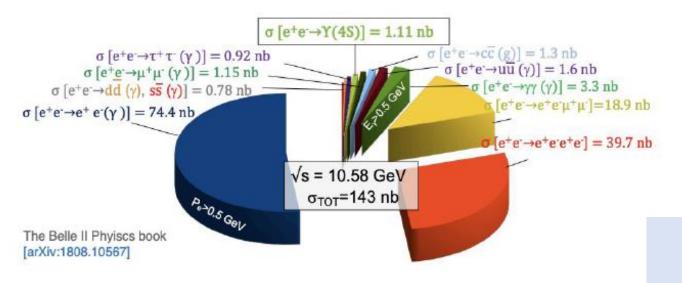
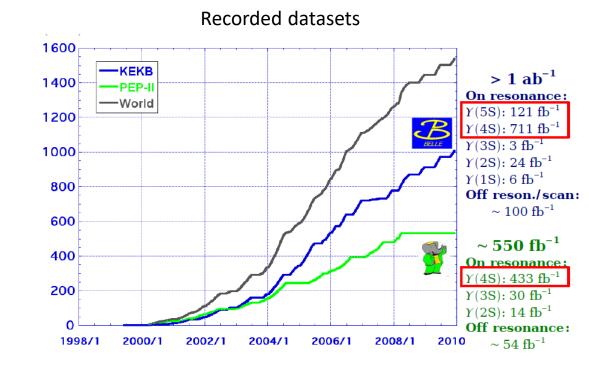
Lepton flavour and number violation measurements at Belle II

Justine Serrano CPPM Marseille on behalf of Belle II collaboration

BLV22

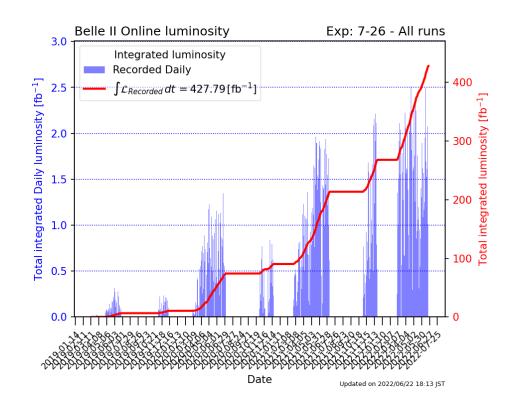
5-8th September

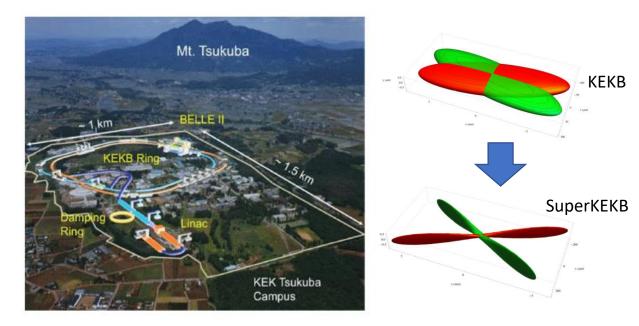




Principle of B-factories

- e⁺e⁻ collider, mainly working at the Υ(4s) energy which produces pairs of B⁺B⁻ and (quantum correlated) B⁰B⁰
- Asymmetric beams → study time dependent effects in B hadron decays
- Also τ /charm factory (similar cross section as B)!

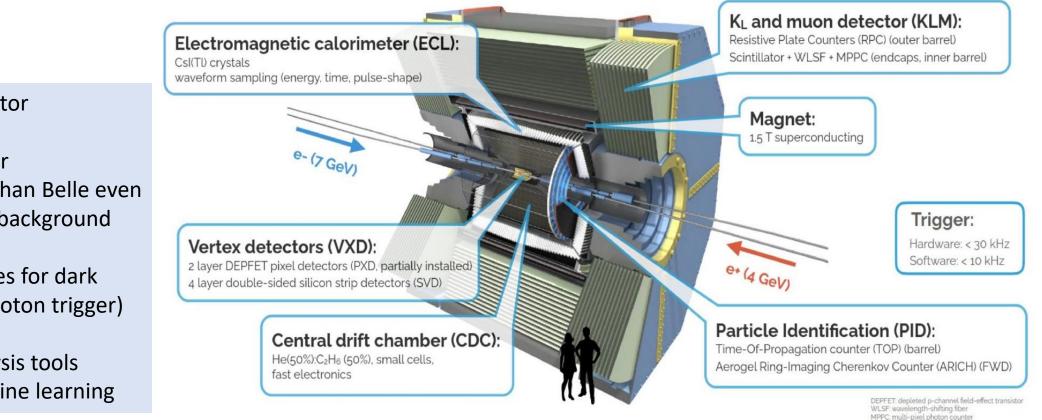




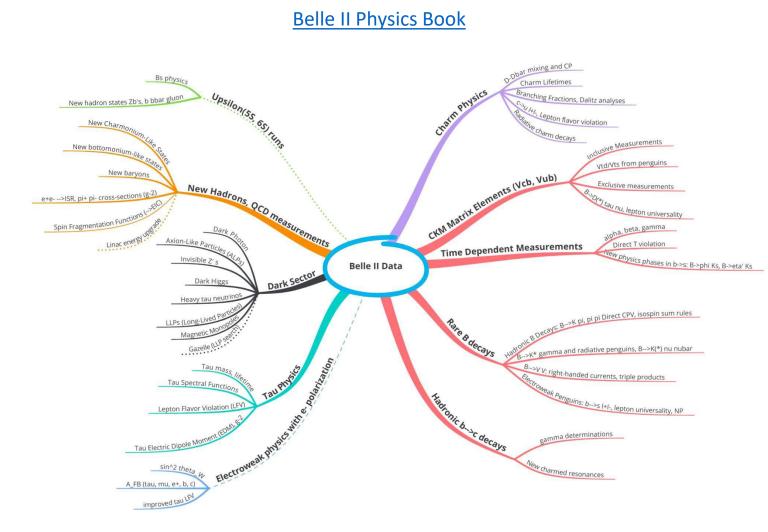
Previous experiments Belle and Babar obtained a wide variety of results, see <u>The physics of the B factories</u>

