr>
<tr>
<td>5.1</td>
<td>各種シンチレーターのパラメーター</td>
<td>20</td>
</tr>
<tr>
<td>8.1</td>
<td>測定に用いたサンプル</td>
<td>46</td>
</tr>
</tbody>
</table>
第1章　はじめに

高エネルギー物理学とは、加速器で生成される高エネルギー粒子の衝突反応から、物質の究極の構成要素、その間に働く相互作用を探求する学問である。そのため、生成される粒子のエネルギーや、運動量を高精度で計測し、その種類を識別できる検出器が必要となる。検出器には役割に応じて様々な種類があり、検出する粒子の種類やその実験目的によって複数種類の検出器を組み合わせて用いる。

我が国における高エネルギー加速器研究機構 (KEK) における KEKB 加速器を使った Belle 実験は、B 中間子系の CP 非保存を測定することを目的としており、2008 年ノーベル物理学者が小林誠・益川敏英に与えられた上で決定的な貢献を行った。KEKB 加速器はクラブ空洞の導入など新しい技術の導入や運転パラメーターを最適化する努力の結果、2009年には 2.1 × 10^{94}cm^{-2}s^{-1} におよぶ世界最高のルミノシティを達成した。しかし、小林・益川理論を越えた物理を探索するための CP 非保存現象の精密測定や、エキゾチックハドロンの探求といった研究テーマの推進には更なるルミノシティの向上が必要である。

これらの研究のうちいくつかは高効率かつ高分解能のγ線検出器を必要とする。B 中間子の崩壊モードのうち 1/3 は π⁰ を含むので、π⁰→γγ 過程で生じるγ線の検出は非常に重要である。また、τ⁻→μ⁻γ のように新物理に感度の高い非標準的な過程にもγ線の放出を伴うものが少なくな。

γ線の検出およびエネルギー測定を担っているのが電磁カロリメーターである。現在のBelle 検出器の電磁カロリメーターは TI 添加 CsI シンチレーターと、光検出器として PIN フォトダイオードを用いている。このシンチレーターは発光量は多いが発光の減衰時間が長い。したがって加速器のルミノシティを上げた際には、ビームバックグラウンドによりバイアルアップを起こしてエネルギー分解能が低下してしまうことが懸念される。これを回避するには、発光の減衰時間の短い新しいシンチレーターの導入が効果的である。

そこで新しいシンチレーターの候補として、純 CsI ピンチレーター、BSO ピンチレーター、BGO ピンチレーターが挙げられる。しかしこれらのシンチレーターは発光量が少なく、さらに純 CsI シンチレーターの発光波長は PIN フォトダイオードの感度波長より短いため使用することができない。また電磁カロリメーターは磁場中で動作させる必要があるため、磁場の有無で増幅率が大きく変化する光電子増倍管よりも、半導体光検出器の方が適している。このような条件を考慮すると、信号を増幅する機能を持つアバランジェフォトダイオード (APD) は魅力的なデバイスと言える。

本研究では、APD を純 CsI、BSO、BGO といった高速の無機シンチレーターと組み合わせた電磁カロリメーターの性能評価を行った結果について報告する。
第2章 Bファクトリー実験の高度化

2.1 Bファクトリー実験高度化の動機

高エネルギー加速器研究機構（KEK）のBファクトリー実験は、競争相手であるSLAC国立加速器研究所のBファクトリー実験と共に、B中間に子系を用いた系統的な研究を遂行し、2008年にノーベル物理学賞が与えられた小林・益川理論がC非保存現象を記述する正しい描像であることを示した。この2つのBファクトリー実験のうち、KEKにおいて大量のB中間子対の源となる電子・陽電子衝突をもたらしてきたKEKB加速器では、2003年5月に設計ルミノシティ1×10^{14}cm^{-2}s^{-1}を記録し、2010年6月30日の運転終了までの最終的な積分ルミノシティは1014fb^{-1}に達した。

こうしてBelle測定器にもたらされた大量のデータから得た成果として最大のものは、記述の通り小林・益川理論の予言である各種のC非保存を測定したことである[1]。これにはB中間子のモードのうち、ツリーダイアグラムと呼ばれる弱い相互作用の最低時の振幅が支配的に寄与するものが適しており、その典型がB^0→J/ψK^0 歴等を用いたsin2β
なるC非保存パラメーターの測定である[2][3]。これに対して、ペンギンダイアグラムと呼ばれる弱い相互作用の１ループの振幅が支配的な崩壊モードでは、標準理論の振幅が小さくなる。一方で、不確定性原理により高いエネルギースケールの物理が寄与しやすい。したがって、高いエネルギースケールでの新しい物理が小林・益川理論と異なる複素位相を持つ場合は、標準理論の振幅との量子力学的干渉効果により、B^0→J/ψK^0 過程とは異なるC非保存として出現する可能性がある[4]。そのような研究に適した崩壊モードの代表的なものとして、B^0→φK^0, B^0→η'K^0, B^0→K^0_SK^0_SK^0_Sなどが挙げられる[5][6]。これらはいずれも稀崩壊過程であるため、統計量の制限からC非保存の測定精度はいまだO(0.1)にとどまっており、新しい物理の効果を探索する感度は十分でない。O(0.01)の感度を得るには数十 ab^{-1}のデータの蓄積が必要であり、これには加速器、測定器とも相当の規模の性能改良工事が必要とする。

またX(3872)[7], Z(4430)[8]に代表される、既存のバリオンやメソンの範囲に入らない可能性の高いエキゾチックハドロンと総称される粒子についても、新しい崩壊モードの探索や崩壊生成物の角度分布の測定については、実験データの統計量が感度を制限しているものが多い。実事、スピノやバリティなどの量子数を決定することができた例は極めて限られている。したがってエキゾチックハドロンの研究もこれまでよりも一桁以上多い大量データの蓄積を必要とする。これを目的とした高度化工事は2010年度から開始されている。本章では8×10^{35}cm^{-2}s^{-1}を目標とする高度化後のSuperKEKB加速器と、それに対応するBelleII測定器について概観する。
第2章 Bファクトリー実験の高度化

2.2 SuperKEKB加速器

KEKB加速器は周長3kmのトンネルの中に電子を蓄積する高エネルギーリング（HER）と陽電子を蓄積する低エネルギーリング（LER）の2つのリングが横に並べられており、電子と陽電子は各々のリングの中を反対方向に周回し、筑波実験棟内に設けられた衝突点で衝突する。Belle測定器はこの衝突点を開いて設置されている。KEKB加速器の性能向上は既存のトンネル中の加速器コンポーネントの置換により行う計画で、この加速器をSuperKEKB加速器と呼ぶ。

SuperKEKB加速器ではKEKB加速器の約40倍のルミノシティを目標に設計が進められている。ルミノシティが対し、反応断面積σをもつ過程の場合、その反応の発生頻度はRで表され、R = Lσとなる。ルミノシティはビームの電流値やサイズから決まる量であり、衝突型加速器においては以下のように式が成り立つ。

\[\mathcal{L} = 2.2 \times 10^{34} \xi (1 + r) \frac{E \cdot I}{\beta_y^*} \text{cm}^{-2} \text{s}^{-1} \quad (2.1) \]

ここでEはビームのエネルギー（単位:GeV）、Iは蓄積電流（単位:A）また、ξはビーム・ビームパラメーターと呼ばれる衝突の強さを表す無次元量である。また、β_y^*は衝突点における垂直方向（y方向）のベータ関数値、rは衝突点における垂直方向のピームサイズを水平方向のピームサイズで割った値である。したがって、ルミノシティを大きくするためには、蓄積電流Iとビーム・ビームパラメーターξを大きくし、β_y^*を小さくする必要がある。

