

Measurements of charm lifetimes at Belle II

N. K. Nisar ^{1,*}

^aBrookhaven National Laboratory, Upton, New York, 11973 E-mail: nnellikun@bnl.gov

We report on absolute lifetime measurements of charmed hadrons using the data collected by the Belle II experiment between 2019 and 2021. The results, $\tau(D^0) = 410.5 \pm 1.1(\text{stat}) \pm 0.8(\text{syst})$ fs, $\tau(D^+) = 1030.4 \pm 4.7(\text{stat}) \pm 3.1(\text{syst})$ fs, and $\tau(\Lambda_c^+) = 203.2 \pm 0.9(\text{stat}) \pm 0.8(\text{syst})$ fs are the most precise to date and are consistent with previous measurements. The result, $\tau(\Omega_c^0) = 243 \pm 48(\text{stat}) \pm 11(\text{syst})$ fs, indicates that the Ω_c^0 is not the shortest-lived singly charmed baryon.

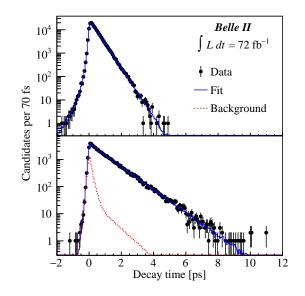
41st International Conference on High Energy physics - ICHEP2022 6-13 July, 2022 Bologna, Italy

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

¹On behalf of the Belle II Collaboration *Speaker

1. Introduction

Predictions of beauty and charm hadron lifetimes are achieved by using an effective model called heavy quark expansion (HQE)[1–6]. The later is particularly challenging due to the significant higher-order corrections and spectator quark effects. So the charm lifetime measurements allow for HQE validation and refinement that increases the reliability and precision of standard model predictions in flavor dynamics. The best measurements of charm meson lifetimes date back to FOCUS [7] while LHCb recently reported precise measurements of charm baryon lifetimes [8–10].


We report absolute lifetime measurements of the charm hadrons using the data collected by the Belle II detector [11], which is built around the interaction region (IR) of the SuperKEKB [12] asymmetric energy e^+e^- collider. SuperKEKB adopts a nano-beam scheme that squeezes the IR to achieve large instantaneous luminosity. The small beam-spot size is complementary for accurate lifetime measurements of hadrons. The Belle II detector consists of a tracking system, a particle identification system, and an electromagnetic calorimeter kept inside a 1.5T superconducting magnet. The outer layer consists of a dedicated muon and K_L^0 detector. The details of the Belle II detector can be found elsewhere [11]. Excellent vertex resolution, precise alignment of the vertex detector, and accurate calibration of particle momenta in Belle II are crucial in the measurements of lifetimes.

2. Lifetime extraction

The proper decay times of charm hadrons are calculated as $t = m(\vec{L} \cdot \hat{p})/p$, where *m* is the known mass of hadrons, \vec{L} is the flight length between the production and decay vertices, and *p* is the momentum of hadrons. Lifetimes are extracted by using unbinned maximum-likelihood fits to the *t* and its uncertainty, σ_t , of the candidates populating the signal regions of data. The signal probability-density function (PDF) is the convolution of an exponential function in *t* with a resolution function that depends on σ_t , multiplied by the PDF of σ_t . The time constant of the exponential function will return the lifetime. The σ_t PDF is a histogram template derived directly from the signal region of the data. In all cases but D^0 , the template is obtained from the candidates in the signal region after having subtracted the distribution of the sideband data. Simulation demonstrates that for D^+ , Λ_c^+ , and Ω_c^0 , a single Gaussian function is sufficient, whereas for D^0 , a double Gaussian function with a common mean is required.

3. D^0 and D^+ lifetimes

We measured D^0 and D^+ lifetimes using 72 fb⁻¹ of Belle II data in the decays of $D^0 \to K^-\pi^+$ and $D^+ \to K^-\pi^+\pi^+$, respectively. 171×10^3 signal candidates are reconstructed for $D^{*+} \to D^0(\to K^-\pi^+)\pi^+$ decays in the signal region: $1.851 < m(K^-\pi^+) < 1.878 \text{ GeV}/c^2$. In the D^0 case, the per-mille-level fraction of background candidates in the signal region is neglected, and a systematic uncertainty is assigned for this. 59×10^3 signal candidates are reconstructed for $D^{*+} \to D^+(\to K^-\pi^+\pi^+)\pi^0$ decays in the signal region: $1.855 < m(K^-\pi^+\pi^+) < 1.883 \text{ GeV}/c^2$. For the D^+ case, a sizable background contamination in the signal region is accounted for using the data sideband: $1.758 < m(K^-\pi^+\pi^+) < 1.814, 1.936 < m(K^-\pi^+\pi^+) < 1.992 \text{ GeV}/c^2$. The background