The SuperKEKB collider

- Upgrade of KEKB, located at Tsukuba, Japan
- Goal: deliver integrated luminosity of 50 ab⁻¹
- Nominal instantaneous luminosity of 6 x 10³⁵ cm⁻²s⁻¹ x20 thanks to 'nano beam scheme' x1.5 thanks to higher beam currents



- Recorded 424 fb⁻¹ since 2019, among which 362 fb⁻¹ at Υ(4s)
- World record of instantaneous luminosity at 4.7x10³⁴ cm⁻²s⁻¹
- Now in long shutdown 1 for several upgrades, restart data taking at fall 2023


Belle II

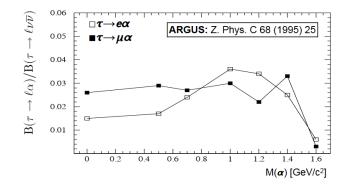
Similar to Belle but almost brand new, only the ECL crystals, structure and magnet were reused

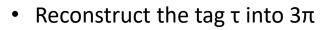
- Similar or better performances than Belle even with 10x more background
- New trigger lines for dark sector (ex: 1 photon trigger)
- Improved analysis tools thanks to machine learning

Broad physics program

In particular, Belle II has a unique potential for:

- Final states with π^0 , $\eta(')$, K_L ,...
- Modes with missing energy
- Modes with challenging backgrounds that need the full kinematic of the event to be known
- Dark sector candidate in the MeV-GeV range

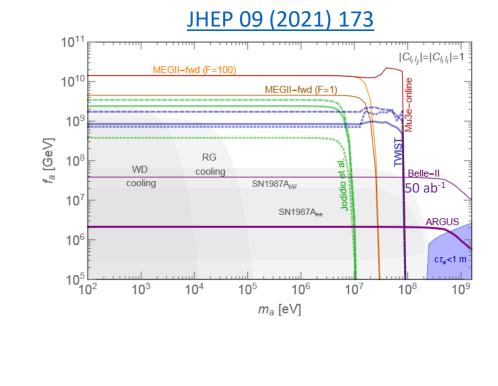

→ Complementarity with LHC experiments

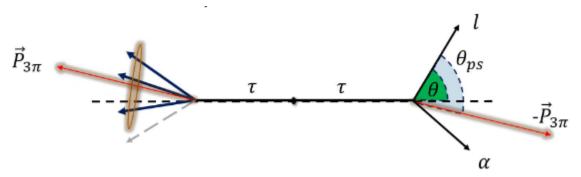

Crucial to validate LHC anomalies/discoveries in flavor sector

τsector

$\tau \rightarrow \ell + \alpha$ (invisible)

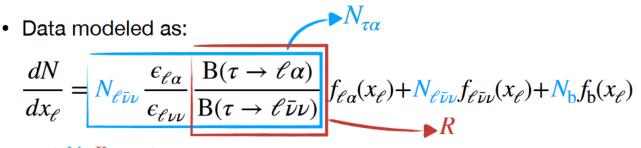
- Search for LFV two-body decay $\tau \rightarrow \ell + \alpha$ ($\ell = e, \mu$) and α being an invisible particle
- Appears in new physics models such as light ALP
- Best upper limits from ARGUS (1995)

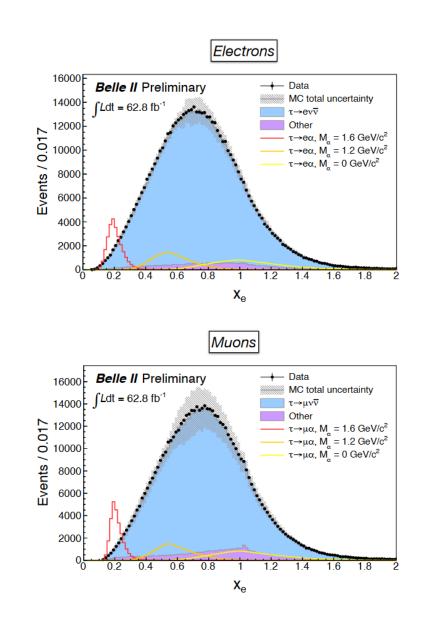




- ℓ is monochromatic in the τ rest frame
- Approximate the signal τ momentum using