SuperKEKB加速器の設計は、2009年2月のKEKB加速器レビュー委員会の報告に従い、ナノビーム方式と呼ばれる技術に基づいて進められている。これまでのKEKB加速器では、ビーム・ビーム相互作用によるビーム粒子の理想的軌道近傍での運動を安定化させ、大きなビーム・ビームパラメーターξを実現するために、x - y相関はベータトロンチューンを半整数のすぐ上に設定して、x - z相関はクラブ空洞の導入によってそれぞれ解消という工夫がされてきた。これにより、互いに相関した3次元のビーム粒子の運動を互いに独立な1次元運動に転換して非線形力の影響を小さくすることにより、ビームを安定して貯蔵することが指導原理であった。これまでクラブ空洞導入後のKEKB加速器では世界最高記録であるξ = 0.09を達成している。

このビーム・ビームパラメーターξの値を基準に、SuperKEKB加速器の目標ルミノシティを狙うべく他のパラメーターの値を考察すると、運動に用いる電力量の制限からビーム電流値は現状の約2倍のLER=3.6A、HER=2.6Aとなる。したがって衝突点での垂直ベータ関数、β_y^*をLERで0.27mm、HERで0.42mmとKEKB加速器の20倍も小さくしてはならない。ヘッドオン衝突またはクラブ衝突ではパチ長がベータ関数以下にしなければならないが、そこでパチ長を縮めようすると、ホーリータンク前後の影響でパチ長がのびてしまい、結局は要求されたルミノシティを実現できない。そこでSuperKEKB加速器では極低エミッタンスのビームを有限角度衝突させることとし、パチ長を5mmとKEKB加速器と同等のまま、ビーム交差領域の長さをベータ関数以下に設定し、β_y^*を小さくすることで、目標ルミノシティを狙う。これをナノビーム方式と呼ぶ。また、これまでの電子8GeV・陽電子3.5GeVの衝突ではビーム光学設計の力学的条件が必要である。
保できないので、ビームエネルギーは電子 7GeV・陽電子 4GeV に変更する。以下の設計パラメーターを表 2.1 に示す。

図 2.1: SuperKEKB 加速器

表 2.1: SuperKEKB 加速器のパラメータ

<table>
<thead>
<tr>
<th>参数</th>
<th>LER</th>
<th>HER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy(GeV)</td>
<td>4.0</td>
<td>7.0</td>
</tr>
<tr>
<td>I(A)</td>
<td>3.6</td>
<td>2.6</td>
</tr>
<tr>
<td>(\beta_y)</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>(\xi_y)</td>
<td>0.0886</td>
<td>0.081</td>
</tr>
<tr>
<td>Bunches</td>
<td>2500</td>
<td></td>
</tr>
<tr>
<td>Luminosity(10^{34}cm^{-2}s^{-1})</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
2.3 BelleII検出器

加速器のルミノシティを40倍に上げると、衝突点近傍におけるビームバックグラウンドも現在の5倍から10倍に増加することが予想される。この高いビームバックグラウンドに対処しつつ、高精度のB中間子対生成をはじめとした信号事象データを効率よく収集する必要がある。このため、現在Belle測定器の性能改良が進められている。これをBelleII測定器と呼ぶ。BelleII測定器はSuperKEKB加速器によって作り出されたe^+e^-衝突のデータを効率よく収集するため、いくつかの検出器により構成される。以下にそれぞれの構造及び機能についてまとめる。

- ピクセル型シリコン半導体検出器 (PXD) 及び両面シリコンストリップ検出器 (SVD)
 BelleIIで新たに導入される2層構造のPXD(Pixel Detector)と4層構造のSVD(Silicon Vertex Detector)を用いてB中間子及びその他の粒子の崩壊点を測定する。粒子の崩壊点の測定はB中間子のみでなくD中間子やτレプトンの物理の研究を行う上でも非常に重要である。また、これらの検出器はその外側にあるCDCと共に粒子の飛跡を検出し、運動量を精度よく測定する。

- 中央飛跡検出器 (CDC:Central Drift Chamber)
 1.5Teslaの磁場内に設置され、内部を1気圧のHe:C$_2$H$_6$=50:50の混合ガスで満たし、多数の電極ワイヤーが張られる。BelleIIでは、高バックグラウンド対策として、陽極ワイヤーを陰極ワイヤーで閉んだセルと呼ばれる単位を小型化する。荷電粒子が通過する際にガスを電離し、そこから生じた電子がワイヤーまで移動する時間から、粒子の通過位置までの距離を知ることができる。CDCは荷電粒子の飛跡を検出し、ローレンツ力により螺旋を描く軌道の曲率半径から運動量を測定する。さらに、ガス中の電離量(dE/dx)を検出した荷電粒子ごとに測定して粒子識別の情報を与える。

- 粒子識別システム (PID:Particle Identification Detector)
 K中間子とπ中間子を識別するため、既存のBelleでは間接型のチェレンコフカウンターを用いているが、BelleIIでは、バレル部のTime of Propagationカウンター(TOP)、エアロジェルの屈折率によるリングイメージの違いを用いたエンドキャップ部のリングイメージチェレンコフカウンター(A-RICH)を用いることで、識別の効率を高く保ったまま、誤認率を低減する。

- 電磁カロリメーター (ECL:Electromagnetic Calorimeter)
 高エネルギーの光子や電子は物質に入射すると、制動放射や電子対生成により、電磁シャワーを形成し、そのエネルギーのほとんどを物質内で失う。このエネルギー損失を電気信号に変換して、読み出し記録することにより、入射粒子のエネルギーを精度よく測定することが電磁カロリメーターの役割である。既存のBelleでは、Tl添加CsI(CsI(Tl))シンチレーターとPINフォトダイオード読み出しで構成されるカウンターを用いているが、発光時間が長いため、ビームバックグラウンドのパイルアップによるエネルギー分解能の悪化が懸念される。この効果はビームバイブにより近いエンドキャップ部でより顕著である。BelleIIの初期には既存のCsI(Tl)カウンターを用い、エレクトロニクスの改良によりビームバックグラウンドの問題に対
処する。しかし、実験開始後数年以内にエンドキャップ部のシンチレーターを短い発光時間の素材に変更し、光検出器も新たなものに変更することが検討されている。本研究はECLのアップグレードに関するものなので次節でさらに詳しく述べる。

- **K^0_L, μ粒子検出器 (KLM)**

測定器の最も外側に位置するのがK^0_L及びμ粒子検出器である。KLMは高抵抗平行板 (RPC) と厚さ4.7cmの鉄を11層重ねた構造になっている。μ粒子は貫通力に優れているため鉄を突き抜け明確な信号を残す。したがってCDCで検出した荷電粒子の飛跡を外挿したところにKLMの信号があればμ粒子と同定できる。K^0_Lは鉄と衝突し強い相互作用によるハドロンシャワーを形成するので、CDCに飛跡を残さずKLMでハドロンシャワーとして検出される。エンドキャップ部ではビームバックグラウンドの影響が大きくなると予想されるので、RPCに換えてプラスチックシンチレーターにファイバーを通し、高増幅率の半導体光検出器であるPPD(Pixelated Photon Detector)で読み出す方式が検討されている。

図2.2にBelleII測定器の概観を示す。
第3章 カロリメーター

3.1 Belle実験のカロリメーター

Belle実験のカロリメーターの全体像を図3.1に示す。6624本のCsI(Tl) シンチレーターを持つパレル部と、前方および後方にそれぞれ1152本および960本のCsI(Tl) シンチレーターを持つエンドキャップ部からなる。現在のBelle実験では発光量の豊富なCsI(Tl) シンチレーターと、光検出器としてPINフォトダイオードを組み合わせている。1本の結晶のサイズは前面65mm × 55mm、信号の読み出し面は約65mm × 65mm、長さ300mmとなっている。集光効率を上げるため、結晶表面を反射材である厚さ200 μmの白色ゴアテックスシートで覆い、その上を厚さ50 μmのアルミナイズドマイラー（アルミ蒸着厚25 μm、PET樹脂厚25 μm）で包んで静電遮蔽した構成になっている。