Figure 1: Decay-time distributions of (top) $D^0 \to K^-\pi^+$ and (bottom) $D^+ \to K^-\pi^+\pi^+$ candidates in their respective signal regions with fit projections overlaid.

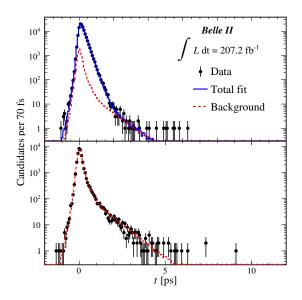

Source	$\tau(D^0 \to K^- \pi^+)$ [fs]	$\tau(D^+ \to K^- \pi^+ \pi^+) \text{ [fs]}$
Resolution model	0.16	0.39
Backgrounds	0.24	2.52
Detector alignment	0.72	1.70
Momentum scale	0.19	0.48
Total	0.80	3.10

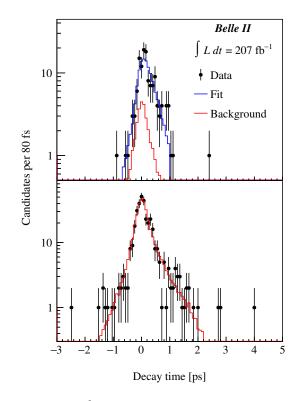
Table 1: Systematic uncertainties for D^0 and D^+ lifetimes.

PDF consists of a zero-lifetime component and two exponential components, all convoluted with the resolution function. The decay-time distributions of the data, with fit projections overlaid, are shown in Fig. 1. The D^0 and D^+ lifetimes are measured to be $410.5 \pm 1.1 \pm 0.8$ fs and 1030.4 ± 4.7 fs, respectively [13]. The results are consistent with their respective world average values [14]. All relevant systematic effects are studied, and the corresponding uncertainties are summarized in the table 1. The total systematic uncertainties on D^0 and D^+ lifetime measurements are 0.8 fs and 3.1 fs, respectively.

4. Λ_c^+ lifetime

The most precise measurement of the Λ_c^+ lifetime is reported by the LHCb experiment, and it is performed relative to the D^+ lifetime [8]. We report a preliminary result on the absolute measurement of the Λ_c^+ lifetime in $\Lambda_c^+ \rightarrow pK^-\pi^+$ decays reconstructed using 207 fb⁻¹ of the Belle II data. We reconstruct 116×10^3 candidates for the decay $\Lambda_c^+ \rightarrow pK^-\pi^+$ in the signal region: $2.283 < m(pK^-\pi^+) < 2.290 \text{ GeV}/c^2$, with a background contamination of 7.5%. The Λ_c^+ lifetime is extracted in the same way as the D^+ lifetime. Background events in the signal region are constrained using data sideband ($2.249 < m(pK^-\pi^+) < 2.264, 2.309 < m(pK^-\pi^+) < 2.324 \text{ GeV}/c^2$).

Figure 2: Decay-time distributions of $\Lambda_c^+ \to pK^-\pi^+$ candidates in their (top) signal and (bottom) sideband regions with fit projections overlaid.


Table 2: Systematic uncertainties for Λ_c^+ lifetime.

0.01
0.34
0.46
0.20
0.46
0.09
0.77

Decays of $\Xi_c^0 \to \pi^- \Lambda_c^+$ and $\Xi_c^+ \to \pi^0 \Lambda_c^+$ may bias the measurement of the Λ_c^+ lifetime, since the Ξ_c^0 and Ξ_c^+ have non-zero lifetimes and may shift the production vertex of the Λ_c^+ away from the IR. A veto is applied to suppress such candidates, and a systematic uncertainty is assigned for the remaining contamination. We measure the Λ_c^+ lifetime to be 203.20 ± 0.89 fs, where the uncertainty is statistical. Our result is consistent with the current world average[14]. All relevant systematic effects are studied (summarized in the table 2), and 0.77 fs is assigned as the total systematic uncertainty.