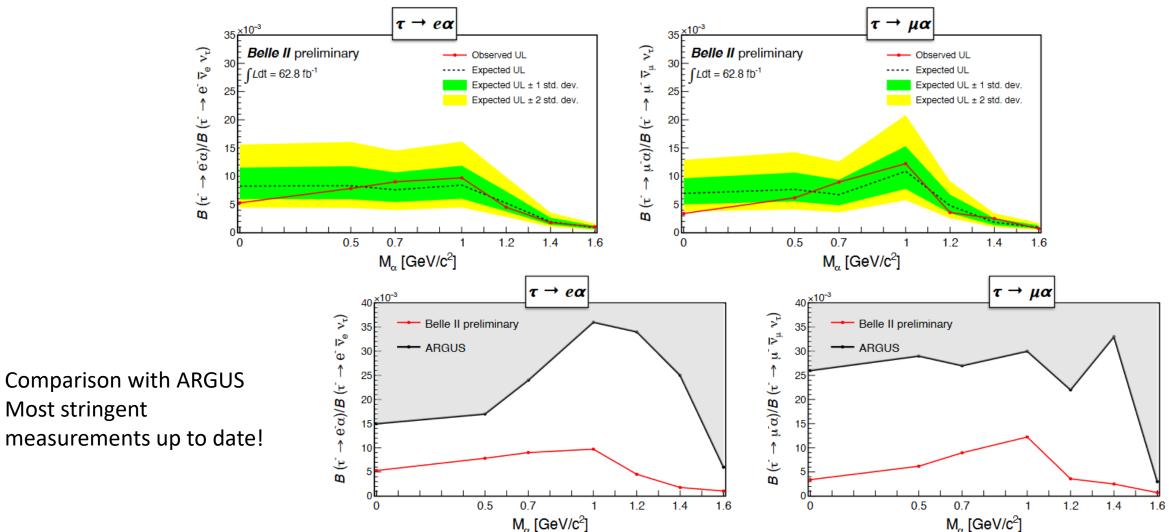
$$\hat{p}_{ au} \approx rac{ec{p}_{3h}}{ec{p}_{3h}ec} \qquad E_{ au} = E_{
m beam} = \sqrt{s}/2$$


• Challenge: distinguish signal $\tau \rightarrow \ell + \alpha$ from $\tau \rightarrow \ell v \bar{v}$ SM decay


$\tau \rightarrow \ell + \alpha$ (invisible)

• Construct template pdfs $f(x_{\ell})$ using MC where $x_{\ell} \equiv E_{\ell}/(m_{\tau}/2)$

and *N*, *R* are free parameters.

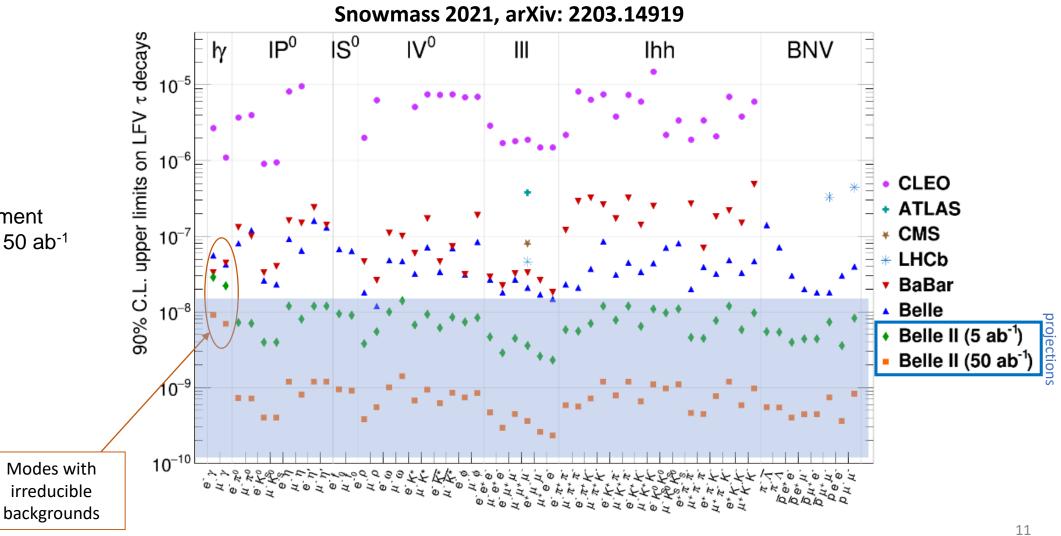

- Systematic uncertainties partially cancel out in R
 - Largest one from lepton identification

$\tau \rightarrow \ell + \alpha$ (invisible)

Most stringent

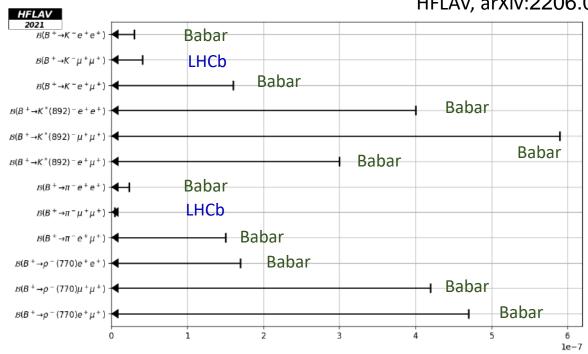
• Search performed in 63 fb⁻¹ of data. 95% CL upper limit set with CLs method

τ LFV prospects for Belle II


Improvements expected from statistics but also:

- higher trigger efficiencies : trigger based on KLM for muon final states, single track trigger using neural network,...
- improvements in the vertex reconstruction
- charged track and neutral meson reconstruction
- particle identification
- refinements in the analysis techniques. Ex:
 - for τ→ μμμ, extract the best combination of tight cuts for the analysis also at low momentum (not used by Belle/BaBar)
 - Explore inclusive tag reconstruction looking only at the signal τ. Variables related to the rest of events allows to reduce background contamination.
- Several modes currently under study at Belle II

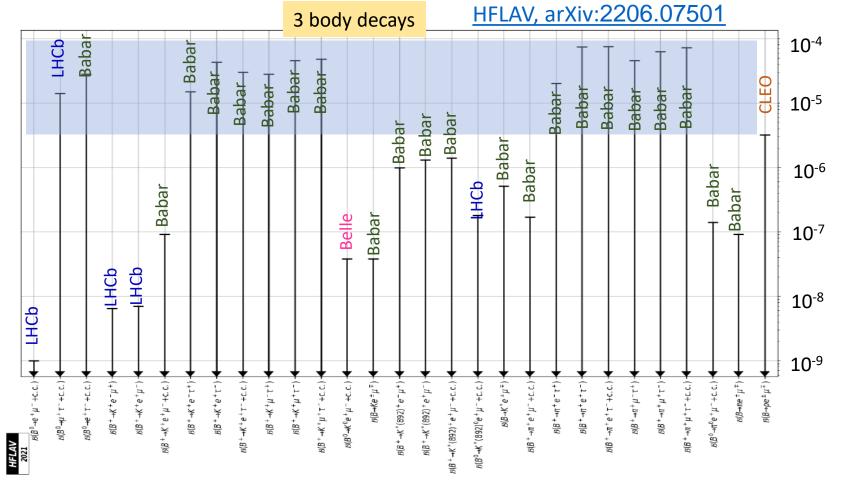
τ LFV prospects for Belle II


Expect 2 orders of magnitude improvement with final dataset of 50 ab⁻¹

B sector

$B \rightarrow (s,d) \ell \ell'$

- $B \rightarrow \ell \ell'$: two body decays, $\ell(\prime)$ is monochromatic ٠
- $B \rightarrow s, d \ \ell \ell'$: three body decays, large background from tree-level semileptonic decays ٠
- If τ in the final state: more challenging reconstruction due to missing energy. Usually reconstruct the other B in the event (B tagging) \rightarrow lower efficiency \rightarrow less stringent limit


Status for B LNV decays

Status for B BNV&LNV decays

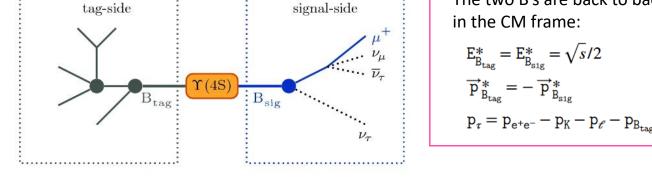
Mode	Limit @ 90%CL	Experiment
$B^+ ightarrow \Lambda \mu^+$	6.1 10 ⁻⁸	Babar
$B^+ \rightarrow \Lambda e^+$	3.2 10 ⁻⁸	Babar
${ m B}^{\scriptscriptstyle +} o ar{\Lambda} \mu^{\scriptscriptstyle +}$	6.2 10 ⁻⁸	Babar
$B^+ \rightarrow \bar{\Lambda} e^+$	8.1 10 ⁻⁸	Babar
$B^0 \rightarrow \Lambda_c \mu^+$	1.8 10 ⁻⁶	Babar
${\rm B}^{\rm 0} \rightarrow {\rm \Lambda_c}{\rm e}^{\scriptscriptstyle +}$	5.2 10 ⁻⁶	Babar
$B^0 \rightarrow p\mu^-$	2.6 10 ⁻⁹	LHCb
		CT

HFLAV, arXiv:2206.07501

B LFV status

2 body decays

Mode	Limit @ 90%CL	Experi ment
$B^0 \rightarrow \tau \mu$	1.2 10 -5	LHCb
$B^0 \rightarrow \tau e$	1.6 10 ⁻⁵	Belle
$B^0 ightarrow e \mu$	1.0 10 ⁻⁹	LHCb
$B_s \rightarrow \tau \mu$	3.4 10 ⁻⁵	LHCb
$B_s \rightarrow e\mu$	5.4 10 ⁻⁹	LHCb

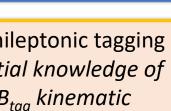

- Final sates with τ are 2 to 3 orders of magnitude higher than e/mu final states
- Modes with e and/or neutrals dominated by B factories, LHCb competitive on the others

15

efficiency

Belle II prospects

- Improvement thanks to the statistics •
- Improvement of B tagging

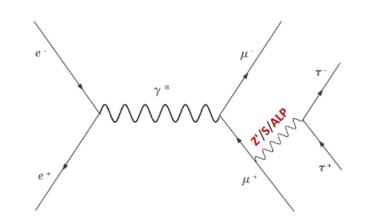

- Full Event Interpretation Comput. Softw. Big Sci. 3, 6 (2019) :
 - MVA based algorithm for hadronic and semileptonic tagging, reconstruct O(10⁴) channels