このCsI(Tl) カロリメーターでは、1本の結晶に1cm × 2cmの受光面を持つPINフォトダイオード（浜松ホトニックス社製S2744-08）を2つ取り付け、シンチレーター中のエネルギー損失1MeVあたり5000個の電子-正孔対を得ている。一方、カウンター1本あたりのノイズは、前置増幅器（PreAMP）、波形整形回路、QtoTコンバーター、FASTBUS TDCからなる読み出し回路の総合で約1000個の電子、すなわち約0.2MeVに対応する。2006年以降の実験の状況では、エンドキャップ部において、パイルアップに起因するノイズがこれに加わっている兆候があり、カウンター1本あたり0.5MeVから1MeVに達している。

BelleII実験では、パイプライン方式で波形サンプリング読み出しを行うフラッシュADC(FADC)と、デジタル信号処理(DSP)を組み合わせてパイルアップに対処する。しかしこのSuperKEKB加速器が8 × 10^{35} cm^{-2} s^{-1}のルミノシティーを達成する時の条件では、エンドキャップ部においてパイルアップによるノイズの寄与が1MeVから2MeVに達する可能性がある。その場合、数百MeV程度までの比較的低いエネルギーの光子を検出した際のエネルギー分解能に影響があり、$B^+\rightarrow\tau^+\nu_\tau$の検出のように、エネルギーや運動量の未検出分の正確な理解が必要な研究、$D^0\rightarrow D^0\pi^0$再構成のように低エネルギーガ入子の検出が重要な研究の感度が制限される懸念がある。

これにはCsI(Tl)シンチレーターの特性である、発光量は富で発光が終了するまでの減衰時間が長いためパイルアップを起こしやすい、という性質が大きく起因している。したがって、減衰時間が短いシンチレーターの導入が抜本的対策といえる。高エネルギー物理実験の電磁カロリメーターに使用できる大型のブロックを中庸な価格で生産可能で、発光量がSuperKEKB実験の仕様に耐える、という条件を満たす有力な選択肢の一つとして純CsIシンチレーターが考えられている。CsI(Tl)と比較して、純CsIシンチレーターは発光の減衰時間が短く、この点では高輝度化実験に向く。しかし、純CsIシンチレーターは発光量が少ない上に、発光波長がPINフォトダイオードの感度波長より短
第3章 カロリメーター

い。そのため、これまでに試作された BelleII用純 CsI カロリメーターのプロトタイプでは、発光量の不足を補うために数十倍程度のゲインを得られる小数段のファインメッシュ型ダイノードを有する光電子増倍管が用いられた。光電子増倍管の場合は、磁場の有無で特性が大きく異なるため、実機においては磁場の有無を検知するインターロック機能を持った高電圧供給システムを必要とする。また、直径が2インチと大きいので、一つの純 CsI シンチレーターに一つしか取り付けられず、複数個取り付けることによってハードウェアの冗長性を確保することはできない。

一方、APD を用いた場合は特性が磁場の有無に左右されず、数10倍から100倍のゲインが得られる。小型なので一つの CsI 結晶に複数個取り付けて冗長性を確保することも可能である。また、APD の感度が高い発光波長を持つシンチレーターと組み合わせることにより、さらに高性能な検出器を実現できる可能性がある。APD と組み合わせることで性能の向上が期待できるシンチレーターとして、BSO や BGO シンチレーターが挙げられる。BSO シンチレーター、BGO シンチレーターは、ともに発光波長が約480nmで、APD の量子効率は80％以上ある。さらに、密度が高い、すなわち幅射長とモリエール半径が短いので、純 CsI シンチレーターでシャワープロファイルの漏れが小さくなり、エネルギー分解能を向上させ、かつ近接した 2つの γ 線の分離が良くなるので、$B^0 \rightarrow \pi^0 \pi^0$ の再構成、$\tau^\pm \rightarrow \mu^\pm \nu$ の探索感度の改善を実現しうるオプションと言える。

そこで、本研究では APD を純 CsI や BSO、BGO といった高速の無機シンチレーターと組み合わせた電磁カロリメーター用カウンターのプロトタイプを製作し、主として宇宙線を用いてその性能評価を行った結果について報告する。
図 3.1: 現在の Belle の電磁カロリメーター
第4章 半導体検出器

本章では、まず半導体検出器の一般論について述べ、続いてアバランシェ半導体検出器の構造や動作原理、諸特性について述べる。

4.1 半導体検出器の原理

結晶性の物質における電子のエネルギー準位は、電子が束縛状態にある価電子帯と自由に動き回ることのできる伝導帯の2層構造を持ち、それらの間には電子が存在することの出来ない禁制帯が存在する。価電子帯の電子は、光や熱などにより禁制帯幅以上の大きさのエネルギーを受け取ると、禁制帯を越え伝導帯に励起される。励起された電子は外場に反応して運動し、電気伝導に寄与するキャリアとなる。

したがって、半導体を光検出器として使用する上では高い効率で入射した光子を伝導帯に励起した電子を変換し、電流や電荷を効果的に収集することが重要である。そのため、次節に述べるように微量の不純物を添加（ドープ）して、その特性を制御することが広く行われる。

4.1.1 不純物半導体

シリコンやゲルマニウムのような半導体結晶は、個々の原子が規則的に結合して結晶構造を作っている。結合は価電子が抱えており、価電子が隣の原子の価電子と対を作り、共有結合を形成している。これらの物質はすべて4価であり、各々の原子は4つの価電子を持ち、すべて結晶の結合に使われる。3価あるいは5価の原子を異性半導体に加えると、3価の原子は半導体の価電子で満たされない結合を形成し、5価の原子は余分な電子、つまり自由電子を作る。電気的には3価の不純物は正孔を加え、5価の不純物は電子を加える。これらの不純物は、それぞれアクセプター不純物、ドナー不純物と呼ばれる。アクセプター不純物をドープした半導体をp型半導体と呼び、ドナー不純物をドープした半導体をn型半導体と呼ぶ。導入された正孔は正（positive）の電荷を運び、電子は負（negative）のキャリアとなる。

4.1.2 pn接合またはPIN接合した半導体の光検出器への応用

p型半導体とn型半導体を接合した半導体は、一般にはダイオードとして知られている。交流を直流に変換（整流）する目的でダイオードを使用する場合は、p側を高電位、n側を低電位にすると、p側の正孔とn側の電子がともに接合部に向かって移動し、正孔と電子の再結合により電流が流れ続ける。この向きに電圧を印加することを順バイアスを印加す
第4章 半導体検出器

という。光検出器としてダイオードを用いる場合は、それとは逆にp層を低電位、n層を高電位にするように直流電源をつなぐ。これを逆バイアスを印加するという。すると正孔がp層、電子がn層に引き寄せられて、接合部近傍にはキャリアがほとんどいなくなる。この領域を空乏層と呼ぶ。この状態で光子が入射し空乏層で光電効果により電子を伝導帯に励起すると、対になって生成された電子および正孔がそれぞれn層とp層に移動し、電気信号パルスが生じる。また、逆バイアス電圧を印加すると、印加電圧の変化に伴い一定の電流が流れ、これは半導体検出器で一般的に漏れ電流と呼ばれ、空乏層中で熱励起により発生した電子-正孔対の移動によるものである。

PIN接合とは、p型半導体とn型半導体の間に高抵抗の真性半導体(i型半導体)を挟んだ構造をしている。i層をもうけることでp層およびn層にかかる電場が少なくなり、漏れ電流を小さくすることができる。また、i層はもともとキャリア密度が少ないため、空乏層としてはたくらく領域をpn接合のものより大きくすることができる。そのためPIN接合で作られたPINフォトダイオードは印可電圧に応じて高い出力電流まで直線性をもち、低漏れ電流で高耐圧という特性を実現できる。

PINフォトダイオード等では、得られる電子-正孔対の数は、入射して光電効果を起こした光子の数と同数であり、光電子増倍管のように、信号を増幅する機能はない。したがって、チェレンコフ放射のように微弱な光を検出することは不可能であり、光量の多いシンチレーターでないと信号とノイズの分離が十分にできない。このような弱点をお託ずするため、近年は固体内で電子なだれ(アバランシェ)を形成させることにより信号を増幅できる、アバランシェ半導体光検出器が開発・使用されるようになってきた。次節以降に、その代表例であるアバランシェフォトダイオード(APD)について詳しく述べる。
4.2 アバランシェフォトダイオード (APD)