5. Ω_c^0 lifetime

 Ω_c^0 was believed to be the shortest-lived singly charmed baryon that decays weakly. In 2018, LHCb measured a large value of Ω_c^0 lifetime [9], and this observation inverted the lifetime hierarchy of singly charmed baryons. LHCb confirmed their result in 2022 using an independent data sample [10]. We performed the first independent measurement of Ω_c^0 lifetime using 207 fb⁻¹ of data collected at Belle II. We reconstructed 90 signal candidates in the signal region (2.68 < $m(\Omega_c^0 \to \Omega^- \pi^+) < 2.71 \text{ GeV}/c^2$) for the decay $\Omega_c^0 \to \Omega^- \pi^+$, where $\Omega^- \to \Lambda^0 (\to p\pi^-)K^-$.

Figure 3: Decay-time distributions of $\Omega_c^0 \to \Omega^- \pi^+$ candidates in their (top) signal and (bottom) sideband regions with fit projections overlaid.

Source	Uncertainty (fs)
Fit bias	3.4
Resolution model	6.2
Background model	8.3
Detector alignment	1.6
Momentum scale	0.2
Input Ω_c^0 mass	0.2
Total	11.0

Table 3: Systematic uncertainties for Ω_c^0 lifetime.

It is a complex decay chain with two extra decay vertices in addition to the Ω_c^0 decay vertex. The lifetime is extracted by fitting the signal and sideband regions simultaneously. The signal region has a background contamination of 33% and is constrained the using events in the sideband $(2.55 < m(\Omega_c^0 \rightarrow \Omega^- \pi^+) < 2.65, 2.75 < m(\Omega_c^0 \rightarrow \Omega^- \pi^+) < 2.85 \text{ GeV}/c^2)$. The Ω_c^0 lifetime is measured to be 243 ± 48 fs, where the uncertainty is only statistical. The result is consistent with LHCb measurements and inconsistent with previous measurements at 3.4 standard deviations. The relevant systematic uncertainties are estimated and summarized in table 3.

6. Conclusions

In conclusion, D^0 , D^+ , Λ_c^+ , and Ω_c^0 lifetimes are measured using the data collected by the Belle II experiment. The results on D^0 , D^+ , and Λ_c^+ lifetimes are the most precise to date and are consistent with previous measurements. Our result on Ω_c^0 lifetime is consistent with the LHCb results [9, 10], and inconsistent at 3.4 standard deviations with the pre-LHCb world average [15]. The Belle II result, therefore, confirms that the Ω_c^0 is not the shortest-lived weakly decaying charmed baryon.

References

- [1] M. Neubert, Adv. Ser. Dir. High Energy Phys. 15, 239 (1998).
- [2] N. Uraltsev, in At the Frontier of Particle Physics, edited by M. Shifman and B. Ioffe (World Scientific, Singapore, 2001), https://dx.doi.org/10.1142/9789812810458_0034.
- [3] A. Lenz and T. Rauh, Phys. Rev. D 88, 034004 (2013).
- [4] A. Lenz, Int. J. Mod. Phys. A **30**, 1543005 (2015).
- [5] M. Kirk, A. Lenz, and T. Rauh, J. High Energy Phys. 12 (2017) 068; 06 (2020) 162(E).
- [6] H.-Y. Cheng, J. High Energy Phys. 11 (2018) 014.
- [7] J. M. Link et al. (FOCUS collaboration), Phys. Lett. B 537, 192 (2002).
- [8] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 100, 032001 (2019).
- [9] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 121, 092003 (2018).
- [10] R. Aaij et al. (LHCb Collaboration), Science Bulletin 67 (2022), no. 5, 479-487.
- [11] T. Abe (Belle II Collaboration), arXiv:1011.0352.
- [12] K. Akai, K. Furukawa, and H. Koiso, Nucl. Instrum. Methods Phys. Res., Sect. A 907, 188 (2018).
- [13] F. Abudinén et al. (Belle II Collaboration), Phys. Rev. Lett 127, 211801 (2021).
- [14] P. A. Zyla et al., Particle Data Group, Review of Particle Physics, PTEP 2020214 (2020) 083C01.
- [15] M. Tanabashi et al., Particle Data Group, Review of Particle Physics, Phys. Rev. D 98 030001 (2018).