The two B's are back to back

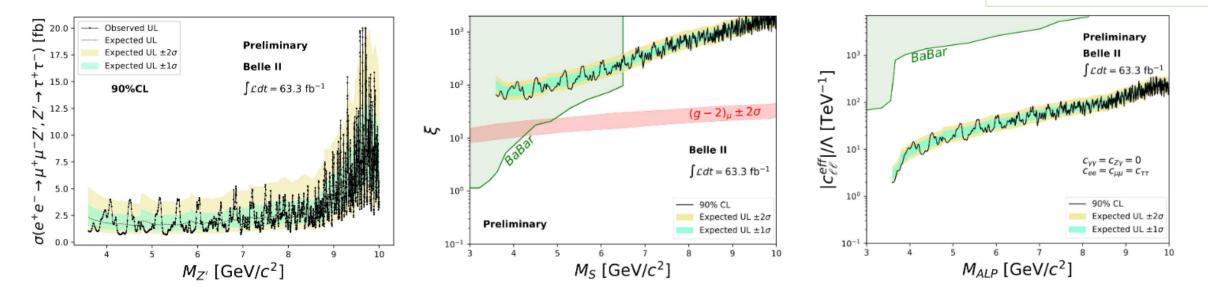
- Max. tag side efficiency: $\varepsilon_{had} \approx 0.5\%$ and $\varepsilon_{SL} \approx 2\%$
- Expect limits of the order of (<)10⁻⁶ for final states with τ with 50ab⁻¹

Hadronic tagging

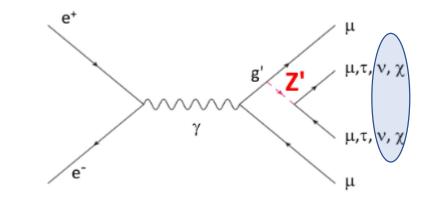
Inclusive tagging Indirect knowledge of B_{taa} kinematic See e.g. PRL. 127, 181802


purity

Dark sector


$Z'/S/ALP \to \tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$

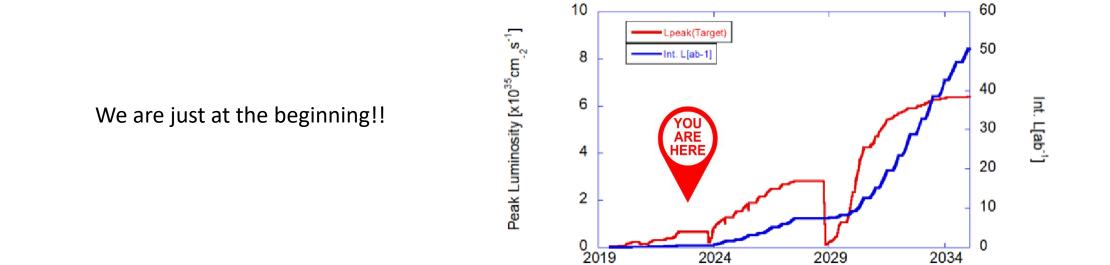
- Search for $\mu\mu\tau\tau$ final state with a $\tau\tau$ resonance
- Vector portal: " L_{μ} - L_{τ} " Z' with coupling g'
- Scalar portal: leptophilic dark scalar S with coupling ξ
- Pseudo scalar portal: ALP with effective coupling C_{ee}


- Analysis uses 63.3 fb⁻¹, search performed in the mass distribution recoiling against $\mu\mu$, selecting 1 prong τ decays
- First constraints on S for $M_s > 6.5 \text{ GeV/c}^2$, first direct constraints on ALP $\rightarrow \tau\tau$

 $(g-2)_{\mu}$ and Babar constraints from PRD 95 (2017) 075003 arXiv:2110.1069

$Z' \rightarrow invisible$

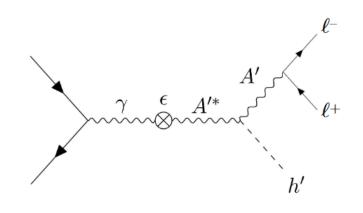
- " L_{μ} - L_{τ} " Z' decaying into neutrino/dark matter
- Analyzing 79.7 fb⁻¹ of data collected at Belle II
 → update of the 2020 result <u>PRL 124, 141801 (0.276 fb⁻¹)</u>

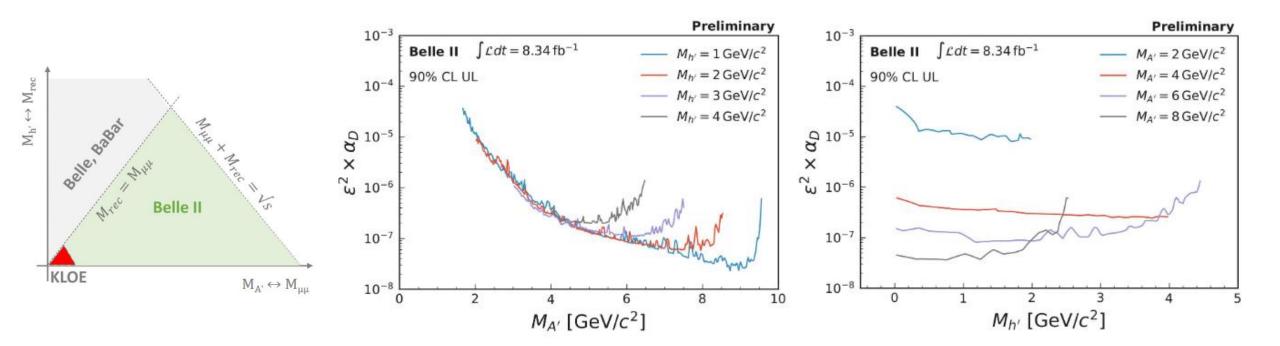


- Select events with exactly two muons, search for a Z' in the recoiling system
- Excluded fully invisible Z' as explanation for $(g-2)_{\mu}$ for $0.8 < M_{Z'} < 5.0 \text{ GeV/c}^2$