APD は、シリコン半導体の内部に強い電場勾配を作ることで、増幅機能を持たせた半導体素子である。光や放射線によって生成された電子あるいは正孔が、APD 内部で電場の強い領域に達すると加速され、アバランシェ（電子なだれ）を形成することにより信号を増幅する。信号を検出器内部で増幅させると回路内で発生するノイズが相対的に小さくなるため、通常のフォトダイオードよりもはるかに優れたシグナル・ノイズ比 (S/N 比:ノイズに対する信号の比) が得られる。APD は高い増幅率を持つ光電子増倍管 (PMT) と、量子効率が高いフォトダイオード (PD) の両方の長所を兼ね備えたデバイスと言える (表 4.1)。

<table>
<thead>
<tr>
<th>表 4.1: 光検出器の比較</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMT</td>
</tr>
<tr>
<td>量子効率</td>
</tr>
<tr>
<td>増幅機能</td>
</tr>
<tr>
<td>印可電圧</td>
</tr>
<tr>
<td>容量</td>
</tr>
<tr>
<td>磁場の影響</td>
</tr>
<tr>
<td>構造</td>
</tr>
<tr>
<td>消費電力</td>
</tr>
</tbody>
</table>

本研究で使用する APD は、プロポーショナルモードで動作するものである。プロポーショナルモードでは、電子なだれ降伏が起きるブレイクダウン電圧以下で電圧でアバランシェを作るので、増幅率は数 10〜100 倍程度となり、APD へ入射した光量に比例した電荷量の出力を示す。

APD にはその内部構造の違いからいくつかの種類が存在し、代表的なものとしてはベベルエッジ型、リーチスルー型、リバース型の 3 種類が挙げられる [9]。その中でもここでは特にリバース型について取り上げる。

リバース型 APD はシンチレーション光の検出用に特化して開発されたもので、表面から 5 \(\mu \) m 程度の深さに狭い増幅領域を持つ。一般的なシンチレーターの出力波長は 550nm よりも短く、この波長領域の光子は表面から 1〜3 \(\mu \) m の領域で光電効果を起こすため、ほぼ全ての光が増幅領域の手前で電子に変換されて増幅される。増幅領域を表面側に配置することにより、デバイス内部で熱遮蔽が起きると、増幅領域に向かってドリフトするのは正孔となる。正孔は電子よりも易動度が小さいため、増幅領域で作られるアバランシェは小さい。したがって、他のタイプの APD に比べて漏れ電流を低く抑えることができる。また空乏層の厚さが 40 \(\mu \) m 程度と薄く、400V 程度の低い電圧で十分な増幅率が得られる。

本実験で用いた APD は浜松ホトニクス社製の S8664-1010 型、S8664-55 型、S8664-1189(X) 型で、プロポーショナルモードで動作するリバース型 APD である。S8664-1010 型 APD と S8664-55 型 APD は、純 CsI シンチレーターの発光波長である 300nm 付近では約 50%，BSO、BGO シンチレーターの発光波長である 480nm では約 80% の量子効率
第４章 半導体検出器

を示す。S8664-1010 型と S8664-55 型の仕様を図 4.3 にまとめ、量子効率の波長依存性を図 4.4 に示す。S8664-1189(X) 型 APD は、既存の S8664 型に比べて、310nm 付近の量子効率の改善を図った APD である。受光面の面積は 1cm × 1cm と 5mm × 5mm の 2 種類がある。

図 4.1: APD の 3 つの異なる内部構造。（左）ベベル・エッジ型（中央）リーチ・スルー型（右）リバース型。（J. Kataoka et al., Nucl. Instrum. Meth. A 515（2005）671-679 より抜粋）
図 4.2: APD （左）S8664-1010 型、（右）S8664-55 型

図 4.3: APD S8664-55 型、S8664-1010 型の仕様 (浜松ホトニクス社カタログより抜粋)

図 4.4: APD の量子効率 (浜松ホトニクス社カタログより抜粋)
第5章 無機結晶シンチレーター

5.1 シンチレーター

シンチレーターとは、荷電粒子が通過したときに蛍光を発する物質のことで、このとき発生する光をシンチレーション光とよぶ。BelleII実験のようなルミノシティフロンティアの電子・陽電子衝突実験における電磁カロリメーターでは、高いエネルギー分解能を達成するために無機結晶シンチレーターを用いた全吸収型とする必要がある。シンチレーターに課される条件として、発光の減衰時間が短く、かつそのシンチレーション光の波長が光検出器の感度波長領域であることが求められる。シンチレーターの材料は、無機結晶、有機固体などがある。また液体、気体のものがある。

5.2 無機結晶シンチレーター

無機結晶シンチレーターは、荷電粒子が通過すると電子をイオン化し、価電子帯から伝導帯へと励起させる。その励起された電子が伝導帯から価電子帯へと戻るとときに、シンチレーション光として光を発する。ただし、純結晶中で電子が光子を放出して価電子帯へ戻る確率は低い。そのため不純物を加えることで、エネルギー順位の構造を少し変化させ、発光効率を高める場合が多い。無機結晶シンチレーターは原子番号の大きい元素で製作することが可能なので、放射長が短く、γ線検出に適している。また、無機結晶シンチレーターは有機シンチレーターに比べ発光量が多く、エネルギー分解能が優れている。一方で発光の減衰時間が有機シンチレーターより長く、時間応答性が悪い。

本研究では、純CsIシンチレーター、BGOシンチレーター、BSOシンチレーターを用いた。以下に各シンチレーターの特徴をまとめる。

- 純CsIシンチレーター

 CsI（ヨウ化セシウム）結晶は無色透明な結晶で、添加する材料により、CsI(Tl)、CsI(Na)、純CsIの三種類に分類される。純CsIシンチレーターは、他のCsIシンチレーターと比べて潮解性が低く、310nm付近を発光波長のピークとする早い成分(10ns)と、発光波長が350～600nm近辺の遅い成分(100～4000ns)により発光する。

- BGOシンチレーター

 BGOシンチレーターは、Bi₄Ge₃O₁₂の組成をもつ立方晶である。発光量はNaI(Tl)の約15～20％、発光時間は約300ns、発光波長は480nmがピークである。強度がおり加工しやすく、また潮解性が無いので扱いやすい。
第5章 無機結晶シンチレーター

- BSO シンチレーター

BSO シンチレーターは Bi₄Si₃O₁₂ の組成を持つ立方晶である。BGO の、Ge(ゲルマニウム) を同じ 4 値の元素である Si(シリコン) に置換したものである。そのため、基本的な性質は BGO とよく似ている。発光量は純 CsI と同程度で、発光時間は約 100ns、発光波長のピークが 480nm である。BGO と同じく、潮解性がなく扱いやすい。

表5.1 にこれらのシンチレーターのパラメーターを示す。

<table>
<thead>
<tr>
<th></th>
<th>CsI(Tl)</th>
<th>pureCsI</th>
<th>BGO</th>
<th>BSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>密度 (g/cm³)</td>
<td>4.51</td>
<td>4.51</td>
<td>7.13</td>
<td>6.80</td>
</tr>
<tr>
<td>発光量 (NaI(Tl)=100)</td>
<td>165</td>
<td>4.7</td>
<td>21</td>
<td>3〜4</td>
</tr>
<tr>
<td>質衰時間 (nsec)</td>
<td>1300</td>
<td>10</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td>発光波長 (nm)</td>
<td>560</td>
<td>310</td>
<td>480</td>
<td>480</td>
</tr>
<tr>
<td>輻射長 (cm)</td>
<td>1.86</td>
<td>1.86</td>
<td>1.12</td>
<td>1.15</td>
</tr>
<tr>
<td>モリエール半径 (cm)</td>
<td>3.57</td>
<td>3.57</td>
<td>2.23</td>
<td>2.63</td>
</tr>
<tr>
<td>潮解性</td>
<td>若干有</td>
<td>若干有</td>
<td>無</td>
<td>無</td>
</tr>
</tbody>
</table>
第6章 宇宙線を用いたノイズレベルの測定

この章では、APDとシンチレーターを用いて装置を製作し、カロリメーター1本のノイズテストを行った結果について述べる。

6.1 APDと無機結晶シンチレーターのオプション

BelleII測定器のエンドキャップカロリメーターをアップグレードする際に使用する無機シンチレーターとしては、純CsIを中心に検討が進められてきた。純CsIシンチレーターは、発光の減衰時間が10nsecと、CsI(Tl)シンチレーターの1300nsecに比べて短く、SuperKEKB加速器のピームバックグラウンドによるパルスアップの影響は無視できる。また、チョコレートスキー法による大型結晶の生産技術が確立しており、無機結晶シンチレーターの中では、大型実験でも調達可能な価格である。しかし、純CsIシンチレーターは発光量が少ない上、発光波長も300nm程度とCsI(Tl)シンチレーターよりも短いため、信号増幅機能がなく発光波長が400nm以下の光に対して感度がないPINフォトダイオードは使用できない。この欠点を信号増幅機能のあるAPDが克服可能であるか検証した。

発光の減衰時間が短いシンチレーターとして、他にBGOシンチレーターやBSOシンチレーターが挙げられる。BGOシンチレーターは発光の減衰時間が300ns、BSOシンチレーターは100nsと純CsIほど短くないが、純CsIシンチレーターにはない特徴をもつ。波長はいずれも480nmとAPDが高い量子効率を持つ領域にある。また、密度が高く、幅射長（X₀）とモリエール半径（Rₘ）が短い。CsIシンチレーターはX₀=1.86cm、Rₘ=3.57cmであるのに対し、BSOシンチレーターはX₀=1.15cm、Rₘ=2.63cm、BGOシンチレーターはX₀=1.12cm、Rₘ=2.23cmである。したがって、BSOシンチレーターはBSOシンチレーターで、電磁シャワーガ形される領域の大きさが狭くなる。小さなモリエール半径は、数GeVの高エネルギーのπ⁰の崩壊で生じる近接した2つのγの分離を向上する。特にBGOシンチレーターは20X₀に対応する長さ22.5cmに及ぶ大型結晶を製造する技術が確立されているので、既存のCsI(Tl)シンチレーターの長さ16X₀に対し、シャワーベルを1/2近く低減し、その統計的ふらつきを抑制してエネルギー分解能を優位に持つことが期待できる。BGOシンチレーターの発光量はCsI(Tl)シンチレーターの約1/8であり、APDの増幅率で補うことができ期待できるので、ノイズレベルを低く抑え、低エネルギーのγに対するエネルギー分解能も改良できる可能性がある。

APDを純CsIシンチレーター、BSOシンチレーター、BGOシンチレーターの読み出しに用いた場合の宇宙線テストの測定方法を述べ、ノイズレベルを測定した結果について述べる。既存のCsI(Tl)シンチレーターのPINフォトダイオード読み出しを行うカウンターでは、ノイズレベルをエネルギーに換算した値（Equivalent noise energy,以下E.N.E.と
略す）は0.2MeVであり、これと同程度、またはより低いノイズレベルを実現する解の有無を調べた。

6.2 シンチレーションカウンターと読み出しエレクトロニクスの構成

純 CsI シンチレーターは、既存の Belle 検出器の電磁カロリメーターに使用されている CsI(Tl) と同じ、断面が約 5.5cm × 5.5cm、長さ 30cm のサイズのものを使用した。また、BSO シンチレーターは、断面が 2.2cm × 2.2cm、長さ 18cm のサイズのもの、BGO シンチレーターは断面が 4.0cm × 4.0cm、長さ 22.5cm のサイズのものを用いた。いずれも読み出す光量を増やすために 200 μm 厚の白色ゴアテックスシートで包んだ。さらに、その上からアルミノイズドマイラーまたはアルミホイルで覆って、これを接地することにより静電遮蔽してノイズの混入を防止している。APD、バイアス電圧の保護抵抗、バイパスコンデンサーと結合コンデンサーはアルミボックス内に固定し、このアルミボックスを結晶シンチレーターに取りつける。この APD とプリアンプを取めたアルミボックスを純 CsI シンチレーターに取りつけた様子を図 6.1 に示す。測定のセットアップ全体図を図 6.2 に示す。結晶シンチレーターとアルミボックスは 25°C に保った恒温槽中に設置し、APD に gain=50 となる電圧（以下 V50 とする）を印加する。試験対象とする結晶のシンチレーターの上下にトリガーカウンターを配置して、コインシデンスをとることにより、天地方向に宇宙線が通過した事象のデータを収集する。トリガーカウンターの有感部分は幅 2cm、長さ 3cm と比較的小さいので、トリガーされた宇宙線は試験対象の結晶シンチレーターを横方向に通過する。シンチレーターを通過する際のエネルギー損失から、測定したノイズレベルをエネルギー換算して E.N.E とするための係数が得られる。

図 6.1: pureCsI と APD を内蔵したアルミボックスを接続した時の様子
第6章 宇宙線を用いたノイズレベルの測定

図6.2: 測定のセットアップ

ブリアンプは1nFの結合コンデンサーを介してAPDの信号を入力端子に受ける。また、テストパルスの入力コンデンサとして2pFを装備する。ブリアンプが出力した信号は、シェーバーとフラッシュADC(FADC)を内蔵したCAMAC規格のシェーバーFADCモジュールで受けて数値化される。

ブリアンプからの信号を受けるシェーバーは、純CsIシチレーターおよびBSOシチレーターにAPDを取りつけた測定では、これらのシチレーターの発光時間が短いことから、30nsの時定数を持ったものを使用した。またBSOシチレーターとAPDを組み合わせた場合は、BGOシチレーターの発光減衰時間を考慮して、時定数を純CsIシチレーターの時と同じ30nsの場合に加えて100nsにした場合について測定を行う。

テストパルス入力で得られた波高分布の幅をノイズレベルの絶対値とし、宇宙線データで得られた波高分布と比較することにより、ノイズがエネルギー換算でいくらになるか求めることができる。前述の通り、その値がE.N.E.(Equivalent Noise Energy)である。

6.3 ノイズの測定

まず、BSOシチレーターにAPDをつけた時の測定を例に挙げ、測定方法を述べる。その後、純CsIシチレーターおよびBGOシチレーターを用いた場合の結果について述べる。
6.3.1 BSO シンチレーターの APD 読み出しにおける測定

本実験では，1cm × 1cm APD，5mm × 5mm APD それぞれ5 個のサンプルを用いて測定した。BSO シンチレーターに APD とプリアンプを取り付けた状態でノイズレベルを測定するため，テストパルスを送ってデータを取集した。テストパルスを用いて得られた波形1 イベントのデータの例を図6.3に示す。

![図6.3: テストパルス1イベントのデータ](image-url)

図6.3: テストパルス1イベントのデータ

図中に示した線はこの波形から波高を得るためにフィットを行ったものである。波形を時間t の関数で表すには式6.1の f(t) を用いた。ここでのn はシェーバーの回路構成で決めまり，n = 5 に固定した。a, t0, τ はそれぞれ波高，パルスのスタート時刻，時定数を表し，この3つがフィットで得るパラメーターである。なお，FADC のベデスタルはゼロではないため，フィットの際はベデスタルを定数のパラメーターとしてf(t) に加えた関数を用いた。

24
第 6 章 宇宙線を用いたノイズレベルの測定

\[f(t) = \frac{a}{n^n \sqrt{2\pi}} \int_{t_0}^{t} e^{-\frac{(t-t_0)^2}{2\sigma^2}} \, dt \quad (6.1) \]