Conclusion

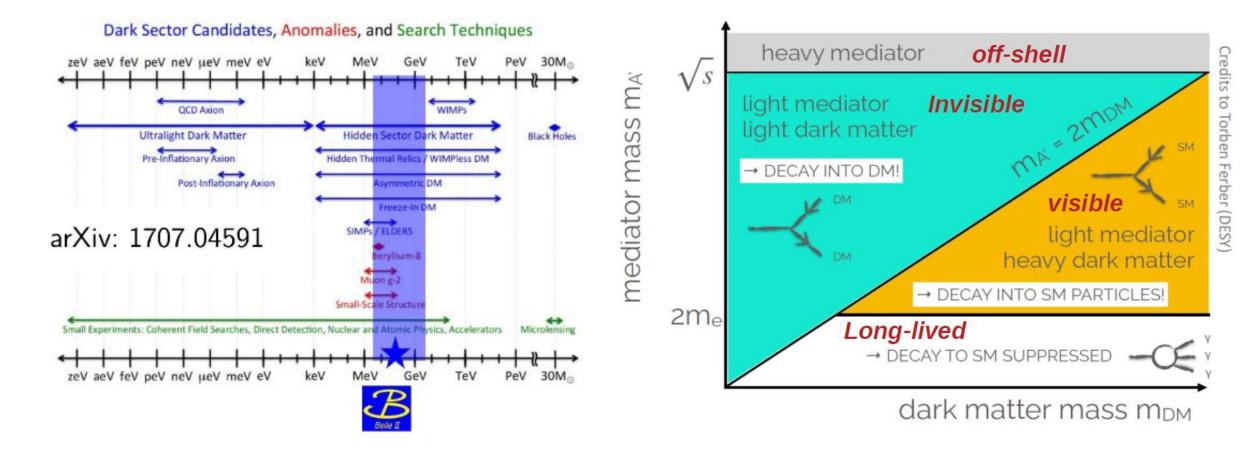
- SuperKEKB broke the instantaneous luminosity world record: 4.7x10³⁴ cm⁻²s⁻¹
- Belle II has now recorded dataset comparable with Babar one (~ 1/100 of final Belle II statistics)
- Several leading results already obtained in the dark sector, more to come
- Searches for LFV/LNV τ and B decays needs statistics but first results are expected soon

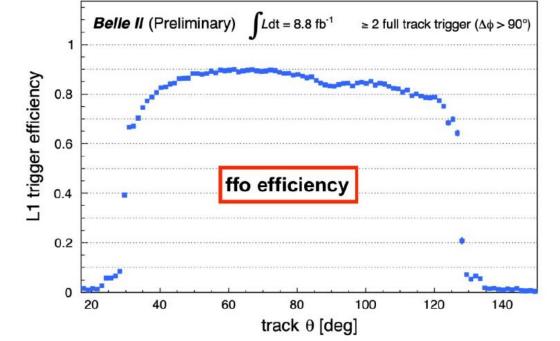



Back up

arXiv: 2207.00509

Dark Higgsstrahlung


- Dark photon A' as mediator of the additional U(1) group. Dark Higgs h' originates from spontaneous symmetry breaking, couples with α_D to A'
- Case where $M_{h'} < M_{A'}$: h' is long-lived (invisible) \Rightarrow 2 charged tracks
- Scan for excess in 2D plane of M_{recoil} vs $M_{\mu\mu}$ in 2019 data (8.34fb⁻¹)
- First limit ever for $M_{h'} < M_{A'}$ and 1.65 $< M_{A'} < 10.51 \text{ GeV/c}^2$

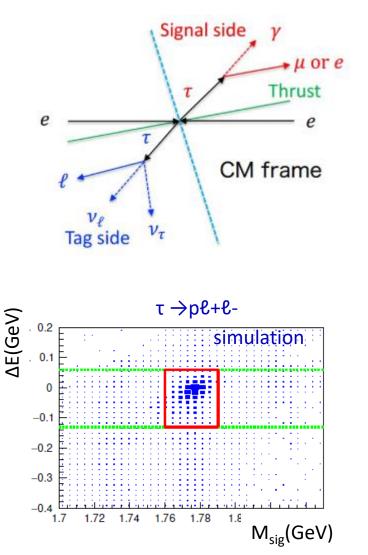

22

Dark matter at Belle II

Triggers

- Belle II hardware-based (Level 1) trigger combines information from CDC, ECL, TOP and KLM.
 - Designed to reduce rate to at most 30 kHz, while delivering ~100% efficiency for $\Upsilon(4S) \rightarrow B\bar{B}$ events
 - Novel menu of triggers unavailable in Belle enable a compelling low-multiplicity program!
- Main trigger types for Tau & Dark Sector physics:
 - CDC number of full tracks
 - CDC number of short tracks
 - ECL total energy threshold
 - ECL number of isolated clusters
 - ECL low multiplicity
 - ECL di-muon
- In the dark Higgsstrahlung analysis events are required to fire the so-called "ffo" trigger:
 ≥ 2 full tracks, pair with Δφ > 90°, bhabha-veto

τ sector : LFV decays at B factories


- At B-factories, tau pair events are jet-like
- Analysis strategy:
 - Selection based on the topology (= number of tracks in each side) :