1cm × 1cm APD1 個を用いて収集した 500 イベントの波高 \(a \) の分布を図 6.4 に示す。波高分布はガウス分布に従っており、この分布をフィットした結果、ノイズレベル \(\sigma \) は 4.722 FADC カウントとなった。このようにして 5mm × 5mm APD と 1cm × 1cm APD の複数の個体について測定を繰り返した結果を図 6.5 に示す。

図 6.4: 5mm × 5mm APD を用いて、\(V_{50} \) の逆バイアスを印可した際のテストパルス 500 イベントの波高分布

測定の結果、5mm × 5mm APD のノイズレベルは 4.7 FADC カウント、1cm × 1cm APD のノイズレベルは 8.1 FADC カウントで、試験した APD のサンプル間で顕著な個体差は認められなかった。
図 6.5: ノイズレベル測定結果
次に宇宙線を用いて得られた結果を示す。波形1イベントのデータの例は図6.8である。テストパルスを用いた測定と同様に、FADCのペデスタルを定数として信号波形を式(6.1)でフィットした。波高aの500イベントの分布を図6.7に示す。

図6.6: 宇宙線1イベントのデータ
図 6.7: 5mm × 5mm APD を用いて、V_{50} の逆バイアスを印可した際の宇宙線 500 イベントの波高分布

一般的に、物質中の荷電粒子が通過する際のエネルギー分布は高い方にテールを持つランダウ分布になるため、それに対応して Logarithmic Gaussian（式 6.2）で波高分布をフィッ
トした。

\[
 f(t) = \frac{N}{(e-x)\sigma_0\sqrt{2\pi}} \exp\left(-\frac{1}{2} \frac{1}{\sigma_0} \ln\left(\frac{e-x}{e - \mu e^\sigma_0}\right)\right) \tag{6.2}
\]

ここで

\[
 \epsilon = \frac{\sigma}{a} + \mu, \ y = a\sqrt{2\ln 2}, \sigma_0 = \frac{\ln(y + \sqrt{1 + y^2})}{2\ln 2} \tag{6.3}
\]
第6章 宇宙線を用いたノイズレベルの測定

また、フィッティングパラメーターは次の4つである。

- N: 規格化定数
- μ: 平均値
- σ: 標準偏差
- α: 非対称度

ここで、パラメーター μ の値が BSO シンチレーターの波高 h となり、図6.7 に示した測定では 99.03 FADC カウントとなった。

この測定を 5mm × 5mm APD と 1cm × 1cm APD について繰り返した結果を図6.8 に示す。
図 6.8: 波高測定結果

測定の結果、5mm × 5mm APD の波高は 100 FADC カウント、1cm × 1cm APD の波高は 200 FADC カウントとなった。ノイズレベルと波高の測定結果を見ると、主にデバイスの静電容量によって決まるノイズレベルよりも、量子効率および増幅率が寄与する波高の方が APD の各サンプルごとの個体差は大きくでているが、5 個の平均値を基準として±5%以内に分布している。

E.N.E. は、σとμを用いて式 (6.4) で求めることができる。ここで ΔE は宇宙線のμ粒子が結中を通過する際のエネルギー損失である。
第6章 宇宙線を用いたノイズレベルの測定

\[E.N.E = \Delta E \times \frac{S}{h} \quad (6.4) \]

本実験では、断面が2.2cm \(\times \) 2.2cm、長さ18cmのBSOシチレーターを用いたので、エネルギー損失 \(\Delta E \) が19MeVである。よってAPDをBSOシチレーターの読み出しに用いた場合、E.N.E.は5mm \(\times \) 5mm APDでは0.89MeV、1cm \(\times \) 1cm APDでは0.77MeVとなった。ここで5mm \(\times \) 5mm APDは1cm \(\times \) 1cm APDと比べ、受光部の面積が約1/4であるにも関わらず、結果として得られるE.N.E.の差が比較的小さいのは、デバイスの端子間容量が5mm \(\times \) 5mm APDは約80pFであるのに対して1cm \(\times \) 1cm APDは約270pF大いため、シェーバーの時定数を30nsと短くしていると関連して、容量に比例してノイズが大きくなることに原因がある。

等しい受光面積で比較するため、5mm \(\times \) 5mm APDを4個つけた場合、得られる波高は4倍、ノイズレベルは2倍になると考えると、E.N.E.=0.45MeVと見積もることができるように、かつてコストの増加が許容される範囲ならば、受光面の合計が同じ1cm \(\times \) 1cm APD1個を5mm \(\times \) 5mm APD4個のアレイで置換し、それぞれの信号出力を独立に読み出し複数のプリアンプを内蔵したカスタム集積回路（ASIC）と組み合わせることが性能改善をもたらすことを示唆している。

6.3.2 純CsIシチレーターのAPD読み出しにおける測定結果

純CsIシチレーターは、発光波長が310nmと短いため、APDを含む半導体光検出器の量子効率は一般的に高くなりない。このことは、降伏電圧から15V低いところまで印可電圧上げて1cm \(\times \) 1cmサイズのS8664-1010型APDで読み出してもE.N.E.が2MeVに達するという報告[10]に現れている。

一方、次世代PETのγ線検出器向けに開発されたPr:LuAGと呼ばれる結晶シチレーター[11]をAPDで読み出す場合のS/N比を企図して仕様を変更したAPDが作られた記録がある[12]。Pr:LuAGの発光量は純CsIの10倍と格段に多いが、発光波長は同じ310nmである。そこで、浜松ホトニクス社に310nmの領域での量子効率の改善を図った変更品の作成を依頼した。これをS8664-1189(X)型と称する。カタログ品のS8664型から変更点は、

1. 受光面の窓材をエポキシ樹脂によるモールドからシリコンレジンに変更
2. シリコンウエアのプロセス時にデバイス表面の保護膜の厚みを調節し、310nmでの反射を防ぐ

の2点である。そこで、カタログ品1cm \(\times \) 1cmのS8664-1010型APDと、1cm \(\times \) 1cmのS8664-1189(X)型APDのうちNo.2と称するものを用いて宇宙線による評価試験を行った。

印可電圧は、\(V_{50} - 5 \), \(V_{50} \), \(V_{50} + 5 \), \(V_{50} + 10 \), \(V_{50} + 15 \), \(V_{50} + 20 \)の計6点で測定を行った。

得られた波高分布を図6.9に示す。
図 6.9: (上段) カタログ品 APD、(下段) 変更品 APD の波高分布。 (左) テストパルス (右) 宇宙線の結果。印可電圧は V_{50} である。
第6章 宇宙線を用いたノイズレベルの測定

測定結果を図6.10にまとめめる。

図6.10: 純 CsI シンチレーターでの測定結果

測定の結果、変更品であるS8664-1189(X)型APDによる改善は見られず、カタログ品S8664-1010型APDの60％～75％程度の波高となった。変更品S8664-1189(X)型と、カタログ品S8664-1010型APDとの比較については第8章でも述べる。

6.3.3 BGO シンチレーターの APD 読み出しにおける測定結果

BGO シンチレーターは、長さ20X0(22.5cm)に達する大型結晶の技術が確立されており、発光波長が480nmとAPDとの相性がよく、純CsIシンチレーターやBSOシンチレーターの約5倍の光を発するという特徴をもつ。しかし発光減衰時間が300nmとBSOシンチレーターに対して3倍長いため、BelleII実験のエンドキャップカロリメーターに用いる素材として顧みられることができなかった。

これまでのところ、素粒子・原子核実験でBGOシンチレーターのAPD読み出しを採用した例はない。その理由はBGOシンチレーターが1970年代に開発されて1980年代にL3実験のパレル部電磁カロリメーター、TOPAZ実験の前方カロリメーターとコライダー実験での採用が相次いだ後、大光量を求めたCsI(Tl)シンチレーターや、高密度かつ数nsと短い発光減衰時間を特徴とするPWOシンチレーターなどに開発・採用の力点が移ったことに加えて、この時期になってようやくS8664型に代表される大面積のリバース型APDの供給が始まり、BGOシンチレーターとAPD双方の開発のタイミングが合っていなかった、という歴史的な事情によっている。