 $3x1, \quad 3x3, \quad 1x1$ ex: $\tau \rightarrow \ell \ell \ell x \tau \rightarrow \ell \nu \nu, \quad \tau \rightarrow \ell \ell \ell x \tau \rightarrow \pi \pi \pi \nu, \quad \tau \rightarrow \ell \nu x \tau \rightarrow \ell \nu \nu$

- Signal is searched in 2D plane: $M_{\tau sig}$ and $\Delta E = E_{sig} E_{beam}$, blinding the signal region
- Backgrounds are mainly coming from light quarks decays, other tau decays, or Bhabha events (B decays have a different event shape)
- Background is evaluated from data sidebands extrapolating to the signal region
- Upper limit is set on the number of signal events, then translated to the BR:

$$\mathcal{B}(\tau^- \to p \mu^- \mu^-) < \frac{N_{\rm sig}^{\rm UL}}{2N_{\tau\tau}\epsilon},$$

Signal efficiencies are typically few %

More Prospects on B LFV modes

Belle II Physics Book

Observables	Belle $0.71 \mathrm{ab^{-1}} (0.12 \mathrm{ab^{-1}})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$
${\rm Br}(B^+\to K^+\tau^+\tau^-)\cdot 10^5$	< 32	< 6.5	< 2.0
${ m Br}(B^0 o au^+ au^-)\cdot 10^5$	< 140	< 30	< 9.6
${ m Br}(B^0_s o au^+ au^-) \cdot 10^4$	< 70	< 8.1	-
${ m Br}(B^+ o K^+ au^\pm e^\mp) \cdot 10^6$	-	—	< 2.1
${ m Br}(B^+ o K^+ au^\pm \mu^\mp) \cdot 10^6$	_	_	< 3.3
${ m Br}(B^0 o au^\pm e^\mp) \cdot 10^5$	_	—	< 1.6
${ m Br}(B^0 o au^{\pm} \mu^{\mp}) \cdot 10^5$	_	_	< 1.3

Path to the future

Steep path to higher luminosity

- A. Machine performance and stability
- Beam blow up due to beam-beam effects
- Lower than expected beam lifetime
- Transverse mode coupling instabilities
- Low machine stability
- Injector capability
- Aging infrastructure
- B. Backgrounds in the detector
- Single beam: Beam-gas, Touchek,
- Luminosity: Radiative Bhabha, two-photon processes
- Injection backgrounds

Mitigation measures

- A. Consolidate machine
- International task force at work to help
- Many countermeasures under development
- A major redesign of the Interaction Region may be required to go beyond $\sim 2 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- B. Consolidate the detector
- Install a complete PXD
- Complete installation of more robust TOP PMTs

C. Improve detector

• Upgrade program to make the detector more robust against backgrounds and with improved performance

Peter Krizan @ICHEP2022

Belle

S 0.03 √E/ № 0.02

0.02

0.01

0

-0.01

-0.02

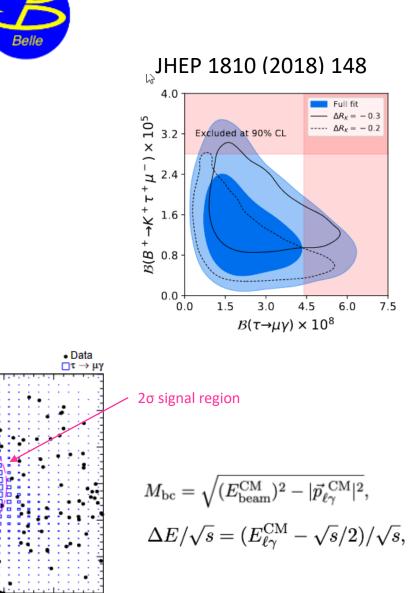
-0.03

$\tau \rightarrow \ell \gamma$

е

e

- One of the golden modes, BR can be as high as few 10^{-8} ٠
- Reconstructed in the 1x1 topology ٠
- Challenging due to strong background contributions: ٠

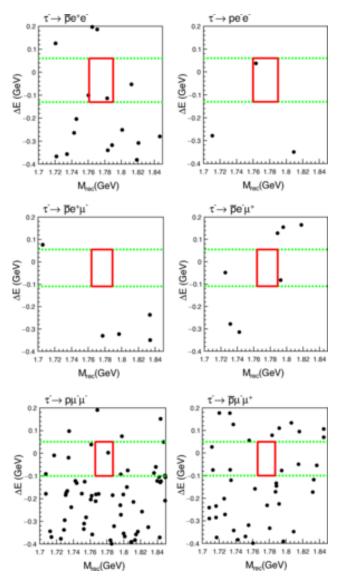

Irreducible background

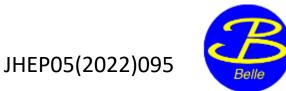
eev and $\mu\mu\gamma$ (vetoed using PID)

е

е

- Best limit on e mode from Babar BR($\tau \rightarrow e\gamma$) < 3.3 10⁻⁸ using 515 fb-1, Phys. Rev. Lett. 104 (2010) 021802
- Best limit on μ mode from Belle BR ($\tau \rightarrow \mu \gamma$) < 4.2 10⁻⁸ using 988 fb-1, JHEP 10 (2021) 18