300nsという発光減衰時間はCsI(Tl)の1/4であり、この減衰時間が不可避の強い性能上の制限とならない限り、BGOシンチレーターのAPD読み出しは高分解能カロリメーターを実現する解になり得る。そこで本実験では1cm×1cmのカタログ品S8664-1010型
第6章 宇宙線を用いたノイズレベルの測定

APDを用いて宇宙線による評価試験を行った。シェーサーの時定数は、BGO シンチレーターの発光減衰時間を考慮し30nsと100nsの2通りで測定を行った。APDの印可電圧はV_{50}とした。得られた波高分布を図6.11に示す。

図6.11: BGO シンチレーターでの測定結果。上段：時定数100ns、下段：時定数30nsでの波高分布。左）テストパルス（右）宇宙線の結果。印可電圧はV_{50}である。

時定数が30nsでは波高が256FADCカウントとそれほど大きくないことに対し、時定数が100nsでは1195FADCカウントとBGO シンチレーター本来の豊富な発光量に対応
第6章 宇宙線を用いたノイズレベルの測定

した大きな波高が得られた。このことから、読み出し回路設計上の常識とされていたことではあるが、シンチレーターの発光減衰時間に合致する範囲のシェーバー時定数を選択することが重要であることを確認した。時定数100nsで収集したテストパルスの波高分布の幅σ=7.4 FADCカウントであり、宇宙線が4cmの厚さのBGOシンチレーターを通過する時のエネルギー損失が36MeVであることからE.N.E.=0.22MeVと得た。既存のBelle実験のCsI(Tl)カウンターのE.N.E.は0.2MeVであることから、遜色ない結果といえる。この値を元に、BGOシンチレーターをAPD読み出しした場合に期待されるエネルギー分解能を見積もるために、Geant4ソフトウェアを用いたモンテカルロシミュレーション研究を行うことにした。
第7章 Geant4 シミュレーション

前章までで記述したように、BGO シンチレーターの APD 読み出しは、既存の Belle の CsI(Tl) シンチレーターの PIN フォトダイオード読み出しに比肩しうる低ノイズのカウンターを実現することができる。この知見に基づき、長さ 20X0 の大型結晶が入手可能という BGO シンチレーターの特徴を活かした電磁カロリメーターがどれだけの性能を発揮するのかを Geant4 シミュレーションで評価した。

7.1 Geant4

Geant4[13] とは CERN を中心とした国際共同チームによって開発されたソフトウェアツールキットで、陽子や電子などの粒子が物質中でおこす反応を正確にシミュレートすることを目指している。C++言語で作成されており、電磁相互作用と強い相互作用の過程計算に加え、測定器を構成する物質やその形状を記述するための様々なクラスを含む。高エネルギー物理学や原子核実験などをはじめ放射線医学、宇宙工学などの分野のシミュレーションにも応用されている。

図 7.1 は、40mm × 40mm × 230mm の BGO シンチレーターを 5 × 5 のマトリックスに積んだものに 500MeV の γ 線を入射した事象を視覚化したものである。電磁シャワー中の電子・陽電子および γ 線が示されている。

図 7.1: 5 × 5 マトリックスの BGO シンチレーターに 500MeV の γ を入射した事象の例
7.2 BelleのカロリメーターとBGO+APDカロリメーターのエネルギー分解能の比較

BGO シンチレーターの導入により、CsI(Tl) シンチレーターに対するエネルギー分解能の改善を図るため、Geant4 を用いてシミュレーションを行った。本シミュレーションでは、BGO シンチレーターは 40mm × 40mm × 230mm とした。このブロック 25 本を 5 × 5 のマトリックスに積み重ねたカロリメーターを定義し、その中心にシンチレーターの軸と平行にγ線を 1000 事象入射させるシミュレーションを、100MeV、200MeV、500MeV、1GeV、2GeV の 5 つのエネルギーで行った。これによりシンチレーターのブロックごとのエネルギー損失を求めた。

エネルギー損失を求めた上でノイズを加え、25 本のシンチレーターで検出したエネルギーの総和を取ることにより再構成した入射γ線のエネルギー分布を図 7.2 に示す。このとき、ノイズは 1cm × 1cm APD の宇宙線テストで得た E.N.E. を用いた。APD1 個で読み出しを行う場合は 0.22MeV、4 個で読み出しを行う場合は 0.11MeV と見積もり、エネルギー分布のフィットは宇宙線テストの時と同様に、Logarithmic Gaussian (式 6.2) を用いて行った。
図 7.2: γ 線を BGO シンチレーターに入射した際のエネルギー分布。左)APD1 個で読み出した場合、(右)APD4 個で読み出した場合。上段)100MeV の γ 入射時、(中段)500MeV の γ 線入射時、(下段)2GeV の γ 入射時。
次に、既存のBelleのCsI(Tl) カウンターを使用するBelleII検出器でシミュレーションを行った。BelleII検出器にγ線を10000事象入射させるシミュレーションを、100MeV、200MeV、500MeV、1GeV、2GeVの5つのエネルギーで行った。得られたエネルギー分布を図7.3に示す。

図7.3: γ線を既存のBelleのCsI(Tl)カウンターに入射した際のエネルギー分布。(上段)100MeVのγ入射時、(中段)500MeVのγ線入射時、(下段)2GeVのγ入射時。
シミュレーションの結果を図 7.4 と図 7.5 にまとめると、図 7.4 はカロリメーターで検出したエネルギーと入射 \(\gamma \) 線のエネルギーの比をとり、その分布のピークを入射 \(\gamma \) 線のエネルギーの関数として示したものである。長さ 30cm の CsI(Tl) シンチレーターは 16\(X_0 \)に対応するのに対し、長さ 23cm の BGO シンチレーターは 20\(X_0 \)なので、シャワーの漏れが BGO シンチレーターの場合では 1/3 以下となっている。図 7.5 はエネルギー分解能を入射 \(\gamma \) のエネルギーの関数として示したものである。エネルギー分解能は Logarithmic Gaussian でフィットした際の \(\sigma \) とピークの値の比で求めた。BGO シンチレーターを APD で読み出した場合、APD1 個で読み出すよりも 4 個で読み出す方がノイズを小さく抑えられるので、チャンネル当たりのノイズの寄与が大きい数 100MeV の \(\gamma \) 線検出に対してエネルギー分解能の改善が期待できることが分かった。また既存の Belle の CsI(Tl) カウンターと比較すると、BGO シンチレーターを APD で読み出した場合はエネルギー分解能が 3〜4 倍改善することが分かった。
図 7.4: $E_{\text{calor}}/E_{\gamma}$ を E_{γ} の関数で示す。ここで E_{calor} はカロリメーター中で検出したエネルギービークに対応するエネルギー、E_{γ} は入射 γ のエネルギーである。

図 7.5: エネルギー分解能 (σ/E_{γ}) を E_{γ} の関数で示す。ここで σ とは E_{γ} は Logarithmic Gaussian でフィットした際の幅とピーク値、E_{γ} は入射 γ のエネルギーである。
第8章 波長可変レーザーを用いたAPDの感度測定

純CsIシンチレーターにAPDを取り付けた宇宙線テストでは、変換品のS8664-1189(X)型APDはカタログ品S8664-1010型APDと比較して感度が低いという評価結果となったため、波長を制御可能な光源として、高エネルギー加速器研究機構の測定器開発室に有する波長可変レーザーを用いて、APDの感度の波長依存の測定をした結果を示す。

8.1 波長可変レーザーの原理

波長可変レーザーの一種であるOPOレーザーは、光パラメトリック発振（Optical Parametric Oscillation）によるコヒーレント光源である。一般的に、可視光領域から赤外領域まで、広い波長領域で連続波長可変の光源として実用化されている。