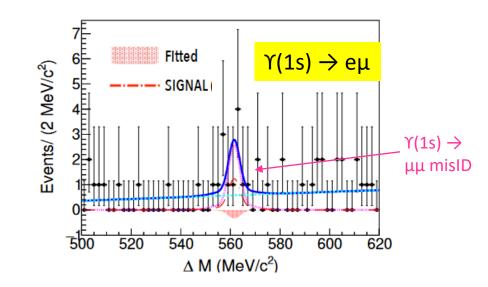

$\tau \rightarrow p\ell\ell'$

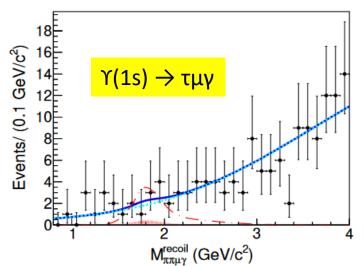

- τ is the only leton that candecay into hadron \rightarrow can give rise to baryon number violating decays
- Search for 6 lepton and baryon number violating pℓℓ' decays
- New results from Belle (PRD 102 (2020) 111101) :

Channel	ϵ (%)	$N_{\rm bkg}$	$N_{\rm obs}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}(\times 10^{-8})$	-
$\tau^- \rightarrow \overline{p}e^+e^-$	7.8	0.50 ± 0.35	1	3.9	< 3.0	
$\tau^- \rightarrow p e^- e^-$	8.0	0.23 ± 0.07	1	4.1	< 3.0	
$\tau^- \rightarrow \overline{p}e^+\mu^-$	6.5	0.22 ± 0.06	0	2.2	< 2.0	
$\tau^- \to \overline{p}e^-\mu^+$	6.9	0.40 ± 0.28	0	2.1	< 1.8	
$\tau^- \rightarrow p \mu^- \mu^-$	4.6	1.30 ± 0.46	1	3.1	< 4.0	_
$\tau^- \to \overline{p}\mu^-\mu^+$	5.0	1.14 ± 0.43	0	1.5	< 1.8	_

First limits

Improve LHCb results by one order of magnitude





$\Upsilon(1s) \rightarrow \ell\ell'(\gamma)$

- Υ(1s) → ℓℓ':two-body vector meson cLFV process
 → probing the vector and tensor operators of the effective Lagrangian for NP
- $\Upsilon(1s) \rightarrow \ell \ell' \gamma$: First study of three-body radiative cLFV \rightarrow complementary access to NP
- Use $25fb^{-1}$ of $\Upsilon(2s) \rightarrow \Upsilon(1s)\pi\pi$ decays (higher trigger efficiency and easier background suppression)

Decay	ϵ (%)	$N_{ m sig}^{ m fit}$	$N_{ m sig}^{ m UL}$	$\mathcal{B}^{\mathrm{UL}}$	PDG result
$\Upsilon(1S) \to e^{\pm} \mu^{\mp}$	32.5	-1.3 ± 3.7	3.6	$3.9 imes 10^{-7}$	_
$\Upsilon(1S) \to \mu^\pm \tau^\mp$	8.8	-1.5 ± 4.3	6.8	2.7×10^{-6}	6.0×10^{-6}
$\Upsilon(1S) \to e^\pm \tau^\mp$	7.1	-3.5 ± 2.7	5.3	2.7×10^{-6}	_
$\Upsilon(1S) \to \gamma e^{\pm} \mu^{\mp}$	24.6	$+0.8\pm1.5$	2.9	$4.2 imes 10^{-7}$	_
$\Upsilon(1S)\to\gamma\mu^\pm\tau^\mp$	5.8	$+2.1\pm5.9$	10.0	6.1×10^{-6}	_
$\Upsilon(1S) \to \gamma e^{\pm} \tau^{\mp}$	5.0	-9.5 ± 6.3	9.1	6.5×10^{-6}	_

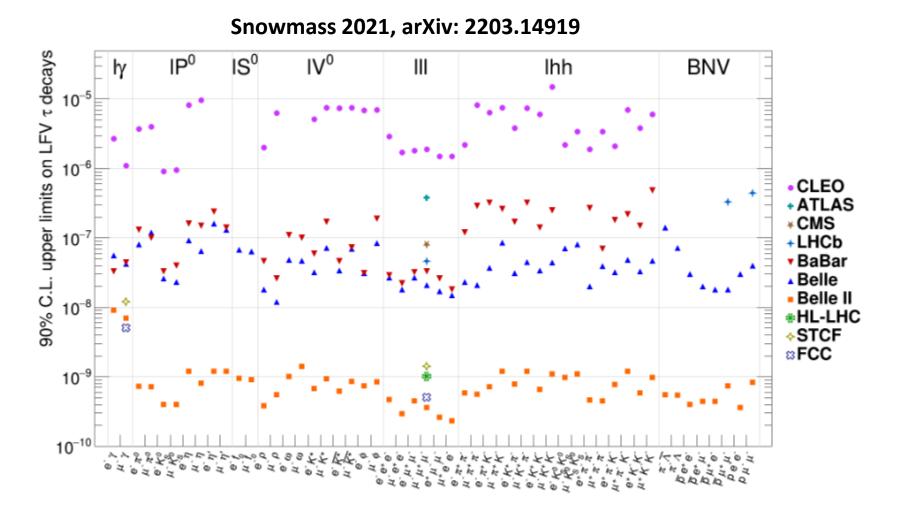


Figure 3: Summary of upper limits on LFV processes in τ decays.