光パラメトリック発振とは、非線形結晶の非線形効果を利用して、入力レーザー光の周波数ωPを分割し、2周波数ω8、ωτ(ωτ = ω8 + ωP)のコヒーレント光を発生させる波長変換法である。2枚のミラー間に非線形結晶を配置し、レーザー光を入射すると結晶からはパラメトリック効果で発生した2つの波長の光が放出され、この2波長のうち1波長または2波長に対して共振器ミラーに適当な反射率を持たせると、それぞれの波長で発振する。このとき同時に放出される短波長および長波長の光をそれぞれシグナル光、アイドラ光と呼ぶ。波長変換の様子を図8.1に示す。これらの光の波長は結晶角度を変えることにより、発振する波長を制御することができる。

![図8.1: 波長変換の様子](image)

8.2 測定方法

APD周辺の回路図を図8.2に、セットアップを図8.3に示す。APDをステージに取り付けた様子を図8.4に示す。アウトプットレジスターからレーザーにトリガーを送り、レー
第 8 章 波長可変レーザーを用いた APD の感度測定

レーザーのトリガーアウトプット信号でゲート信号を作り、ADC のゲートへ入れる。APD の信号は 1nF の結合コンデンサーを通じてプリアンプの入力端子に入る。プリアンプが出力した信号は CAMAC モジュール内の電荷積分型 ADC で受けて数値化し、収集した。プリアンプは浜松ホトニクス社製の H3753 型を用いた。レーザーの光は ND フィルターで適当な量に調節した。同時に、レーザー 1 パルス毎のエネルギーをパワーメーターで測定した。
第 8 章 波長可変レーザーを用いた APD の感度測定

図 8.3: セットアップ

図 8.4: APD をステージに取り付けた様子
第8章 波長可変レーザーを用いたAPDの感度測定

測定は、1cm × 1cmのカタログ品APD(S8664-1010)2個、5mm × 5mmのカタログ品APD(S8664-55)2個、1cm × 1cmの変更品APD2個、5mm × 5mmの変更品APD2 個の計8個のサンプルを用いた。測定に用いたAPDの型、受光面の面積、シリアル番号を表8.1に示す。APDの印可電圧は V_{50}、波長は310nm、355nm、410nm、460nm、510nm、560nmの計6点で測定を行った。

表8.1(251,437),(745,493)

<table>
<thead>
<tr>
<th>型番号</th>
<th>受光面の面積</th>
<th>シリアルNo</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8664-1010</td>
<td>1cm × 1cm</td>
<td>AA0707</td>
</tr>
<tr>
<td>S8664-1010</td>
<td>1cm × 1cm</td>
<td>AA4304</td>
</tr>
<tr>
<td>S8664-1189(X)</td>
<td>1cm × 1cm</td>
<td>No1</td>
</tr>
<tr>
<td>S8664-1189(X)</td>
<td>1cm × 1cm</td>
<td>No2</td>
</tr>
<tr>
<td>S8664-55</td>
<td>5mm × 5mm</td>
<td>AA3253</td>
</tr>
<tr>
<td>S8664-55</td>
<td>5mm × 5mm</td>
<td>AA3248</td>
</tr>
<tr>
<td>S8664-1189(X)</td>
<td>5mm × 5mm</td>
<td>No1</td>
</tr>
<tr>
<td>S8664-1189(X)</td>
<td>5mm × 5mm</td>
<td>No2</td>
</tr>
</tbody>
</table>

8.3 測定結果

カタログ品の1cm × 1cm APD AA0707のベデスタルの分布を図8.5に、波長510nmのレーザーを当てて得られたADC値からベデスタルを引いたものの分布を図8.6に、エネルギーの分布を図8.7に、エネルギーの時間変化を図8.8に示す。
第 8 章 波長可変レーザーを用いた APD の感度測定

図 8.5: ベデスタル

図 8.6: ADC 分布
第 8 章 波長可変レーザーを用いた APD の感度測定

図 8.7: レーザー 1 パルス当たりのエネルギーの分布

図 8.8: レーザー 1 パルス当たりのエネルギーの時間変化
図8.8を見ると、レーザー1パルス当たりのエネルギーはばらつきがあることがわかる。そこでイベント毎にADCをレーザーのエネルギーで割り、補正した分布を図8.9に示す。この分布から得られた中心値をAPDの感度とする。各APDの感度を、1cm × 1cm APDはAA0707で規格化、5mm × 5mm APDはAA3253で規格化して得られた感度比を図8.10、図8.11にまとめる。

図8.9: イベント毎にADCをpowerで割ったもののが分布

図8.10: 1cm × 1cmAPDの感度比。AA0707を1とした。
図 8.11: 5mm × 5mm APD の感度比。AA3253 を 1 とした。

測定結果より、6 章の純 CsI シンチレーターの宇宙線テストに用いた S8664-1189(X) 型の 1cm × 1cm APD No2 は、比較した APD の中でも感度が低い個体である可能性がある。またカタログ品 APD と変更品 APD との間には、全波長にわたり感度に顕著な差は見られなかった。
第9章 まとめ

本研究では、APDを純CsIシンチレーター、BSOシンチレーター、BGOシンチレーターと組み合わせた電磁カロリメーター用シンチレーションカウンターのプロトタイプの性能テストを行った。

BSOシンチレーターを用いた測定では、光検出器として浜松ホトニクス社製S8664-55型APDを1個用いた場合、E.N.E.=0.89MeVという結果を得た。S8664-1010型APDを1個用いた場合は、E.N.E.=0.77MeVという結果を得た。同じ受光面積でS8664-55型APDとS8664-1010型APDを比べるために、S8664-55型APDを4個用いた場合のE.N.E.を見積もると、E.N.E.=0.45MeVとなりS8664-1010型APD1個で読み出す場合よりもE.N.E.を小さくできる可能性があることがわかった。

純CsIシンチレーターを用いた測定では、カタログ品S8664-1010型APDと変更品S8664-1189(X)型APDの比較を行った。1cm×1cm変更品S8664-1189(X)No2に関しては、波高の値はカタログ品と比べて60～75%程度であった。

BGOシンチレーターを用いた測定では、S8664-1010型APDで読み出しを行った場合、波形整形時定数を100nsとするとE.N.E.=0.22MeVとなり、既存のBelleのCsI(Tl)カウンターと遜色ないという結果がえられた。

Geant4によるシミュレーションから、長さ23cmのBGOシンチレーターをAPDで読み出すと、既存のBelleのCsI(Tl)カウンターと比べエネルギー分解能を著しく改善できる可能性があることが分かった。

波長可変レーザーを用いたAPDの感度測定では、カタログ品S8664-1010型APDとS8664-55型APD、変更品S8664-1189(X)型APDの比較を行った。その結果、カタログ品と変更品の間では、感度に顕著な違いは見られなかった。また純CsIシンチレーターで用いた変更品S8664-1189(X)No2は、感度の低い個体である可能性があるということが分かった。
謝辞

本研究を行うにあたり、多くの方々に助けていただきました。この場を借りてお礼申し上げます。
まず、このような国際的な実験に参加する機会を与えてくださった奈良女子大学高エネルギー物理学研究室の林井久樹教授、宮林謙二教授に深く感謝いたします。指導教官の宮林先生には分かりやすく丁寧なご指導をしていただきました。林井先生には、たくさんの有用な助言をいただきました。本当にありがとうございました。
レーザーによる測定では KEK の吉村浩司准教授、中村勇助教には丁寧な説明や実験の手助けをしていただきました。
D3 の岩下先輩には、本当にたくさんの助言をいただきました。また、日頃の疑問や質問に丁寧に答えて下さり、感謝いたします。
同期の磯村さん、近藤さん、本原さん、鳥田さん、M1 の峰村さんには実験のお手伝いなどをしてもらいました。この研究を行うにあたって支えて下さった皆様に心から感謝いたします。
参考文献

[11] K. Kamada et al., ”Gamma-ray response properties of Pr:Lu$_3$Al$_5$O$_{12}$ (LuAG) scintillating crystal with avalanche photodiode”,PoS(PD07)040,proceedings of International Workshop on new photon detectors(PD07)

